نوشته‌ها

چشم انداز سیستم های نیروگاه خورشیدی خانگی همراه با باتری در سال 2024

 

اگر تصمیم سال نوی شما این است سیستم خورشیدی همراه با بکاپ باتری که رویای آن را داشتید به دست آورید، به شما تبریک می گویم.

به گزارش آرا نیرو سیستم‌های نیروگاه خورشیدی خانگی همراه با بکاپ باتری این قدرت را دارند که شما را از قبض آب و برق، قطع برق، و هر گونه گناهی که در اطراف تلویزیون 92 اینچی دارید، آزاد کنند. بازار خورشیدی همیشه بالا و پایین است ( بیهوده آن را ترن هوایی خورشیدی نمی نامند)، بنابراین دانستن اینکه چه چیزی در دسترس است و تا چه زمانی وجود خواهدداشت، هنگام تصمیم گیری برای انجام سرمایه‌گذاری در انرژی خورشیدی مفید است. در اینجا برخی از روندها و فرصت های کلیدی در این فضا آورده شده است.

اولاً، تنها از هر 20 خانه در ایالات متحده، 1 خانه دارای انرژی خورشیدی است، در مقایسه با 1 در 3 در استرالیا، و 1 در 5 در آلمان ابری و سرد. _ طبق آمار وزارت نیرو، تا پایان سال 1400، تعداد 200 هزار واحد مسکونی در ایران مجهز به نیروگاه خورشیدی شده بودند. با این حال، این تعداد هنوز نسبتاً کم است و نسبت خانه هایی که نیروگاه خورشیدی دارند به خانه هایی که ندارند، حدود 2 درصد است._ بنابراین، تعداد زیادی فرصت همچنان وجود دارد. انرژی خورشیدی، به طور کلی، آماده است تا از انرژی آبی به عنوان بزرگترین منبع برق بدون کربن در سال جاری سبقت بگیرد!

photo 2024 01 22 09 40 40 - چشم انداز سیستم های نیروگاه خورشیدی خانگی همراه با باتری در سال 2024

Homes with rooftop solar. Photo by Werner Slocum, NREL.

در امریکا مشوق های خوبی در سطوح فدرال، ایالتی و خدماتی وجود دارد. پنل‌های جدید و کارآمدتر، پنل‌های زیباتر، تنوع بیشتر و باتری‌های باکیفیت‌تر، و حتی برخی از فناوری‌های V2G وجود دارند که به خودروهای برقی اجازه می‌دهند تا یک خانه را تامین کنند و به عنوان باتری اضافی خانه عمل کنند.

بنابراین، من به مارکوس جو، یکی از بنیانگذاران و مدیر ارشد آموزش در EnergyPal، که تقریباً 20 سال است در زمینه انرژی خورشیدی خانگی کار می کند (شامل “گروهی برای خورشیدی” که ما در مورد آن صحبت می کنیم) مراجعه کردم تا به تمام آنچه که در نیروگاه خورشیدی خانگی در حال انجام است، بپردازم. برای آن، و جایی که او بهترین فرصت ها را برای صاحبان خانه در سال جاری می بیند.

 

برای علاقه مندان به حوزه خورشیدی، EnergyPal با ارائه اطلاعات رایگان در مورد قیمت گذاری، و سایر جنبه های نصب خورشیدی، و همچنین برقراری ارتباط مالکان خانه با پیمانکاران نیروگاه خورشیدی بستری را فراهم کرده است تا در صورت تمایل به پیشرفت، کار را به بهترین شکل انجام دهند.

 

این مصاحبه با مارکوس را در پست اول امروز در اینستاگرام آرا نیرو ببینید تا هر آنچه را که لازم است، در مورد نیروگاه خورشیدی خانگی بدانید.

 

نویسنده: Scott Cooney

 January 17, 2024

به گفته EY، اکنون LCOE خورشیدی 29 درصد کمتر از هر گزینه سوخت فسیلی است.
به گزارش آرا نیرو هزینه همسطح الکتریسیته (LCOE) یک معیار اقتصادی است که برای مقایسه هزینه‌های طول عمر تولید برق در فناوری‌های مختلف تولید استفاده می‌شود.
گزارش ارنست اند یانگ (EY) نشان می‌دهد که با وجود فشارهای تورمی، انرژی خورشیدی ارزان‌ترین منبع برق جدید است. میانگین موزون جهانی هزینه یکسان شده برق (LCOE) برای PV اکنون 29 درصد کمتر از ارزان ترین جایگزین سوخت فسیلی است.
موسسه EY در آخرین گزارش انرژی و منابع خود  اعلام کرد که 86 درصد یا 187 گیگاوات از منابع انرژی تجدیدپذیر تازه راه‌اندازی شده، برق را با هزینه کمتر از میانگین هزینه تولید سوخت فسیلی در سال 2022 تولید می‌کند.

موسسه EY گفت که نیروگاه خورشیدی ارزان‌ترین برق تولیدی جدید در بسیاری از بازارها است، حتی با وجود تورم و افزایش قیمت، و اشاره کرد که میانگین وزنی جهانی LCOE برای انرژی خورشیدی اکنون 29 درصد کمتر از ارزان‌ترین جایگزین سوخت فسیلی است. ذخیره انرژی در مقیاس بزرگ نیز به سرعت مقرون به صرفه تر و پیچیده تر می شود.
میانگین LCOE انرژی خورشیدی به سرعت در سطح جهانی کاهش یافته است، از بیش از 400 دلار در مگاوات ساعت در اوایل دهه 2010 به حدود 49 دلار در مگاوات ساعت در سال 2022، که 88 درصد کاهش یافته است. LCOE انرژی باد تقریباً 60 درصد در مدت مشابه کاهش یافته است.

photo 2024 01 21 09 23 16 - به گفته EY، اکنون LCOE خورشیدی 29 درصد کمتر از هر گزینه سوخت فسیلی است.
موسسه EY پیش‌بینی می‌کند که انرژی خورشیدی و بادی به منبع برق پایه جهانی تبدیل خواهند شد. انتظار می‌رود تا سال 2030 دو انرژی تجدیدپذیر سنتی یعنی همان نیروگاه خورشیدی و نیروگاه بادی 38 درصد از ترکیب انرژی را تشکیل دهند و تا سال 2050 نیروگاه خورشیدی و نیروگاه بادی ممکن است 62 درصد از ترکیب انرژی را تامین کنند. به گفته EY، چین، اروپا و ایالات متحده باعث افزایش 53 درصدی تولید انرژی خورشیدی و بادی خواهند شد و بیش از 57 درصد از تولیدات خورشیدی و بادی جهان تا سال 2050 را تولید خواهند کرد
به گزارش آرا نیرو رونق جهانی در حوزه نیروگاه خورشیدی بیش از نیمی از این انرژی را تامین خواهد کرد، اما پذیرش در بازارها متفاوت خواهد بود. انرژی تولید شده توسط خورشید به بزرگترین منبع انرژی در کشورهایی مانند ایالات متحده و کشورهای اقیانوسیه و آسیای جنوبی تبدیل خواهد شد که توسط فناوری‌های پیرامون ماژول‌های فتوولتائیک (PV) خورشیدی که با سرعتی سریع پیشرفت می‌کنند، هدایت می‌شود.
موسسه EY گفت، با این حال، بدون رفع موانع اصلی پیشرفت، این نقاط عطف، دست یافتنی نخواهد شد. به ویژه در ایالات متحده، انبوهی از برنامه های کاربردی اتصال به شبکه باعث تاخیر، لغو و تحمیل هزینه های زیاد می شود. EY گفت که ایالات متحده حداقل 1350 گیگاوات ظرفیت بادی و خورشیدی دارد و 680 گیگاوات ذخیره سازی در انتظار اتصال است که برای دو برابر کردن برق کشور کافی است.
در یک نظرسنجی از بیش از 70,000 مصرف کننده جهانی، EY دریافت که تمایل به پذیرش نیروگاه خورشیدی خانگی، قوی است. حدود 62 درصد از پاسخ دهندگان در نظرسنجی گفتند که خریده اند یا در مورد خرید پنل های خورشیدی فکر می کنند، در حالی که 50 درصد در حال بررسی خرید هستند یا قبلاً سیستم ذخیره سازی باتری را خریداری کرده اند.
نویسنده: Ryan Kennedy

بزرگترین نیروگاه هیدروژن سبز جهان به گاز روسیه ضربه خواهد زد

به گزارش آرا نیرو بحث در مورد هیدروژن سبز (پروژه H2 تجدیدپذیر) طی این هفته تغییر کرد، درحالیکه اخباری مبنی بر اختصاص 690 میلیون دلار توسط میتسوبیشی برای کمک به ساخت بزرگترین کارخانه هیدروژن سبز جهان در هلند، منتشر شد. کارخانه جدید بسیار بزرگتر از هر کارخانه دیگری است که تا به امروز تصور شده است. مهمتر از آن، این امر به رفع حفره‌هایی در طرح استقلال انرژی اروپا کمک می‌کند، جایی که گاز روسیه علی‌رغم تحریم‌ها در اوج خود مانده است.

هیدروژن سبز چقدر می تواند بزرگ شود؟

همانطور که Nikkei Asia در آخر هفته گزارش داد، شرکت تجاری ژاپنی “Mitsubishi Corp” به دنبال سرمایه گذاری بیش از 100 میلیارد ین (690 میلیون دلار) برای ساخت یکی از بزرگترین کارخانه های تولید هیدروژن “سبز” جهان در هلند است.

شرکت Nikkei Asia گزارش داده است که “ظرفیت پیش بینی شده این کارخانه 80000 تن در سال تقریبا 30 برابر بیشتر از بزرگترین تاسیسات جهان است که اکنون در حال کار است.”

photo 2024 01 17 14 49 43 - بزرگترین نیروگاه هیدروژن سبز جهان به گاز روسیه ضربه خواهد زد

source: https://presspage-production-content.s3.amazonaws.com

سی برابر بیشتر – این مقدار زیادی هیدروژن سبز است! هیدروژن از رادار آرا نیرو عمدتاً به شکل سوخت برای وسایل نقلیه الکتریکی پیل سوختی عبور می کند، اما یک ورودی صنعتی همه جا حاضر است، به طوریکه علاوه بر داروسازی، لوازم آرایش و سایر محصولات در سیستم های غذایی، پالایش نفت و متالورژی نیز دیده می شود.

اقتصاد جهانی در حال حاضر عمدتاً به هیدروژن استخراج شده از گاز طبیعی متکی است، اما هزینه‌های بسیار پایین انرژی بادی و خورشیدی باعث تحریک فعالیت در زمینه الکترولیز شده است به طوریکه در این فرآیند الکتریسیته برای استخراج هیدروژن از آب به کار می رود.

سی برابر بیشتر از خروجی بزرگترین کارخانه در حال کار ممکن است کمی دست کم گرفته شود. تابستان گذشته، Hydrogen Insight به کارخانه الکترولیز کوقا در سین کیانگ، چین توجه کرد، که آن را به عنوان بزرگترین تاسیسات این چنینی در جهان توصیف کرد.

OK hydrogen production facility 2023 03 28 23 22 48 utc 1280x680 768x408 1 - بزرگترین نیروگاه هیدروژن سبز جهان به گاز روسیه ضربه خواهد زد

source:https://www.theagilityeffect.com/

پروژه شرکت نفت چینی سینوپک، نیروگاه 260 مگاواتی تابستان گذشته با تولید اولیه 10,000 تن در سال شروع به کار کرد که در نهایت در صورت بهره برداری کامل به 20,000 تن افزایش یافت.

با این محاسبه، 80,000 تن، 30 برابر بزرگتر از 20,000 تن نیست. با این حال، از نظر تاسیسات کوقا یک مشکل وجود دارد. Hydrogen Insight همچنین گزارش داد که 58 درصد از برق 52 دستگاه الکترولیز، از یک مزرعه خورشیدی جدید تامین می شود، اما به نظر می رسد 42 درصد باقیمانده برق تامین نشده به شبکه برق سراسری متکی است، که احتمالاً به این معنی است که نیروگاه های زغال سنگ در بازی هستند.

اگر این رویکرد، سبز به نظر نمی رسد، اینطور نیست. به گزارش آرا نیرو CleanTechnica یکی از آنهایی است که “هیدروژن سبز” را با الکترولیزهایی که عمدتاً برق آن ها از نیروگاه بادی، نیروگاه خورشیدی و سایر انرژی های تجدیدپذیر کار می کنند، تأمین و ذخیره می‌کند و زغال سنگ در این بین برشی را ایجاد نمی‌کند.

و اکنون کارخانه جدید الکترولیز تحت چتر Eneco Diamond Hydrogen، با سرمایه گذاری مشترک بین Mistubishi و شرکت هلندی Eneco با 100درصد انرژی تجدید پذیر جهت تامین برق برای تولید هیدروژن پایدار، راه اندازی می‌شود.

این پروژه 800 مگاواتی که «Eneco Electrolyzer» نام دارد، با هدف کربن زدایی صنایع وابسته به گاز که برق رسانی مستقیم به آنها دشوار است، انجام می شود. و البته در گام های بعدی، هدف این پروژه ذخیره سازی، حمل و استفاده از الکتریسیته به شکل هیدروژن سبز خواهد بود.

برنامه شرکت این است که با به کار گیری نیروگاه بادی و نیروگاه خورشیدی یک حاشیه امنیت برای تأمين برق این کارخانه و الکترولیزها پیاده سازی کند.

hydrogen fuel 1005 - بزرگترین نیروگاه هیدروژن سبز جهان به گاز روسیه ضربه خواهد زد

source:https://theinvestor.vn/

آس تمپلمن، مدیرعامل Eneco در نوامبر گذشته در بیانیه‌ای مطبوعاتی توضیح داد: «زمانی که برق‌رسانی مستقیم امکان‌پذیر نباشد، هیدروژن سبز یک جایگزین خوب و پایدار است، هم به عنوان ماده خام و هم به عنوان سوخت.

فراتر از استفاده اولیه در فرآیندهای صنعتی، Eneco بازاری را در صنعت تولید برق نیز پیش بینی می کند. این ممکن است کمی غیر شهودی به نظر برسد، زیرا باد و خورشید در حال حاضر برای راه اندازی نیروگاه ها در دسترس هستند. با این حال، ایده این است که هیدروژن سبز قابل ذخیره و حمل و نقل است، که به ایجاد انعطاف پذیری بیشتر در تامین برق کمک می کند.

چه کسی این همه هزینه را خواهد پرداخت؟

مانعی که برای جذب سریع هیدروژن سبز وجود دارد، هزینه، هزینه و هزینه بیشتر است. وزارت انرژی ایالات متحده در حال حاضر از 5.00 دلار به ازای هر کیلوگرم به عنوان یک قانون سرانگشتی برای رسیدن به هدف 1.00 دلار در هر کیلوگرم در سال 2030 استفاده می‌کند. این یک تضاد شدید با گاز طبیعی است که آژانس بین‌المللی انرژی بسته به منطقه، قیمت آن را حدود 1.70 دلار می‌داند.

باید دید چه زمانی و آیا Eneco Electrolyzer می‌تواند رودررو با گاز طبیعی رقابت کند، اما احداث این تاسیسات جدید می تواند کمک کند. نیروگاه جدید هیدروژن سبز در نیروگاه فعلی Enecogen در یوروپورت در روتردام مستقر خواهد شد.

green hydrogen - بزرگترین نیروگاه هیدروژن سبز جهان به گاز روسیه ضربه خواهد زد

source:https://www.powerinfotoday.com/

به گزارش آرا نیرو شرکت Eneco توضیح می‌دهد: «این مکان به این معنی است که این دو تأسیسات می‌توانند زیرساخت‌های مشترکی را به اشتراک بگذارند که از نظر هزینه‌ها و زمان تحقق، مزایایی دارد. البته فعلا خیلی هیجان زده نشو! از ماه نوامبر، Eneco در مرحله برنامه ریزی خود بود، بنابراین زمان راه اندازی این تأسیسات هنوز مشخص نشده است. با این حال، اگر همه چیز طبق برنامه پیش برود، ساخت و ساز در سال 2026 آغاز می شود و انتظار می رود تولید کارخانه در سال 2029 عملیاتی شود.

ساعت در حال حاضر برای مشتریان این شرکت تیک تاک می کند. شرکت Enoco توضیح می دهد: «علاوه بر این، هلند و اروپا اهدافی را برای تولید هیدروژن سبز تعیین کرده اند. به عنوان مثال، هلند قصد دارد تا سال 2030 ظرفیت تولید هیدروژن سبز را به 4 گیگاوات افزایش دهد.

حمله روسیه به اوکراین انگیزه زیادی برای این قاره فراهم کرده است تا وابستگی خود را به گاز طبیعی وارداتی از روسیه متوقف کند. با وجود وضعیت فعلی اروپا و مجموعه ای از بسته های تحریمی، این حرکت و راه اندازی این کارخانه یک موفقیت متفاوت بوده است.

12 - بزرگترین نیروگاه هیدروژن سبز جهان به گاز روسیه ضربه خواهد زد

source:https://fuelcellsworks.com/

در 31 دسامبر سال گذشته، خانم الیسا سیمئونوا، گزارشگر رادیو اروپای آزاد گزارش داد: «در حالی که برخی کشورها به طور قابل توجهی از روسیه در بخش انرژی جدا شده اند و به گاز روسیه وابسته نیستند برخی دیگر – مانند مجارستان، اسلواکی و اتریش – هنوز به گاز روسیه وابسته هستند.

سیمئونوا افزود: «خارج شدن کامل روسیه از معادله انرژی در اتحادیه اروپا، جایی که کشورها نه تنها نیازهای انرژی بسیار متفاوتی دارند، بلکه روابط بسیار متفاوتی با کرملین دارند، بسیار دشوارتر خواهد بود».

سیمئونوا تا حدودی طعنه آمیز به بررسی وضعیت سیاسی و زیرساخت های خط لوله می پردازد که باعث شده گاز روسیه به اروپا جریان یابد، که شامل یک کریدور خط لوله از روسیه به اروپا، از طریق اوکراین است.

او همچنین خاطرنشان می کند که در حالی که صادرات خط لوله روسیه به اتحادیه اروپا از زمان آغاز جنگ کاهش یافته است، ولی صادرات LNG (گاز طبیعی مایع) در واقع افزایش یافته است که دلیل آن کاملاً واضح است: تحریم‌ها علیه گاز روسیه هنوز LNG را پوشش نداده است.

hydrogen factory of the future fraunhofer iff lb e1705488149416 - بزرگترین نیروگاه هیدروژن سبز جهان به گاز روسیه ضربه خواهد زد

source:https://ngtnews.com/

سیمئونوا به نقل از ناظر محیط زیست گلوبال ویتنس گزارش داد: «بدون مشمولیت تحریم‌های اتحادیه اروپا، واردات LNG روسیه، عمدتاً از طریق تانکرها، در دوره‌ای بین ژانویه تا ژوئیه 2023 در مقایسه با سطوح قبل از جنگ، 40 درصد افزایش یافته است.

سازمان انرژی پاک اوکراینی Razom We Stand در بیانیه‌ای در تاریخ 15 ژانویه، در ارتباط با مجمع جهانی اقتصاد 2023 در داووس، سوئیس، بر خلأ LNG تأکید کرد.

سویتلانا رومانکو، موسس و مدیر Razom We Stand، گفت: «صلح پایدار در اوکراین و در سراسر جهان متکی به تغییر اساسی از وابستگی به نفت و گاز روسیه و هدایت به سمت آینده انرژی پاک است.

وی افزود: «Razom ما ایستاده‌ایم» خواستار اقدام فوری، از جمله ممنوعیت واردات LNG روسیه در اروپا و قطع اتکا به واردات از روسیه است.

رومانکو همچنین خاطرنشان کرد که زیرساخت‌های ذخیره‌سازی گاز اوکراین می‌تواند به جبران تأثیر ممنوعیت ال‌ان‌جی روسیه کمک کند. این لزوماً به معنای گاز طبیعی نیست، حداقل نه در دراز مدت. برنامه های اوکراین برای بازیابی پس از جنگ شامل کمک به منابع عظیم باد و خورشیدی برای حمایت از صادرات هیدروژن سبز به اروپا است.

منبع: CleanTechnica

– نیروگاه خورشیدی در مقیاس کوچک یا اصطلاحا نیروگاه خورشیدی خانگی، برای محیط زیست بهترین است، اما agrivoltaics ممکن است پاسخ بهتری داشته باشد؛

 

تجزیه و تحلیل چرخه حیات نشان می دهد که اگرچه برای محیط زیست بهتر است که خورشیدی را روی سقف قرار دهد، اما ترکیبی از هر دو مورد نیاز است.

 

مطالعه‌ای که در دانشگاه وسترن انتاریو انجام شد، تأسیسات خورشیدی بزرگ و کوچک را با هم مقایسه کرد و به این نتیجه رسید که سیستم‌های خورشیدی در مقیاس کوچک حتی از بزرگترین، کارآمدترین پروژه خورشیدی در مقیاس کاربردی، برای محیط زیست بهتر هستند.

 

 بر اساس گزارش انرژی و منابع ارنست اند یانگ، که اشاره می کند که میانگین موزون جهانی، انرژی خورشیدی در ایالات متحده و کانادا تا حدودی در حال افزایش است زیرا امروزه انرژی خورشیدی کم هزینه‌ترین شکل برق جدید در بسیاری از بازارها است.  هزینه یکسان شده برق (LCOE) برای انرژی خورشیدی 29 درصد کمتر از ارزان ترین جایگزین سوخت فسیلی است.

 

 برای از بین بردن انتشار کربن و برآورده کردن اهداف انرژی پاک ایالات متحده و کانادا، تعداد زیادی پنل خورشیدی باید نصب شود.  مطالعه‌ای که به پتانسیل agrivoltaic در کانادا نگاه کرد، پیش‌بینی کرد که اگر مزارع خورشیدی در مقیاس بزرگ نصب کنیم، تنها به ۱٪ از زمین‌های کشاورزی کانادا برای جبران سوخت‌های فسیلی برای تولید برق نیاز داریم. در حالی که این مقدار کمی از زمین است، محققان دانشگاه غربی انتاریو این سوال را مطرح کردند که آیا برای محیط زیست بهتر است چند مزرعه خورشیدی در مقیاس بزرگ وجود داشته باشد یا بسیاری از سیستم‌های کوچکتر روی پشت بام.

 

 مطالعه تجزیه و تحلیل چرخه حیات که توسط ریا روی و جاشوا ام. پیرس انجام شد، سیستم‌های خورشیدی پشت بام را با سیستم‌های PV خورشیدی در مقیاس چند مگاواتی از زمان تولید تا از کار افتادن مقایسه کرد. آنها دریافتند که سیستم های خورشیدی پشت بام 21 تا 54 درصد انرژی ورودی کمتری نیاز دارند، 18 تا 59 درصد معادل دی اکسید کربن کمتری را در انتشار گازهای گلخانه ای تولید می کنند و مقدار کمتری از آب را بین 1 تا 12 درصد در هر کیلووات پیک مصرف می کنند.

wateruse - کدام نیروگاه خورشیدی برای محیط زیست بهتر است: نیروگاه خورشیدی خانگی یا مزرعه بزرگ خورشیدی؟

Source: ClimateRealityProject.org

بنابراین محققان محاسبه کردند که زمان بازگشت سرمایه نیروگاه‌های خورشیدی پشت بامی تقریباً 51 تا 57 درصد کمتر از سیستم‌های خورشیدی نصب‌شده روی زمین در همه مکان‌ها است، دلیل اصلی آن این است که سیستم‌های پشت بام به فنس یا نگهبان مورد استفاده در فضای بزرگ نیاز ندارند. به علاوه اینکه پروژه های نیروگاه خورشیدی مقیاس کوچک معمولاً به خطوط انتقال نزدیکتر هستند، در حالی که بسیاری از نیروگاه‌های بزرگ مقیاس نیاز به اضافه کردن خطوط انتقال برق تا پست محلی دارند که در صورت اجرای مسافت طولانی باید تلفات انتقال را محاسبه کنند.

greenchart - کدام نیروگاه خورشیدی برای محیط زیست بهتر است: نیروگاه خورشیدی خانگی یا مزرعه بزرگ خورشیدی؟

Source: Joshua M. Pearce

محققان دریافتند که کاهش دی اکسید کربن برای تاسیسات خورشیدی در مقیاس بزرگ در سطح زمین، 378 تا 428 درصد بیشتر است، در مقایسه با خورشیدی روی پشت بام برای همان ماژول‌ها.

 

واقعیت

 

در حالی که تحقیقات نشان می‌دهد که نصب‌ نیروگاه‌های خورشیدی کوچک و پشت بامی برای محیط‌زیست بهتر هستند، محققان به این نتیجه رسیدند که ترکیبی از هر دو مورد نیاز است زیرا اگر گرمایش و حمل‌ونقل را در نظر بگیریم، سقف‌های کافی برای رفع نیازهای برق‌رسانی وجود ندارد. به گفته نویسندگان این مطالعه، Agrivoltaics، که دارای کاربرد دوگانه است، مزایایی دارد زیرا از زمین هم برای تولید انرژی و هم برای تولید غذا استفاده می کند.

 

منبع:

pv-magazine

مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی تجدیدپذیر به یک بازیگر محوری در تامین نیازهای انرژی و در عین حال کاهش اثرات زیست محیطی در جهان تبدیل شده است. این مقاله به بررسی عملکرد منابع انرژی تجدیدپذیر در مناطق مختلف می‌پردازد و کارایی، پیامدهای اقتصادی و مزایای زیست‌محیطی آن‌ها را روشن می‌کند.

 

معرفی

در چشم انداز همیشه در حال تکامل تولید انرژی، تغییر به سمت منابع تجدیدپذیر شتاب بیشتری به دست آورده است. درک عملکرد انرژی های تجدیدپذیر در مناطق مختلف برای بهینه سازی استفاده از آن بسیار مهم است.

انواع انرژی های تجدیدپذیر شامل انرژی خورشیدی، انرژی باد، برق آبی، زمین گرمایی و زیست توده هریک دارای خواص منحصربه فرد خود هستند. عوامل متعددی بر عملکرد منابع انرژی تجدیدپذیر تأثیر می گذارد. شرایط آب و هوایی، موقعیت جغرافیایی و پیشرفت های تکنولوژیک نقش اساسی در تعیین کارایی دارند.

در این مقاله از درک کارایی نیروگاه خورشیدی صحبت خواهیم کرد و اینکه کارایی پنل های خورشیدی متناسب با منطقه و با شدت نور خورشید، ارتفاع از سطح دریا و شرایط آب و هوایی سایت نیروگاه متفاوت خواهد بود و این فاکتورهای محیطی روی تولید نیروگاه خورشیدی انرژی اثرگذار است.

همچنین این مقاله به بررسی این موضوع می‌پردازد که چگونه الگوهای باد بر تولید انرژی تأثیر می‌گذارد و چگونه پیشرفت‌ها در فن‌آوری توربین باعث افزایش کارایی نیروگاه های بادی می‌شود. ما تلاش میکنیم شرایط ایده آل برای احداث نیروگاه برق آبی را با مطالعه موردی تشریح نموده حال آنکه مناطق غنی از آب مناسب برای بهره برداری از نیروی برق آبی میباشند.

 Aranuelo 746x419 - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی خورشیدی

ارزیابی کارایی انرژی خورشیدی

انرژی خورشیدی به‌عنوان یک منبع تجدیدپذیر بسیار مورد توجه قرار گرفته است. مناطقی با آب و هوای متفاوت بازده انرژی خورشیدی متفاوتی را تجربه می کنند. از بیابان ها تا آب و هوای سردتر، درک سازگاری پنل های خورشیدی حیاتی است.

 

عوامل موثر بر کارایی انرژی خورشیدی

  1. شدت نور خورشید:

   – افزایش شدت نور خورشید منجر به افزایش تولید برق از پنل‌های خورشیدی می‌شود.

شدت نور خورشید در ایران به‌عنوان یکی از کشورهای با تابش نور خورشید بسیار بالا شناخته می‌شود. در اغلب مناطق ایران، شدت نور خورشید در طول سال بسیار قوی و پراکنده است. این موقعیت جغرافیایی مثبت، ایران را به یکی از مناطق مناسب برای استفاده از انرژی خورشیدی تبدیل کرده است. به‌طور کلی، شدت نور خورشید در ایران متغیر است و بستگی به منطقه و فصل سال دارد. در فلات مرکزی کشور، به خصوص در استان‌های همچون همدان، سمنان، فارس، کرمان، و یزد، شدت نور خورشید بسیار زیاد است. میانگین ساعات روزانه نور خورشید در شهرهای ایران بین 1650 تا 2200 ساعت در طول سال است.

  1. زاویه مواجهه با تابش خورشید:

   – تنظیم زاویه پنل‌های خورشیدی به سمت خورشید باعث بهبود کارایی آنها می‌شود.

زاویه بهینه مواجهه با تابش خورشید در ایران بستگی به مکان و همچنین فصل سال دارد. اما به‌طور کلی، زاویه بهینه تنظیم پنل‌های خورشیدی بر اساس منطقه جغرافیایی به شرح زیر است:

مناطق جنوبی:

   – برای مناطقی مانند فارس، هرمزگان، و کرمان، زاویه مواجهه با تابش خورشید بین ۲۰ تا ۳۵ درجه از عمود خط استوا (زاویه انحراف) معمولاً بهینه است. این زاویه انحراف بهترین تعادل بین دریافت ماکزیمم نور خورشید و کاهش سایه‌زنی را ایجاد می‌کند.

مناطق مرکزی و شمالی:

   – در مناطقی مانند تهران و شهرهای میانی کشور، زاویه مواجهه معمولاً بین ۳۵ تا ۴۵ درجه است. این زاویه مناسب است تا در فصول گرم، سایه‌زنی کاهش یابد و در فصول سرد، نور خورشید به‌طور بهینه استفاده شود.

مناطق شمالی:

   – در مناطق شمالی که دارای کمترین نور خورشید در طول روز هستند، زاویه مواجهه معمولاً بین ۴۵ تا ۶۰ درجه است. این زاویه بهترین کارایی را در شرایط نور کمتر فراهم می‌کند.

با توجه به این تفاوت‌ها، تنظیم زاویه بهینه بر اساس نقاط جغرافیایی ایران از اهمیت زیادی برخوردار است تا از بهترین بهره‌وری انرژی خورشیدی در هر منطقه استفاده شود.

  1. شرایط جوی:

   – شرایط هواشناسی مانند ابرپوشی و باران، رطوبت هوا و زیرگردها می‌توانند بر کارایی پنل‌های خورشیدی تأثیرگذار باشند.

شرایط جوی در ایران به‌دلیل جغرافیای گسترده و متنوع کشور، بسیار متغیر و متنوع هستند. از مناطق خشک جنوبی تا مناطق سرد شمالی، هر منطقه با ویژگی‌های هواشناسی منحصر به فردی مواجه است. این تنوع زیست‌محیطی و شرایط جوی در ایران باعث ارائه یک تجربه هواشناسی چندگانه برای ساکنان مختلف در سراسر کشور می‌شود.

  – مناطق شمالی و شمال‌غربی دارای بارندگی بیشتر و منظر زمین‌های سبز هستند.

  – جنوب و مرکز کشور به شدت خشک و نیازمند به مدیریت آب هستند.

  – در برخی نقاط خشک جنوبی به خصوص در تابستان‌ها، گرد و غبار زیادی وجود دارد.

  – تغییرات دما از شمال به جنوب و از مناطق کوهستانی به مناطق کم ارتفاع متفاوت است.

کاور عکس copy - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

در شمال ایران مانند استان های گیلان و مازندران:

  – آب و هوای اقیانوسی با تأثیرات حاصل از دریای خزر.

  – تابستان‌های معتدل و زمستان‌های مرطوب و سرد.

 

در مرکز ایران مثل استان های تهران، قم، اصفهان:

  – تابستان‌های گرم و زمستان‌های سرد.

  – کمبود بارندگی با نقص آب در برخی نقاط.

 

در جنوب ایران مثل استان های فارس، هرمزگان، کرمان:

  – آب و هوای خشک و گرم.

  – تابستان‌های بسیار گرم با دمای بالا.

 

درغرب و شمال‌غرب ایران مثل استان های کردستان، آذربایجان غربی:

  – آب و هوای کوهستانی با زمستان‌های سرد و تابستان‌های معتدل.

 

مطالعه موردی نصب پنل‌های خورشیدی در منطقه خشک کویر مرکزی

در یک منطقه خشک واقع در نیر یزد با شدت نور خورشید بالا، ارتفاع مناسب از سطح دریا، تمیز بودن هوا و عدم وجود ریزگزد به دلیل وجود مرتع های سبز و دمای مناسب هوا برخلاف دمای بالا در دیگر مناطق استان یزد، نصب پنل‌های خورشیدی به عنوان یک پروژه نیروگاه خورشیدی 10 مگاوات صورت گرفت. این پروژه شامل نصب پنل‌های خورشیدی با زاویه تنظیم بهینه و استفاده از تکنولوژی‌های جدید برای افزایش بهره‌وری نیروگاه خورشیدی بود. نتایج نشان دادند که در این شرایط، پنل‌های خورشیدی با تنظیم زاویه مناسب تولید برق بیشتری داشتند. همچنین، استفاده از تکنولوژی‌های پیشرفته مانند پنل‌های خورشیدی با بازده بالا، بهبود قابل توجهی در کارایی نیروگاه خورشیدی ایجاد کرد.

ارزیابی کارایی انرژی خورشیدی نشان داد که با استفاده از تنظیمات بهینه و استفاده از تکنولوژی‌های جدید، می‌توان به بهبود قابل توجهی در تولید برق از این نوع انرژی دست یافت. این نتایج نشان می‌دهد که انرژی خورشیدی می‌تواند به‌عنوان یک منبع پایدار و کارآمد برای تأمین نیازهای انرژی مناطق خشک و با شدت نور خورشید بالا مورد استفاده قرار گیرد.

نیروگاه بادی آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی بادی

مناطق بادخیز راندمان بالاتری را در تولید انرژی بادی نشان می دهند. الگوهای باد به تولید انرژی بادی کمک می‌کنند و با ایجاد حرکت در هوا، انرژی حاصل از حرکت باد به انرژی قابل استفاده تبدیل می‌شود. این فرایند به وسیله توربین‌های بادی انجام می‌شود. در ادامه چگونگی این فرآیند توضیح داده شده است.

حرکت هوا و الگوهای باد:

  – الگوهای باد از تفاوت‌های دما و فشار در جهان به وجود می‌آیند. گرمای خورشید باعث گرم شدن هوا در برخی مناطق و سرد شدن در دیگر مناطق می‌شود. این تفاوت‌ها باعث جابجایی هوا و ایجاد الگوهای باد می‌شوند.

ساختار توربین‌های بادی:

  – توربین‌های بادی شامل پره‌های بلند و نازک هستند که سرعت باد وارد شده را به گشتاور تبدیل می‌کنند.

  – برخی از توربین‌ها در ارتفاعات بلند نصب شده‌اند تا از مسیرهای باد در ارتفاعات بالا بهره‌مند شوند، زیرا باد در این ارتفاعات معمولاً سریعتر جریان پیدا می‌کند.

  – باد وارد پره‌های توربین می‌شود و آنها را به گردش تحریک می‌کند. تبدیل انرژی این حرکت گرداننده از حرکت باد به انرژی مکانیکی صورت میگیرد.

  – انرژی مکانیکی حاصل از گردش پره‌ها، توسط یک ژنراتور به انرژی برق تبدیل می‌شود. ژنراتور با چرخش پره‌ها دیسک‌های مغناطیسی را حرکت می‌دهد و این حرکت مغناطیسی تولید جریان الکتریکی را به دنبال دارد.

  – برق تولید شده توسط توربین به وسیله سیم‌های انتقال به شبکه برق منطقه انتقال داده می‌شود و سپس به مصارف مختلف توزیع میرسد.

با این روش، الگوهای باد به تولید انرژی پاک و تجدیدپذیر کمک کرده و به عنوان یک منبع انرژی پایدار و محیط‌زیستی مهم در جهان شناخته می‌شوند.

با تجزیه و تحلیل الگوهای باد شامل استفاده از داده‌های سالانه الگوهای باد در سراسر ایران و انتخاب نقاط استراتژیک ازمناطقی با الگوهای باد مناسب و ثبات بالا و بررسی امکانات انرژی بادی شامل ارزیابی زیرساخت‌های فنی و امکانات تولید انرژی بادی در هر منطقه میتوانیم ارزیابی درستی از موقعیت نیروگاه بادی با حداکثر پتانسیل تولید داشته باشیم.

729366 copy - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

بر اساس تحقیقات انجام‌شده، استان سیستان و بلوچستان به‌عنوان بهترین مناطق باد خیز در ایران معرفی شده‌ است. این مناطق با الگوهای بادی قوی و پتانسیل تولید بالا، به عنوان مناطق استراتژیک برای پروژه‌های انرژی بادی در نظر گرفته می‌شوند.

برخی از بزرگ‌ترین و مهم‌ترین نیروگاه‌های بادی کشور عبارتند از:

نیروگاه بادی منجیل در استان گیلان با ظرفیت 171 مگاوات، بزرگ‌ترین نیروگاه بادی ایران است. این نیروگاه در سال ۱۳۷۸ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور دانمارک استفاده می‌کند.

نیروگاه بادی بینالود در استان خراسان رضوی با ظرفیت 28.2 مگاوات، دومین نیروگاه بادی بزرگ ایران است. این نیروگاه در سال ۱۳۸۱ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور آلمان استفاده می‌کند.

نیروگاه بادی کهک در استان قزوین با ظرفیت 20 مگاوات، سومین نیروگاه بادی بزرگ ایران است. این نیروگاه در سال ۱۳۹۲ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور ایران استفاده می‌کند.

سایر نیروگاه‌های بادی مهم ایران عبارتند از:

نیروگاه بادی گنبدکاووس با ظرفیت 10 مگاوات

نیروگاه بادی رامسر با ظرفیت 10 مگاوات

نیروگاه بادی چابهار با ظرفیت 5 مگاوات

نیروگاه بادی کویر مرکزی با ظرفیت 5 مگاوات

همچنین، توسعه زیرساخت‌های فنی و حمایت از سرمایه‌گذاری در این مناطق می‌تواند به بهره‌وری بیشتر از این منابع و کاهش وابستگی به منابع سوخت فسیلی کمک کند.

برق آبی آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی برق آبی

تولید انرژی برق از آب به‌عنوان یک منبع تجدیدپذیر و پاک، نقش بسیار مهمی در سبد انرژی کشورها دارد. در اینجا، نقش دسترسی به آب در تولید انرژی برق آبی و اهمیت آن بررسی می‌شود.

  – دسترسی به منابع آب از اهمیت بسزایی برخوردار است. رودخانه‌ها، دریاچه‌ها و سدها از منابع اصلی تولید انرژی برق آبی هستند.

  – مناطق با دسترسی به منابع آب پایدارتر می‌توانند از تولید پایدارتری انرژی برق آبی بهره‌مند شوند.

  – دسترسی به منابع آب نیازمند مدیریت مستمر و پایدار است. این امر از اهمیت زیادی برخوردار است تا آب مناسب برای تولید انرژی برق آبی تأمین شود.

  – مدیریت منابع آب، جدا از نقش مهم در تولید پایدار انرژی به کنترل سیلاب و جلوگیری از خشکسالی کمک میکند.

  – به دلیل استفاده از انرژی برق آبی به‌عنوان یک منبع پاک، دسترسی به آب باعث کاهش اثرات منفی بر محیط زیست می‌شود و به حفظ تنوع زیستی در مناطق آبی کمک میکند.

دسترسی به منابع آب برای راه‌اندازی نیروگاه برق آبی در ایران شامل استان هایی از ایران میشود که پتانسیل آبی بالایی داشته باشند که در ادامه به برخی از آن ها اشاره میکنم:

استان فارس:

  – دارای رودخانه‌های فراوان مانند زاینده‌رود و کارون.

  – سدها و تأمین آب از دریاچه‌های بزرگ همچون دریاچه نیمور و دریاچه بختگان.

– پروژه‌ها : سد سیاه‌خل، سد دز و سد کارون ۳.

استان گیلان:

  – دارای آبشارها و رودخانه‌های فراوان از جمله سفیدرود و سیاهرود.

  – دسترسی به منابع آب از دریاچه‌های انزلی و طبریا.

– پروژه‌ها : نیروگاه برق آبی چیتگر.

استان آذربایجان شرقی:

  – رودخانه‌های زیاد از جمله آرسند و قره‌چای.

  – دسترسی به دریاچه ارومیه.

– پروژه‌ها : نیروگاه برق آبی سهند.

استان کردستان:

  – رودخانه‌های زیاد از جمله سراب‌آباد و زاب.

  – پتانسیل بالای تولید انرژی در این استان.

– پروژه‌ها : سد دزلخانه و سد دره‌زرین.

استان خوزستان:

  – رودخانه کارون و شط العرب به عنوان منابع اصلی.

  – دسترسی به سدها و دریاچه‌ها.

– پروژه‌ها : نیروگاه برق آبی کارون ۴.

نیروگاه برق آبی ایران آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

با توجه به اینکه ایران دارای تنوع زیادی از نظر منابع آب است، دسترسی به منابع آب برای راه‌اندازی نیروگاه‌های برق آبی در اکثر مناطق کشور وجود دارد. مناطق با رودخانه‌ها و سدهای فراوان معمولاً برای ایجاد نیروگاه‌های برق آبی انتخاب می‌شوند. این پروژه‌ها نه‌تنها به تأمین انرژی بلکه به مدیریت منابع آب و کنترل سیلاب و خشکسالی نیز کمک می‌کنند. در ادامه به تأثیرات منفی نیروگاه‌های برق آبی بر محیط زیست و تغییر اقلیم ناشی از سومدیریت و عدم تطبیق دانش و تجربه میپردازم و تیتروار به آسیب های ناشی از این مسئله اشاره میکنم تا درک بهتری از تاثیر منطقه در احداث نیروگاه برق آبی بدست بیاورید:

  – ساخت سدها و تغییرات جریان آب در رودخانه‌ها می‌تواند منجر به کاهش تنوع زیستی در این مناطق شود.

  – زیستگاه‌های طبیعی مانند دلتاها و مرجان‌ها به‌دلیل تغییرات در جریان آب و تغییر در سطح آب ممکن است تحت تأثیر قرار گیرند.

  – نیروگاه‌های برق آبی با تخلیه آب گرم به رودخانه‌ها می‌توانند دمای آب را افزایش دهند که این تغییر می‌تواند به اختلال در فرآیندهای طبیعی زیست‌محیطی منطقه منجر شود.

  – سدسازی و تغییر در جریان آب ممکن است به قطع مسیرهای مهاجرت ماهیان و تخریب محل‌های تخم‌گذاری آنها منجر شود.

  – سدسازی و تخلیه زیاد آب برای نیروگاه‌های برق آبی ممکن است به کاهش سطح آب زیرزمینی منطقه منجر شود که این موضوع بر کشاورزی و زندگی حاشیه‌نشینان تأثیر منفی خواهد داشت.

  – سدسازی ممکن است با ایجاد مانع در مسیر جریان آب، خطر سیلاب‌های ناگهانی را افزایش دهد.

  – تغییرات در جریان آب ناشی از نیروگاه‌های برق آبی می‌تواند به تغییرات در ترکیب شیمیایی آب و کاهش کیفیت آب منطقه منجر شود.

توجه به مدیریت دقیق و پایداری از منابع آب، استفاده از فناوری‌های مدرن و اجرای طرح‌های حفاظت از محیط زیست می‌تواند کمک کند تا اثرات منفی این نیروگاه‌ها به حداقل رسیده و همزمان از مزایای انرژی برق آبی بهره‌مند شویم.

نویسنده: مهدی پارساوند

راهبرد هوشمند انرژی:

تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

 

ریسک‌ها در آینده هر کشوری می‌تواند متنوع باشد و به عوامل مختلفی ارتباط داشته باشد. در این مقاله به برخی از ریسک‌های بزرگی که ممکن است در آینده کشورها مطرح شوند، اشاره میکنم و به یکی از مهمترین آن به تفصیل میپردازم.

 1.تغییرات آب و هوا:

تغییرات اقلیمی و پدیده‌های مرتبط مانند سیل، خشکسالی و تغییرات دمایی می‌توانند تأثیرات جدی بر زیرساخت‌ها، کشاورزی و اقتصاد یک کشور داشته باشد. ریسک تغییرات آب و هوایی در مقاله پیشین اینجانب به طور کامل بحث شده که پیشنهاد میکنم اگر نسبت به پایداری زمین و محیط زیست و میراثی که برای نسل آینده از خود به جا خواهید گذاشت، دارای دغدغه هستید این مقاله را تحت عنوان ” گرمایش جهانی و تغییرات اقلیمی، چشم انداز جامع با اشاره به تاثیرپذیری ایران” مطالعه بفرمایید.

 

       2.فرسایش منابع طبیعی:

 به دلیل استفاده بی‌رویه از منابع طبیعی، فرسایش خاک، کاهش تنوع زیستی و کاهش منابع آب، به یکی از چالش‌های مهم کشورها تبدیل شده است. در مقالات آتی از این ریسک بیشتر صحبت خواهم کرد.

 

      3. تکنولوژی و امنیت سایبری:

 توسعه روزافزون تکنولوژی و اتصال دائمی به اینترنت، ریسک‌های مرتبط با امنیت سایبری را افزایش داده و ممکن است به تهدید امنیت ملی تبدیل شوند. امروز که در حال نوشتن این مقاله هستم خبر هک اسنپ فود منتشر شد و افشای اطلاعات هویتی میلیون ها کاربر این سامانه که اگر جستجویی در صفحات وب داشته باشید با مثال های زیادی از این دست مواجه خواهید شد. در مورد این ریسک در ایران و جهان، متخصصان فناوری اطلاعات مقالات زیادی منتشر کرده و قابل استناد است.

 

      4.بحران‌های اقتصادی:

نوسانات بازارها، بحران‌های مالی جهانی، تورم و سایر عوامل می‌توانند به چالش‌های اقتصادی و اجتماعی منجر شوند. در مورد این ریسک هم متخصصان حوزه اقتصادی، موارد زیادی را طرح نموده و البته به تفصیل به مولفه های مختلف این بحران و راهکارهای برون رفت از آن پرداخته شده است.

 

      5.تنش‌های جمعیتی:

افزایش جمعیت، مهاجرت، عدم توازن در ساختار جمعیتی و مسائل مرتبط با آن‌ها یکی دیگر از چالش‌های اجتماعی و اقتصادی درگیرکننده کشورها از جمله ایران است و یکی از تاثیرپذیرترین ریسک ها به شمار می آید و بسیاری از بحران های بالا میتواند درصد این ریسک را افزایش دهد.

 

       6.تهدیدهای امنیتی:

تهدیدات نظامی، تروریسم، ناسازگاری‌های اجتماعی و دیگر عوامل می‌توانند امنیت کشورها را تهدید کنند و جز یک از ریسک های استراتژیک برای کشورها محسوب می شود.

 

       7. بحران‌های بهداشت عمومی:

ویروس‌ها، اپیدمی‌ها و بحران‌های بهداشتی ممکن است به چالش‌های جدی در حوزه سلامت و اقتصاد منجر شوند که در جای خود مورد بحث و بررسی قرار می گیرند و البته برخی از این اپیدمی ها ناشی از تغییرات اقلیمی رخ میدهد.

 

       8.کاهش منابع انرژی:

 نیاز روزافزون به انرژی و کاهش منابع طبیعی، باعث افزایش ریسک‌های مرتبط با امنیت انرژی و تأمین انرژی می‌شود. در این مقاله میخواهم به تفصیل به این ریسک بپردازم. البته همه این عوامل با توجه به شرایط و ویژگی‌های هر کشور، می‌توانند تأثیرات متفاوتی داشته باشند و اهمیت مدیریت و پیش‌بینی آن‌ها برای توسعه پایدار و امنیت کشورها بسیار حائز اهمیت است، ولی احساس میکنم کاهش منابع انرژی برای هر کشوری میتواند بزرگترین ریسک استراتژیک به حساب آید که در ادامه با جزئیات همراه با مثال های از جهان به آن خواهم پرداخت.

istockphoto 540089526 612x612 1 - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

ریسک کاهش منابع انرژی به امکانات و منابعی اشاره دارد که برای تأمین نیازهای انرژی یک کشور مورد استفاده قرار می‌گیرند و احتمال کاهش آن‌ها در آینده وجود دارد. این مسئله می‌تواند تأثیرات جدی بر اقتصاد، امنیت انرژی، و توسعه پایدار یک کشور داشته باشد. در ادامه، برخی از جنبه‌های مهم ریسک کاهش منابع انرژی را توضیح می دهم:

وابستگی به منابع غیرقابل تجدید:

اگر یک کشور به منابع انرژی غیرقابل تجدید (مانند نفت، گاز و زغال سنگ) وابسته باشد، هر گونه کاهش در دسترسی به این منابع می‌تواند به شدت اثرگذار باشد. نه تنها این منابع محدود هستند، بلکه اثرات زیان بار زیادی بر محیط زیست دارند.

تغییرات در قیمت انرژی:

تغییرات ناپیوسته در قیمت منابع انرژی می‌تواند به عنوان یک ریسک مهم محسوب شود. افزایش ناگهانی در قیمت‌های انرژی می‌تواند به تورم اقتصادی، افت فعالیت‌های صنعتی، و افزایش هزینه‌های زندگی منجر شود.

تغییرات قیمت انرژی تحت تأثیر عوامل مختلفی قرار می‌گیرند. شاخص‌های مختلفی وجود دارند که می‌توانند نشان‌دهنده تغییرات در بازار انرژی باشند. در ادامه، به برخی از این شاخص‌ها اشاره میکنم:

قیمت نفت خام: قیمت نفت خام به عنوان یکی از اهم شاخص‌های تغییرات قیمت انرژی در بازار جهانی شناخته می‌شود. قیمت نفت خام به عواملی مانند تقاضا و عرضه جهانی، سیاست‌های تولیدکنندگان نفت، و وقایع جهانی نظیر تنش‌های سیاسی و اقتصادی حساس است.

قیمت گاز طبیعی: قیمت گاز طبیعی نیز همانند نفت خام به عنوان یک شاخص مهم در تغییرات قیمت انرژی در نظر گرفته می‌شود. تقاضا و عرضه گاز طبیعی، توافقات تجاری، و شرایط هواشناسی بر روی این شاخص تأثیرگذارند.

قیمت زغال سنگ: زغال سنگ نیز به عنوان یک منبع اصلی انرژی در بسیاری از کشورها شناخته می‌شود. قیمت زغال سنگ تحت تأثیر عواملی مانند تقاضا و عرضه، سیاست‌های حکومتی، و تأثیر تحولات فناوری در صنعت معدن قرار دارد.

قیمت برق: قیمت برق یکی از مهم‌ترین شاخص‌های تغییرات قیمت انرژی در داخل یک کشور است. این شاخص تحت تأثیر عواملی نظیر ترکیب میزان تولید انرژی از منابع مختلف (تجدیدپذیر و غیرتجدیدپذیر)، هزینه‌های تولید برق، و نیز تغییرات در نیازهای اقتصادی و اجتماعی قرار دارد.

قیمت منابع تجدیدپذیر: در حال حاضر، قیمت منابع تجدیدپذیر نیز به عنوان یک شاخص مهم در بازار انرژی در نظر گرفته می‌شود. قیمت پنل‌های خورشیدی، توربین‌های بادی، و دیگر فناوری‌های تجدیدپذیر تأثیرگذار بر تغییرات در قیمت انرژی هستند.

این شاخص‌ها به عنوان نماینده‌های مختلفی از بازار انرژی می‌توانند در پیش‌بینی تغییرات و تحولات در صنعت انرژی و اقتصاد کمک کنند.

یکی از مثال‌های نمایان بر تغییرات قیمت انرژی و ریسک کاهش منابع انرژی، تجربه افزایش قیمت نفت در دهه 2000 میلادی است. در سال 2008، قیمت نفت خام به سطح بالایی ارتقا یافت. در ژوئیه 2008، قیمت هر بشکه نفت به حدود 147 دلار رسید، که این افزایش ناگهانی به عواملی نظیر افزایش تقاضا جهانی، نوسانات در عرضه نفت، و تنش‌های سیاسی در مناطق تولید کننده نفت، بخصوص خاورمیانه، بازمی‌گردید.

این افزایش ناگهانی قیمت نفت، علاوه بر پراکندگی های اقتصادی در جهان، به عنوان یک ریسک کلان در کاهش منابع انرژی وابسته به نفت در بسیاری از کشورها شناخته شد. کشورهایی که از نفت به عنوان منبع اصلی انرژی استفاده می‌کردند، با مشکلات اقتصادی و ناتوانی در تأمین نیازهای داخلی خود مواجه شدند.

این مثال نشانگر اهمیت مدیریت موثر ریسک‌های مرتبط با تغییرات قیمت انرژی و تنظیم سیاست‌ها برای کاهش وابستگی به منابع انرژی نفتی است. این تجربه همچنین نشان دهنده نقش تصمیمات سیاسی، توسعه منابع تجدیدپذیر، و توجه به تنوع منابع انرژی در کاهش ریسک‌های مرتبط با کاهش منابع انرژی است.

 

یک مثال دیگر از تغییرات قیمت انرژی و ریسک کاهش منابع انرژی مربوط به تجربه کشورها در حوزه گاز طبیعی است. در دهه 2010، قیمت گاز طبیعی در ایالات متحده به طور چشمگیری کاهش یافت. این کاهش به دلیل افزایش تولید داخلی گاز طبیعی به واسطه تکنولوژی استخراج شیل (شیل گاز) و افت تقاضا ناشی از اقتصاد کاهشی بود.

این تجربه نشانگر تأثیرات برگشت‌پذیر در تولید انرژی می‌باشد. کشورهایی که به واردات گاز طبیعی وابسته بودند، با کاهش قیمت گاز طبیعی و افزایش تولید داخلی مواجه شدند. این مسئله به عنوان یک ریسک کاهش منابع انرژی مطرح شد، زیرا تاثیرات اقتصادی و مالی را در کشورها به وجود آورد.

همچنین، مثالی از تغییرات قیمت برق می‌تواند در اواخر سال‌های 2020 ذکر گردد. برخی کشورها با تغییرات ناگهانی در ساختار تولید انرژی به سوی منابع تجدیدپذیر، مانند افزایش استفاده از برق تولید شده از نیروگاه‌های خورشیدی و بادی، با تغییر در قیمت برق مواجه شدند. این تغییرات ممکن است به عنوان یک ریسک برای کشورها در تحول به سوی سیستم‌های انرژی پایدارتر در نظر گرفته شود و به تغییر در نظام قیمت برق، خصوصاً در کشورهایی که در تولید انرژی از منابع تجدیدپذیر رشد چشمگیری داشته است، منجر شود.

برای مثال، آلمان با اجرای سیاست‌های حمایتی برای تشویق استفاده از انرژی‌های تجدیدپذیر، تولید انرژی از نیروگاه‌های خورشیدی و بادی خود را افزایش داده است. این تحول منجر به افزایش تولید انرژی و برق شد، اما همچنین با تغییر در قیمت برق و اثرات مالی برای شرکت‌های تولید کننده برق و مصرف‌کنندگان مرتبط بوده است.

این مثال نشانگر ضرورت برنامه‌ریزی و مدیریت هوشمندانه تحولات در ساختار تولید انرژی است و اهمیت برنامه‌ریزی دقیق، تنوع در منابع انرژی، و توسعه فناوری‌های پایدار در مدیریت ریسک‌های مبتنی برکاهش منابع انرژی می‌باشند.

energy collae scaled - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

 نوسانات در تأمین انرژی:

ناپایداری در تأمین منابع انرژی می‌تواند منجر به نوسانات در تأمین انرژی برای صنایع، کسب و کارها، و خانواده‌ها شود. این نوسانات می‌توانند باعث ناتوانی در برنامه‌ریزی استفاده از انرژی و بهبود بهره‌وری شوند.

یکی از مثال‌های بارز از نوسانات در تأمین انرژی مرتبط با ریسک کاهش منابع انرژی، تجربه اروپا در زمینه تأمین گاز طبیعی از روسیه است. در دو دوره مختلف یکی سال ۲۰۰۶، درگیری‌های سیاسی بین روسیه و اوکراین منجر به قطع تأمین گاز طبیعی از سوی روسیه به اوکراین شد و دیگری همین جنگ اخیر روسیه و اوکراین که این واقایع باعث نوسانات قابل توجه در تأمین گاز به اروپا شد و بسیاری از کشورهای اروپایی با نقض تأمین گاز مواجه شدند. این مسئله یکی از نشانه‌های ریسک‌های مرتبط با وابستگی به منابع انرژی خارجی بود و بر وابستگی زیاد بعضی از کشورها به تأمین گاز از روسیه تأکید کرد.

در این مثال، نوسانات در تأمین گاز ناشی از تغییرات در روابط سیاسی و دیپلماتیک باعث شد که کشورها متوجه ریسک‌های احتمالی در تأمین انرژی خود شوند. این واقعه همچنین تحت تأثیر قیمت‌ها و استقرار بازار انرژی در منطقه قرار گرفت و نیاز به توزیع منابع انرژی و ایجاد شبکه‌های انتقال گاز طبیعی را اهمیت بخشید.

این نمونه نشان می‌دهد که نوسانات در تأمین انرژی نه تنها به مسائل اقتصادی بلکه به چالش‌های امنیتی و سیاسی نیز متصل هستند، و بنابراین مدیریت مناسب این ریسک‌ها از اهمیت بالایی برخوردار است.

یک مثال قدیمی تر از نوسانات در تأمین انرژی، تجربه بحران نفت در دهه 1970 میلادی است. در اوایل دهه 1970، برخی از کشورهای صادرکننده نفت در خاورمیانه، اعتراض به حمایت از اسرائیل توسط غرب را به عنوان دلیل برای کاهش تولید نفت و تامین کشورهای غربی اعلام کردند. این تصمیم منجر به بحران نفت 1973، یا همان “جنگ نفتی”، شد.

در اثر این بحران، کشورهای غربی مواجه با تعلیق تأمین نفت شدند و قیمت نفت به شدت افزایش یافت. این نوسانات شدید در بازار نفت به وضوح نشان‌دهنده ریسک‌های مرتبط با وابستگی به منابع انرژی خارجی بود. کشورها متوجه شدند که تأمین نفت به عنوان منبع انرژی اساسی، به خصوص اگر از مناطقی با اختلافات سیاسی و جنگی بهره‌مند باشد، ممکن است از دست برود. این مثال نشان می‌دهد که چگونه نوسانات در تأمین انرژی می‌توانند ناگهانی تحت تأثیر قرارگیرند و به دلیل عوامل سیاسی و جغرافیایی نیز می‌توانند بر جوامع و اقتصادها تأثیر گذار باشند. بنابراین، برنامه‌ریزی و اجرای سیاست‌هایی که به توزیع منابع انرژی و کاهش وابستگی به منابع خاص کمک کنند، از اهمیت بالایی برخوردار است.

 

مثال دیگری از نوسانات در تأمین انرژی مرتبط با ریسک کاهش منابع انرژی، تجربه کشور ژاپن پس از حادثه هسته‌ای فوکوشیما در سال 2011 است. زلزله و سونامی این حادثه را ایجاد کردند که منجر به آسیب دیدن نیروگاه هسته‌ای فوکوشیما شد. در پی این حادثه، ژاپن بخش قابل توجهی از نیروگاه‌های هسته‌ای خود را تعطیل کرد و تأمین انرژی الکتریکی از این منابع کاهش یافت. نوسانات در تأمین انرژی در ژاپن به دلیل اتکا به نیروگاه‌های هسته‌ای برای تأمین بخش قابل توجهی از انرژی الکتریکی بود. پس از حادثه، ژاپن مجبور به افزایش وابستگی به سوخت‌های فسیلی و واردات نفت و گاز شد که به تحولات ناگهانی در بازارهای جهانی انرژی منجر شد. این نوسانات تأثیر زیادی بر هزینه‌ها، امنیت انرژی، و سیاست‌های انرژی ژاپن داشتند. این مثال نشان می‌دهد که حوادث غیرمنتظره مانند حوادث هسته‌ای می‌توانند به طور قابل‌توجهی بر تأمین انرژی تأثیرگذار باشند و نیاز به تصمیمات فوری و تغییرات در سیاست‌های انرژی را برجسته می‌کنند. برنامه‌ریزی جهت افزایش انعطاف‌پذیری در سیستم تأمین انرژی و اجتناب از اتکا به منابع خاص می‌تواند از مهمترین راهکارها باشد.

 

تغییرات تکنولوژیک:

پیشرفت در فناوری‌های تجدیدپذیر و افزایش بهره‌وری انرژی می‌تواند منجر به کاهش نیاز به منابع انرژی سنتی شود. کشورهایی که بتوانند با چنین تغییراتی همگام شوند، می‌توانند از ریسک‌های کاهش منابع انرژی کاسته و به سوی سیستم‌های پایدارتر حرکت کنند. البته تغییرات تکنولوژیک می‌توانند یکی از عوامل مهم در ایجاد ریسک کاهش منابع انرژی باشند. به عنوان مثال، افزایش استفاده از فناوری‌های تجدیدپذیر و تغییرات در حوزه ذخیره‌سازی انرژی می‌توانند به تغییر در تقاضا و عرضه انرژی منجر شوند.

یک مثال از تغییرات تکنولوژیک می‌تواند مربوط به پیشرفت در فناوری باتری‌ها و ذخیره‌سازی انرژی باشد. افزایش کارآیی باتری‌ها و توسعه تکنولوژی‌های ذخیره‌سازی، می‌تواند باعث افزایش توانایی استفاده از انرژی تجدیدپذیر (مانند برق تولیدی از نیروگاه‌های خورشیدی و بادی) شده و در نتیجه به کاهش وابستگی به منابع انرژی فسیلی کمک کند.

همچنین، پیشرفت در فناوری‌های مرتبط با بهینه‌سازی مصرف انرژی در صنایع و افزایش بهره‌وری در انتقال و توزیع انرژی نیز می‌تواند تأثیرگذار باشد. به عنوان مثال، تجهیزات و شبکه‌های هوشمند در صنعت انرژی می‌توانند به مدیریت بهتر تقاضا و تأمین انرژی کمک کنند.

این تغییرات تکنولوژیک، هرچند که می‌توانند به کاهش وابستگی به منابع انرژی سنتی کمک کنند، اما همچنین ممکن است نیازمند سرمایه‌گذاری و تغییر در زیرساخت‌های انرژی باشند. بنابراین، برنامه‌ریزی و مدیریت مناسب در حوزه فناوری انرژی، جهت کاهش ریسک‌های احتمالی و بهبود امنیت انرژی ضروری است.

compressed img XBwQ9OMD6BbnDB8MmMfxJFqW 1536x878 1 - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

وابستگی به واردات انرژی:

اگر یک کشور به واردات بیش از حد انرژی وابسته باشد، تحت تأثیر قیمت‌ها و شرایط سیاسی دیگر کشورها قرار می‌گیرد. این وابستگی می‌تواند در مواقع بحرانی وضعیت امنیتی و اقتصادی را تهدید کند.

یک مثال از وابستگی به واردات انرژی، تجربه ژاپن می‌باشد. ژاپن، یک کشور کم‌منابع در حوزه انرژی است و همانطور که در بندهای قبلی عرض کردم بخش قابل توجهی از نیازهای انرژی خود را از واردات انرژی مانند نفت و گاز تأمین می‌کند. این وابستگی بیشتر به واردات انرژی نه تنها هزینه‌های اقتصادی زیادی به دنبال داشته، بلکه امنیت انرژی کشور را نیز تحت تأثیر قرار داد.

 

در مثال دیگر می‌توان به تجربه کشورهای اعضای اتحادیه اروپا اشاره داشت. بسیاری از این کشورها وابستگی زیادی به واردات گاز طبیعی از کشورهای خارج از اتحادیه دارند و همانطور که عرض شد در صورت بروز تنش‌های سیاسی یا مسائل امنیتی در مناطق تأمین‌کننده، این کشورها با مشکلات در تأمین انرژی مواجه می‌شوند.

این نمونه‌ها نشان می‌دهند که وابستگی به واردات انرژی می‌تواند کشورها را در معرض ریسک‌های اقتصادی، سیاسی و امنیتی قرار دهد. برنامه‌ریزی برای توزیع منابع انرژی و توسعه منابع داخلی، می‌تواند به کاهش این وابستگی و افزایش امنیت انرژی کمک کند.

با توجه به این نکات، مدیریت مناسب منابع انرژی، توسعه فناوری‌های پایدار و تنوع در تأمین انرژی می‌تواند به عنوان راهکارهایی برای کاهش ریسک‌های مرتبط با کاهش منابع انرژی مدنظر قرار گیرد.

Risk challenges GettyImages 500304596 - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

در پایان با توجه به تفاسیر بالا به صورت چکیده و موردی برای برون رفت از ریسک‌های وابستگی به واردات انرژی و کاهش منابع انرژی، تلاش دارم راهکارهایی را پیشنهاد بدم:

۱. توسعه منابع داخلی انرژی: سرمایه‌گذاری در توسعه منابع داخلی انرژی، از جمله نیروگاه‌های بادی، خورشیدی، هسته‌ای و سایر منابع تجدیدپذیر، که به کشورها کمک می‌کند تا وابستگی خود به واردات انرژی را کاهش دهند.

۲. توسعه فناوری های انرژی: سرمایه‌گذاری در تحقیقات و توسعه فناوری‌های پیشرفته در زمینه انرژی، افزایش بهره‌وری و کاهش هزینه‌ها را ایجاد می‌کند. این اقدامات می‌توانند توانمندی‌های داخلی را در تولید انرژی افزایش دهند.

۳. توزیع منابع: افزایش منابع متنوع انرژی، کشورها را در برابر نوسانات قیمت و مشکلات تأمین محدودیت‌های مربوط به یک منبع خاص محافظت می‌کند.

۴. توسعه انرژی‌های تجدیدپذیر: استفاده بیشتر از انرژی‌های تجدیدپذیر نظیر نیروگاه خورشیدی و نیروگاه بادی، به کاهش وابستگی به منابع انرژی سنتی کمک می‌کند و همچنین در راستای حفظ محیط زیست خواهد بود.

۵. تسهیل در انجام تبادلات انرژی: توسعه شبکه‌های انرژی بین‌المللی و تسهیل در تبادلات انرژی با کشورهای همسایه، می‌تواند به افزایش انعطاف‌پذیری و کاهش ریسک‌های مرتبط با تأمین انرژی کمک کند.

۶. ترویج کاربرد تکنولوژی‌های نوین: استفاده از تکنولوژی‌های هوش مصنوعی، اینترنت اشیاء و تحلیل داده‌ها در صنعت انرژی می‌تواند به بهبود بهره‌وری، پیش‌بینی تقاضا و مدیریت بهینه شبکه‌های انرژی کمک کند.

۷. توسعه شبکه‌ برق کشور: ساختار قوی و انعطاف‌پذیر در شبکه‌ برق باعث می‌شود که توانایی انتقال و توزیع برق بهبود یابد و از وابستگی به منابع خارجی کاسته شود.

۸. تشویق به مصرف مسئولانه انرژی: افزایش آگاهی مردم در خصوص مصرف انرژی و ترویج رفتارهای مسئولانه نظیر صرفه‌جویی در مصرف انرژی و استفاده از انرژی‌های تجدیدپذیر، به کاهش فشار بر تأمین انرژی کمک می‌کند.

۹. تشویق به سرمایه‌گذاری خصوصی: ایجاد شرایط لازم و تشویق به سرمایه‌گذاری در زمینه تولید و ذخیره انرژی، به ویژه در صنعت‌های نوظهور، می‌تواند به توسعه منابع داخلی انرژی و کاهش وابستگی به واردات کمک کند.

 

۱۰. تعامل بین‌المللی: برقراری همکاری‌های بین‌المللی در زمینه انرژی، تبادل تکنولوژی و دانش، و ایجاد توافقات برای تأمین انرژی می‌تواند امنیت انرژی را در سطح جهانی تقویت کند و ریسک‌های مشترک را کاهش دهد.

این راهکارها به یکدیگر ترکیب شده و با رویکردهای سیاست‌گذاری مناسب، می‌توانند به کشورها کمک کنند تا در حوزه انرژی خود امنیت داشته باشند و به واردات انرژی وابستگی کمتری داشته باشند.

نویسنده: مهدی پارساوند

12/10/1402

اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

امسال شاهد رکوردشکنی تولید خورشیدی و «تغییر چشمگیر» در تولید باتری بودیم.
رهبر جدید انرژی خورشیدی جهان، در سال 2023 انرژی های تجدیدپذیر را با سرعت سرسام آوری اضافه کرد.
اگر این روند تقویت شود، به زمین کمک می کند تا از سوخت های فسیلی دور شود و از گرم شدن شدید زمین و اثرات آن جلوگیری کند.

انرژی پاک اغلب کم هزینه ترین گزینه است. بر اساس گزارش آژانس بین‌المللی انرژی، کشورها سیاست‌هایی را اتخاذ کردند که از انرژی‌های تجدیدپذیر حمایت می‌کنند، برخی از آنها به نگرانی‌های امنیت انرژی اشاره می‌کنند. این عوامل با نرخ‌های بهره بالا و چالش‌های مداوم در تهیه مواد و قطعات در بسیاری از مکان‌ها مقابله کردند.
آژانس بین المللی انرژی پیش بینی کرد که بیش از 440 گیگاوات انرژی تجدیدپذیر در سال 2023 اضافه شد که بیشتر از کل ظرفیت برق نصب شده آلمان و اسپانیا با هم است.
در اینجا نگاهی به سال در انرژی خورشیدی، باد و باتری داریم.

یک سال رکورد برای انرژی خورشیدی
طبق گزارش آژانس بین‌المللی انرژی‌های تجدیدپذیر (IEA)، چین، اروپا و ایالات متحده هر کدام رکوردهای نصب را برای یک سال ثبت می‌کنند.

افزوده‌های چین، بسته به اینکه پروژه‌های پایان سال چگونه پیش می‌روند، ظرفیت‌های سایر کشورها را بین 180 تا 230 گیگاوات کاهش داد. اروپا 58 گیگاوات اضافه کرد که رشدی 40 درصدی نسبت به سال 2022 داشت.
خورشیدی اکنون ارزان‌ترین شکل برق در اکثر کشورهاست.
مایکل تیلور، تحلیلگر ارشد آژانس بین‌المللی انرژی‌های تجدیدپذیر (IRENA) می‌گوید: «به‌ویژه در اروپا، گسترش استقرار با سرعت سرسام‌آوری انجام شده است.»
زمانی که اعداد نهایی برای سال 2023 مشخص شد، انتظار می‌رود که انرژی خورشیدی از نظر ظرفیت کل انرژی از انرژی آبی در سطح جهان پیشی بگیرد، اما برای برق واقعی تولید شده، انرژی آبی همچنان برای مدتی پیشتاز خواهد بود زیرا می‌تواند در تمام ساعات شبانه روز تولید کند.

در ایالات متحده، کالیفرنیا همچنان بیشترین انرژی خورشیدی را دارد و پس از آن تگزاس، فلوریدا، کارولینای شمالی و آریزونا قرار دارند.

دانیل برست، رئیس موسسه مطالعات محیطی و انرژی، یک سازمان غیرانتفاعی آموزش و سیاست، می‌گوید که مشوق‌های ایالتی و فدرال هر دو تأثیر زیادی بر رشد خورشیدی ایالات متحده داشتند.

با وجود موفقیت خورشیدی در سال 2023، موانعی وجود دارد. برست می گوید که کمبود ترانسفورماتور وجود داشته است، در حالی که نرخ بهره افزایش یافته است.

در ایالات متحده، تولید خورشیدی نیز رشد کرد. ابیگیل راس هاپر، رئیس و مدیر عامل انجمن صنایع انرژی خورشیدی، می‌گوید: «ما تأثیر قانون کاهش تورم را از لحاظ تأمین سوخت سرمایه‌گذاری‌ها دیده‌ایم… بیش از 60 تأسیسات تولید خورشیدی در سال گذشته اعلام شد.

131003788 gettyimages 1614630351 - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

چالش های انرژی باد

تا پایان سال 2023، جهان به اندازه کافی نیروگاه بادی برای تامین برق نزدیک به 80 میلیون خانه اضافه کرد و این یک سال رکورد محسوب می شود.

طبق تحقیقات Wood Mackenzie، مانند خورشیدی، بیشترین رشد با بیش از 58 گیگاوات در چین اضافه شد. به گفته Global Energy Monitor، چین در مسیر رسیدن به هدف بلندپروازانه 2030 خود یعنی 1200 گیگاوات ظرفیت انرژی خورشیدی و بادی پنج سال زودتر از برنامه زمان بندی شده، در صورتی که همه پروژه های برنامه ریزی شده ساخته شوند، پیشی می گیرد.

به گفته شورای جهانی انرژی بادی، چین یکی از معدود بازارهای رو به رشد امسال برای انرژی بادی بود. صدور مجوز سریعتر و سایر بهبودها در بازارهای کلیدی مانند آلمان و هند نیز به افزایش انرژی بادی کمک کرد. وود مکنزی گفت، اما تاسیسات در اروپا نسبت به سال گذشته 6 درصد کاهش یافته است.

چالش‌های کوتاه‌مدت مانند تورم بالا، افزایش نرخ‌های بهره و افزایش هزینه‌های مصالح ساختمانی، برخی از توسعه‌دهندگان نیروگاه بادی اقیانوسی را مجبور به مذاکره مجدد یا حتی لغو قراردادهای پروژه و برخی از توسعه‌دهندگان انرژی بادی مستقر در زمین را مجبور کرد تا پروژه‌ها را تا سال ۲۰۲۴ یا ۲۰۲۵ به تعویق بیندازند.
بادهای معکوس اقتصادی در زمان دشواری برای صنعت نوپای بادی فراساحلی ایالات متحده رخ داد، زیرا تلاش می کند اولین مزارع بادی فراساحلی در مقیاس تجاری را راه اندازی کند. ساخت و ساز در دو در سال جاری آغاز شد. هر دو قصد دارند در اوایل سال 2024 افتتاح شوند و یکی از سایت ها در حال تحویل برق به شبکه ایالات متحده است. مزارع بادی بزرگ فراساحلی برای سه دهه در اروپا و اخیراً در آسیا برق تولید می کنند.

پس از سال‌ها رشد بی‌سابقه، گروه صنعتی امریکن کلین پاور پیش‌بینی می‌کند تا پایان سال تعدادی نیروگاه بادی زمینی در ایالات متحده اضافه شود که تقریباً برای تامین برق 2.7 تا 3 میلیون خانه کافی است. این گروه می گوید توسعه دهندگان از اعتبارات مالیاتی جدیدی که سال گذشته در قانون کاهش تورم تصویب شد، استفاده می کنند، اما سال ها طول میکشد تا پروژه ها به شبکه متصل شوند. از زمان تصویب IRA تاکنون 383 میلیارد دلار (344 میلیارد یورو) سرمایه گذاری در انرژی پاک اعلام شده است.

ما در مورد سال 2023 اساساً به عنوان یک سال عملکرد پایین تر صحبت می کنیم، اما در طرح بزرگ همه چیز، 8 تا 9 گیگاوات هنوز عددی است که باید در مورد آن هیجان زده شد. جان هنسلی، معاون تحقیقات و تجزیه و تحلیل ACP می‌گوید: «نیروگاه های پاک بسیار زیادی به شبکه اضافه خواهد شد.

در سطح جهانی نیز باد امسال کندتر بود. سه بازار برتر امسال همچنان چین، ایالات متحده و آلمان برای انرژی بادی تولید شده در خشکی و چین، بریتانیا و آلمان برای فراساحل هستند.

تحلیلگران پیش‌بینی می‌کنند که صنعت جهانی در سال 2024 رونق گرفته و نزدیک به 12 درصد انرژی بادی بیشتری در سراسر جهان در دسترس خواهد بود.

3d137278 c18d 4865 ba6f 7e4bf697fa0f - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

سالی بزرگ برای باتری ها

به گفته آژانس بین‌المللی انرژی، در میان تلاش‌های مداوم برای کاهش آسیب‌های حمل‌ونقل به اقلیم، روند خودروهای الکتریکی در سال 2023 در سطح جهانی شتاب گرفت و طبق گزارش آژانس بین‌المللی انرژی، از هر پنج خودروی فروخته شده در سال جاری، یک خودرو الکتریکی بوده است. این بدان معنی بود که سال ۲۰۲۳ پرچمدار دیگری برای باتری ها بود.

طبق سیاست عمومی اطلس، بیش از 43.4 میلیارد دلار (39 میلیارد یورو) فقط در ایالات متحده در سال جاری صرف ساخت باتری و بازیافت باتری شده است که عمدتاً به لطف قانون کاهش تورم است. این امر ایالات متحده را در زمین بازی مساوی با اروپا قرار می‌دهد، اما همچنان پشت سر چین یعنی ابرقدرت باتری قرار دارد.

طبق گزارش Benchmark Mineral Intelligence، در مورد کارخانه‌های باتری‌سازی بزرگ که گیگافکتوری نامیده می‌شوند، ایالات متحده و اروپا هر کدام تا اواخر نوامبر 38 کارخانه داشتند. اما در چین 295 کارخانه در حال کار است.

به گفته کارشناسان، این صنعت همچنان به کشف راه‌های مختلف ساخت باتری‌ها بدون وابستگی زیاد به مواد مضر و همچنین راه‌هایی برای پایدارتر کردن قطعات ادامه داده، و به گفته کارشناسان، صنعت بازیافت باتری پیشرفت کرده است.
ایوان هارتلی، تحلیلگر ارشد بنچمارک، می گوید که هزینه مواد خام کلیدی باتری، از جمله لیتیوم نیز به میزان قابل توجهی کاهش یافته است.
پل براون، استاد علم و مهندسی مواد دانشگاه ایلینویز می‌گوید: «هزینه باتری اکنون در مسیری قرار دارد که اکثر آمریکایی‌ها می‌توانند یک خودروی الکتریکی بخرند».

2023 سفر آسانی نبود. صنعت در ایالات متحده، چندین باد مخالف را پشت سر گذاشت. تاسیسات عظیم باتری پاناسونیک در کانزاس با چالش های انرژی مواجه بود. تویوتا باید سایت خود در کارولینای شمالی را تقویت کند. نقض ایمنی و بهداشت در یک کارخانه سرمایه گذاری مشترک بین شرکت جنرال موتورز و LG Energy Solution در اوهایو مشاهده شد و این لیست ادامه دارد.

صرف نظر از منطقه، موانع موجود در مواد معدنی، زنجیره تأمین، مسئول ایجاد زیرساخت های شارژ خواهد ماند. جان آیشبرگر، مدیر اجرایی مؤسسه انرژی حمل‌ونقل، می‌گوید: «این موضوع دستور کار بعدی خواهد بود. اما کارشناسان خوش بین هستند که رشد باتری در سراسر جهان ادامه خواهد داشت.

منبع خبر : Isabella O’Malley, Jennifer McDermott, Alexa St. John with AP
Published on 29/12/2023

تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

    انتقال انرژی نیاز به زیرساخت مناسب دارد و احداث شبکه‌های انتقال برق و زیرساخت‌های توزیع برق برای انتقال انرژی تولید شده از نیروگاه‌ها به مناطق مصرف انرژی ضروری است. این زیرساخت‌ها باید به روز رسانی شده و به توسعه برسند تا تأمین انرژی پایدار و بهینه را تضمین کنند. زیرساخت‌های لازم برای انتقال انرژی از محل تولید به محل مصرف شامل خطوط و تجهیزات انتقال برق، زیرساخت‌های نگهداری، کنترل و اندازه‌گیری میشود.

   خطوط انتقال برق شامل سیم‌ها، پایه ها، و سازه‌های حمایتی هستند که انرژی تولیدی از نیروگاه‌ها را از منطقه تولید به منطقه مصرف منتقل می‌کنند. این زیرساخت از انتقال بهینه انرژی به نقاط مختلف و حفظ پایداری شبکه برق کمک می‌کند. احداث و نگهداری خطوط انتقال برق هزینه‌های گسترده‌ای دارد که به عوامل مختلفی بستگی دارد و شامل هزینه‌های مرتبط با طراحی، تهیه مواد، نصب تجهیزات، و ساختارهای حمایتی خطوط انتقال برق است و طول خط انتقال، نوع تجهیزات استفاده شده، و پیچیدگی شرایط محیطی ازعوامل تاثیرگذار روی این هزینه هاست.

   تجهیزات انتقال برق شامل ترانسفورماتورها، سوئیچ‌ها، و تجهیزات کنترلی است که در سیستم انتقال برق به کنترل جریان و ولتاژ و مدیریت شبکه کمک می‌کنند. در ادامه به شرح کاملی از این تجهیزات می پردازیم.

articleFiles 45934648 3jlav 1647155329 copy - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

ترانسفورماتورها:

   ترانسفورماتورها به عنوان یکی از اجزای اصلی سیستم‌های انتقال و توزیع برق، جهت تغییر ولتاژ بین خطوط انتقال برق به کار می‌روند. انواع مختلفی دارند، در زیر به برخی انواع ترانسفورماتورها و ویژگی‌های آنها اشاره می‌شود:

 

  1. ترانسفورماتورهای توزیع:

ترانسفورماتورهای توزیع نقش مهمی در سیستم‌های انتقال و توزیع برق ایفا می‌کنند. این ترانسفورماتورها عمدتاً برای تنظیم ولتاژ برق از سطح انتقال به سطح توزیع به کار می‌روند. در زیر توضیحات بیشتری درباره ترانسفورماتورهای توزیع آورده شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای توزیع برای انتقال برق از سطح انتقال (که ولتاژ آن بالاتر است) به سطح توزیع (که ولتاژ آن پایین‌تر است) به کار می‌روند.

   – مهمترین وظیفه آنها تغییر ولتاژ برق به مقداری مناسب برای استفاده در صنعت، شهری، یا مناطق روستایی است.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای توزیع دارای دو سیم پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

مزایا:

   – تغییر ولتاژ به صورت ایمن و مؤثر.

   – عمر طولانی و نیاز به نگهداری کم.

   – افت ولتاژ و توان‌های فراوانی را به حداقل می‌رسانند.

 کاربردها:

   – در شبکه‌های توزیع برق شهری، صنعتی و روستایی مورد استفاده قرار می‌گیرند.

   – در ایستگاه‌های تقسیم بار برای تنظیم ولتاژ و توزیع به مصارف مختلف.

 

۳. انواع ترانسفورماتورهای توزیع:

   – ترانسفورماتورهای روغنی: از روغن به عنوان عایق استفاده می‌کنند و عمدتاً در محیط‌های صنعتی استفاده می‌شوند.

۱. مزایا:

   – عایق کاری خوب: روغن به عنوان یک عایق خوب در ترانسفورماتورهای روغنی عمل می‌کند.

   – خنک‌کنندگی: روغن به خوبی حرارت تولید شده در ترانسفورماتور را انتقال می‌دهد.

   – عملکرد پایدار در شرایط مختلف: توانایی کارکرد در شرایط محیطی مختلف از جمله دما و رطوبت را داراست.

۲. معایب:

   – احتمال نشت روغن: این ترانسفورماتورها با مشکل احتمال نشت روغن مواجه هستند.

   – اندازه و وزن بالا: نسبت به ترانسفورماتورهای خشک، این نوع ترانسفورماتورها اندازه و وزن بیشتری دارند.

   – نیاز به فضای اضافی برای جلوگیری از خطرات احتمالی نشت روغن.

 

   – ترانسفورماتورهای خشک: بدون استفاده از روغن یا گاز به عنوان عایق عمل می‌کنند و اغلب در مکان‌هایی که استفاده از روغن ممنوع یا مشکل است، مورد استفاده قرار می‌گیرند.

مقایسه ترانسفورماتورهای روغنی و خشک از نظر مزایا و معایب نشان می‌دهد که هر یک از این انواع ترانسفورماتور دارای ویژگی‌ها و کاربردهای خاصی هستند. در زیر به مقایسه دقیق این دو نوع ترانسفورماتور پرداخته شده است:

۱. مزایا:

   – بدون روغن: از عایق‌های خشک برای جلوگیری از نیاز به روغن استفاده می‌کنند.

   – نگهداری آسان: به دلیل عدم وجود روغن، نگهداری و تعمیرات آسان‌تر و اقتصادی‌تر هستند.

   – احتمال کمتر نشت: به دلیل عدم وجود روغن، خطر نشت کمتر است.

 

۲. معایب:

   – کمترین خنک‌کنندگی: نسبت به ترانسفورماتورهای روغنی، توانایی خنک‌کنندگی کمتری دارند.

   – مناسب برای کاربردهای محدودتر: بیشتر در محیط‌های خشک و با دماهای پایین مورد استفاده قرار می‌گیرند.

 

با توجه به نیازها و شرایط محیطی، انتخاب بین ترانسفورماتورهای روغنی و خشک بستگی به موارد خاص هر کاربرد دارد. همیشه تصمیم بهتر از طریق مشاوره با متخصصان ترانسفورماتور و شناخت دقیق از نیازهای سیستم خود به دست می‌آید.

 

   – ترانسفورماتورهای گازی: ترانسفورماتورهای گازی یا همان ترانسفورماتورهای گاز‌دار Gas-Insulated Transformers یا GIS) ) نوعی ترانسفورماتورهستند که مواد عایق میانه بین پیچ‌ها و هسته آن گاز است و به جای عایق‌های سنتی نفتی یا عایق‌های جامد مورد استفاده قرار می‌گیرد. معمولاً گاز مورد استفاده در این ترانسفورماتورها گاز سولفورهگزا فلوراید ( (SF6است که خواص عایقی عالی دارد.

مزایا:

   – طراحی فشرده: ترانسفورماتورهای گازی نسبت به ترانسفورماتورهای سنتی با عایق روغنی دارای طراحی فشرده‌تری هستند که برای نصب در مناطق شهری با فضای محدود مناسب هستند.

   – کاهش نیاز به نگهداری: طراحی محافظت شده باعث کاهش نیاز به نگهداری می‌شود.

   – مقاومت الکتریکی بالا: گاز SF6 مقاومت الکتریکی بالایی دارد که امکان انجام تنظیمات الکتریکی را فراهم می‌کند.

   – تقویت ایمنی: محفظه مهر و مومی به افزایش ایمنی کمک می‌کند با جلوگیری از فرار گاز و کاهش خطر آتش سوزی.

 کاربردها:

   – نصب‌های شهری: ترانسفورماتورهای گازی به عنوان یک انتخاب مناسب برای نصب در مناطق شهری با فضای محدود شناخته شده‌اند.

 

electrical substation - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

  1. ترانسفورماتورهای قدرت (انتقال):

ترانسفورماتورهای قدرت نقش حیاتی در سیستم‌های انتقال و توزیع برق دارند. این ترانسفورماتورها عمدتاً برای انتقال انرژی برق از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و نقش ترانسفورماتورهای قدرت پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای قدرت برای تغییر ولتاژ برق به منظور انتقال به فواصل بلند از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی استفاده می‌شوند.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای قدرت دارای دو یا چند پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

 

۳. انواع ترانسفورماتورهای قدرت:

   – ترانسفورماتورهای انتقال: جهت انتقال انرژی برق به فواصل بلند استفاده می‌شوند و ولتاژ آنها معمولاً بسیار بالاست.

   – ترانسفورماتورهای توزیع: برای انتقال انرژی به فواصل کمتر و در سطح شهری و صنعتی به کار می‌روند و ولتاژ آنها کمتر از ترانسفورماتورهای انتقال است.

 

۴. مزایا:

   – انتقال انرژی با افت ولتاژ کم.

   – افزایش یا کاهش ولتاژ به شکل مستمر و به صورت اتوماتیک.

   – عمر طولانی و نیاز به نگهداری کم.

 

۵. معایب:

   – اندازه و وزن بالا: برخی از ترانسفورماتورهای قدرت به دلیل توان بالا، اندازه و وزن بسیار بالایی دارند.

   – نیاز به مکان‌های ویژه برای نصب و نگهداری.

 

۶. کاربردها:

   – استفاده اصلی این ترانسفورماتورها در نقاط انتقال انرژی بین نیروگاه‌ها، ایستگاه‌های انتقال، و سیستم‌های توزیع برق است.

 

ترانسفورماتورهای قدرت با توجه به توان، نیازهای ولتاژی، و شرایط محیطی، به صورت اختصاصی برای هر نقطه انتقال و توزیع طراحی و استفاده می‌شوند. این ترانسفورماتورها جزء اجزای اساسی سیستم‌های انتقال و توزیع برق به شمار می‌آیند.

  

 

ترانسفورماتورهای یکپارچه (Compact):

ترانسفورماتورهای یکپارچه یا همان  Compact Transformersنوعی ترانسفورماتور هستند که به دلیل طراحی خاص و اندازه کوچک، معمولاً برای فضاها و نقاط محدود به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و کاربردهای ترانسفورماتورهای یکپارچه پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای یکپارچه با طراحی کوچک و یکپارچه خود به منظور استفاده در فضاهای محدود و نیازهای خاص ساخته شده‌اند.

 

۲. ساختار و عملکرد:

   – این ترانسفورماتورها به صورت یکپارچه و با اندازه کوچک‌تر و وزن سبک‌تر نسبت به ترانسفورماتورهای سنتی ساخته می‌شوند.

   – توان ولتاژی و جریانی که این ترانسفورماتورها توانسته‌اند پوشش دهند معمولاً کمتر از ترانسفورماتورهای بزرگ و سنتی است.

 

۳. مزایا:

   – اندازه کوچک و وزن سبک: این ترانسفورماتورها مناسب برای فضاهای محدود و نیازهای کاربردی خاص هستند.

   – نصب و استفاده آسان: به دلیل اندازه کوچک، نصب و نگهداری آنها نسبت به ترانسفورماتورهای بزرگتر ساده‌تر است.

   – قابلیت تنظیم ولتاژ: برخی از ترانسفورماتورهای یکپارچه دارای قابلیت تنظیم ولتاژ هستند.

 

۴. کاربردها:

   – در ایستگاه‌های تقسیم بار، که نیاز به ترانسفورماتورهای کوچک و مؤثر برای توزیع برق به مصارف مختلف دارند.

   – در صنایع خاص و اتوماسیون، جایی که فضا محدود و نیاز به تنظیم ولتاژ وجود دارد.

 

ترانسفورماتورهای یکپارچه به دلیل اندازه کوچک و وزن سبک، مختص فضاهای محدود و نیازهای خاصی هستند. این ترانسفورماتورها به عنوان یکی از اجزای مهم در سیستم‌های برق و اتوماسیون برای افزایش بهره‌وری و انجام وظایف خاص به کار می‌روند.

   هر نوع ترانسفورماتور بر اساس نیازها و محیط کاربردی خود مزایا و معایب خاصی دارد. انتخاب نوع مناسب ترانسفورماتور بر اساس شرایط خاص سیستم برق و نیازهای انتقال و توزیع انرژی اهمیت زیادی دارد.

 

 تجهیزات حفاظت:

تجهیزات حفاظت در خطوط انتقال برق برای محافظت از تجهیزات و انسان‌ها در مواجهه با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ، یا افزایش جریان و… استفاده می‌شوند. این تجهیزات با شناسایی خطاها و حوادث به سرعت و به صورت اتوماتیک عملکرد می‌کنند تا خسارت به تجهیزات و افراد را کاهش دهند. در زیر به شرح تجهیزات حفاظت خطوط انتقال برق پرداخته شده است:

 

۱. رله‌های حفاظت:

   – این رله‌ها به صورت اتوماتیک عملکرد دارند و به تشخیص خطاها مانند اتصال کوتاه، افت ولتاژ، جریان بیش از حد، و … می‌پردازند.

   – رله‌های حفاظت بر اساس استانداردهای تعیین شده برای حفاظت از تجهیزات و خطوط برق تنظیم می‌شوند.

 

۲. ترمینال‌ها و سوئیچ‌های حفاظتی:

   – ترمینال‌ها و سوئیچ‌های حفاظتی به صورت مکانیکی یا الکتریکی جهت قطع و وصل سریع خطوط برق در صورت حادثه به کار می‌روند.

 

۳. ترانسفورماتورهای حفاظتی:

   – این ترانسفورماتورها وظیفه تغییر ولتاژ جهت اندازه‌گیری جریان و ولتاژ در خطوط را دارند تا اطلاعات لازم برای تشخیص حوادث به رله‌های حفاظت منتقل شود.

 

۴. کمپانساتورهای دینامیک:

   – برای مدیریت ولتاژ در خطوط انتقال از کمپانساتورهای دینامیک استفاده می‌شود تا افت ولتاژ در سیستم‌ها جلوگیری شود.

 

۵. سیستم‌های مانیتورینگ:

   – سیستم‌های مانیتورینگ مدام وضعیت خطوط را نظارت کرده و در صورت وقوع حوادث، اطلاعات را به تجهیزات حفاظت اطلاع می‌دهند.

 

۶. سوئیچ‌های خودکار:

   – سوئیچ‌های خودکار برای اتصال و قطع خودکار خطوط در شرایط خاص و زمان‌های اضطراری به کار می‌روند.

 

۷. کنترل‌ها و تجهیزات اتوماسیون:

   – تجهیزات اتوماسیون و کنترل‌ها برای مدیریت اتوماتیک خطوط و ایستگاه‌های انتقال برق به کار می‌روند.

 

 این تجهیزات حفاظت، ایمنی سیستم‌های برق را حفظ کرده و در مواجهه با حوادث احتمالی سریعاً و به صورت اتوماتیک عمل میکنند تا خسارت‌ها را به حداقل برسانند.

Figure1 0 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

تجهیزات کنترل و کمکی:

تجهیزات کنترل و کمکی در خطوط انتقال برق برای مدیریت و کنترل بهینه‌تر جریان برق، تنظیم ولتاژ، و مدیریت عملیات انتقال انرژی بین ایستگاه‌ها به کار می‌روند. این تجهیزات نقش مهمی در بهره‌وری و پایداری سیستم‌های برق ایفا می‌کنند. در زیر به شرح تجهیزات کنترل و کمکی در خطوط انتقال برق پرداخته شده است:

 

۱. سیستم‌های کنترل:

   – سیستم‌های کنترل مسئول مدیریت عملیات کلان شبکه برق و تنظیم پارامترهای مختلف مانند ولتاژ، جریان، و توان هستند.

   – این سیستم‌ها از الگوریتم‌ها و منطق کنترلی برای اجرای تصمیمات بهینه بر اساس وضعیت شبکه استفاده می‌کنند.

 

۲. واحدهای کنترل کننده فرکانس (Governor):

   – این واحدها به تنظیم سرعت ژنراتورها و ایستگاه‌ها بر اساس نیازهای فرکانس شبکه برق می‌پردازند تا تطابق تولید و مصرف انرژی حفظ شود.

 

۳. کنترل‌های ولتاژ (Voltage Control):

   – این کنترل‌ها واحدهای تنظیم ولتاژ در نقاط مختلف شبکه برق هستند تا ولتاژ در سطوح مشخصی نگهداری شود.

 

۴. تجهیزات کمکی:

   – ترمینال‌ها و تجهیزات کمکی برای مدیریت انرژی و تجهیزات در ایستگاه‌های انتقال به کار می‌روند.

   – این تجهیزات شامل کمپانساتورها، ترانسفورماتورهای کمکی، باتری‌ها و سیستم‌های UPS می‌شوند.

 

۵. سیستم‌های ارتباطات:

   – سیستم‌های ارتباطات برای انتقال داده‌ها و اطلاعات بین ایستگاه‌ها، زیرسیستم‌های کنترل، و تجهیزات مختلف استفاده می‌شوند.

 

۶. مانیتورینگ و ابزار دقیق:

   – دستگاه‌های مانیتورینگ و ابزار دقیق برای نظارت بر وضعیت تجهیزات، اندازه‌گیری جریان، ولتاژ و سایر پارامترهای سیستم به کار می‌روند.

 

۷. تجهیزات حفاظت و کنترل:

   – تجهیزات حفاظت و کنترل برای تشخیص و مقابله با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ و … مورد استفاده قرار می‌گیرند.

 

تمام این تجهیزات کنترل و کمکی با همکاری و هماهنگی با سیستم‌های حفاظتی و مانیتورینگ، ایمنی و بهره‌وری شبکه برق را افزایش می‌دهند. این تجهیزات بر اساس تکنولوژی‌های پیشرفته جهت بهبود عملکرد و اطمینان‌پذیری سیستم‌های برق به‌کار می‌روند.

 

 

خطوط انتقال برق:

خطوط انتقال برق از جمله اجزای حیاتی در سیستم‌های برق هستند که برای انتقال انرژی برق از منبع تولید به مصارف نهایی مورد استفاده قرار می‌گیرند. این خطوط اغلب به صورت یک سیستم شبکه‌ای و پیچیده، بر روی ایستاه‌ها و ستون‌ها قرار گرفته و نقل قدرت برق را امکان‌پذیر می‌سازند. در زیر به شرح اجزای مهم خطوط انتقال برق پرداخته شده است:

 

۱.انواع خطوط انتقال:

   – خطوط انتقال مستقیم (Overhead Lines) :خطوطی که بر روی ستون‌ها یا برج‌ها نصب شده و به وسیله سیم‌های هوایی منتقل می‌شود.

   – خطوط زیرزمینی (Underground Cables): خطوطی که در زیر زمین قرار دارند و انرژی برق را به وسیله کابل‌های زیرزمینی انتقال می‌دهند.

 

  1. ویژگی‌های خطوط انتقال:

   – ولتاژ عملیاتی: خطوط انتقال برق معمولاً با ولتاژ‌های بسیار بالا عمل می‌کنند تا از افت انرژی در مسافت‌های طولانی جلوگیری شود.

   – ساختار و مواد: ساختار خطوط انتقال از جنس موادی مانند فولاد، آلومینیوم، و یا مخلوطی از این مواد استفاده می‌کند.

EMS starts work on EUR 8 15 million Bistrica substation e1529062487986 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

تأثیر نیروگاه‌های تجدیدپذیر برهزینه‌های تجهیزات و خطوط انتقال برق

نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، نیروگاه بادی و هیدروالکتریک به طور قابل توجهی بر ساختار و هزینه‌های تجهیزات و خطوط انتقال برق تأثیر می‌گذارند. این تأثیرات می‌توانند در چند زمینه مهم مشاهده شوند:

 

۱. تولید برق ناپایدار:

   – نیروگاه‌های تجدیدپذیر بر پایه باد، خورشید یا آب، تولید برق ناپایداری دارند که به دلیل شرایط آب و هوایی متغیر و تغییرات در سطح تابش خورشید یا سرعت باد اتفاق می‌افتد.

   – این ناپایداری توسط سیستم‌های انتقال برق باید مدیریت شود تا پایداری و امنیت شبکه برق حفظ شود. که در مقاله گذشته با عنوان ” یک روش طراحی موثر برای نیروگاه های فتوولتائیک خورشیدی  ” راه حل آن ارائه شده است. به منظور تعدیل نوسانات تولید نیروگاه‌های تجدیدپذیر، فناوری‌های ذخیره‌سازی انرژی نیز در شبکه برق معرفی می‌شوند. این ذخیره‌سازی ممکن است هزینه‌های اضافی برای نصب و نگهداری داشته باشد.

 

  1. بهبود زیرساخت‌ها:

   – با توسعه نیروگاه‌های تجدیدپذیر، نیاز به بهبود و توسعه زیرساخت‌های انتقال برق نیز احساس می‌شود. این شامل افزایش ظرفیت و بهبود کیفیت خطوط انتقال و تجهیزات مرتبط است.

 

  1. کاهش افت ولتاژ:

   – نیروگاه‌های تجدیدپذیر مانند نیروگاه‌های خورشیدی و بادی در نواحی دور از مراکز مصرف نصب می‌شوند. این نیروگاه‌ها می‌توانند افت ولتاژ را در نواحی دورتر از مراکز تولید انرژی کاهش دهند. کاهش افت ولتاژ ممکن است نیاز به احداث خطوط انتقال با قطر بزرگتر را کاهش داده و هزینه‌های احداث و نگهداری را در خطوط انتقال برق کاهش دهد.

 

  1. کاهش ازدحام:

کاهش ازدحام در سیستم انتقال برق به معنای کاهش ترافیک و فشار در شبکه انتقال برق است و می‌تواند به عنوان یک مزیت مهم در نتیجه استفاده از نیروگاه‌های تجدیدپذیرمثل نیروگاه‌ خورشیدی و بادی در سیستم انرژی مدنظر قرار گیرد. برخی از جنبه‌های کاهش ازدحام کاهش افت شبکه بین نقاط تولید و مصرف است. این اقدام ممکن است باعث کاهش طول خطوط انتقال و ازدحام مرتبط با آنها شود. نیروگاه‌های تجدیدپذیر معمولاً از منابع محلی انرژی مانند نور خورشید در نیروگاه خورشیدی یا باد در نیروگاه بادی بهره می‌برند. استفاده از این منابع محلی نیاز به انتقال انرژی از مناطق دورتر را کاهش میدهد که می‌تواند هزینه‌های انتقال و از دست دادن انرژی را به حداقل برساند.

همچنین، استفاده از تکنولوژی‌های هوشمند و سیستم‌های اتوماسیون در اداره شبکه انتقال برق می‌تواند به بهبود بهره‌وری و مدیریت ازدحام در شبکه برق کمک کند. این تدابیر می‌توانند در کاهش هزینه‌های انتقال انرژی و افزایش پایداری سیستم تأثیرگذار باشند.

تأثیرات دقیق بر هزینه‌های تجهیزات و خطوط انتقال برق با توجه به مکان، نوع نیروگاه تجدیدپذیر، و شرایط محیطی متفاوت خواهد بود. این تأثیرات باید به عنوان یکی از عوامل در برنامه‌ریزی و طراحی سیستم انتقال برق در نظر گرفته شوند.

بنابراین، تأثیر نیروگاه‌های تجدیدپذیر بر هزینه‌ها و ساختار تجهیزات و خطوط انتقال برق نیازمند مدیریت دقیق، فناوری‌های پیشرفته و توسعه زیرساخت‌های مناسب است.

 

نویسنده: مهدی پارساوند

استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی به تبادل و خرید و فروش انرژی بین کشورها یا انجمن‌های اقتصادی مختلف اشاره دارد. انرژی ممکن است از منابع مختلفی مانند نفت، گاز، زغال‌سنگ، انرژی هسته‌ای، انرژی خورشیدی و باد به دست آید. در تجارت انرژی، کشورها سعی می‌کنند نیازهای انرژی خود را برطرف کنند، همزمان با بهره‌مندی از منابع داخلی و یا از طریق واردات انرژی از منابع خارجی.

تجارت انرژی می‌تواند بر اساس قراردادهای ثابت (مثل قراردادهای بلندمدت) یا معاملات کوتاه‌مدت (مثل خرید و فروش روزانه) انجام شود. در بسیاری از موارد، قراردادهای تجارت انرژی به صورت طولانی‌مدت منعقد می‌شوند تا اطمینان از تأمین پایدار انرژی برای طرفین باشد.

کشورهای صادرکننده انرژی می‌توانند منابع طبیعی خود را به دیگر کشورها صادر کرده و درآمد حاصل از این تجارت را به دست آورند. در عین حال، کشورهای وابسته به واردات انرژی ممکن است به دنبال تنوع منابع و کاهش وابستگی به یک منبع خاص باشند.

تاثیرات سیاسی، اقتصادی، و محیطی تجارت انرژی بسیار گسترده است و می‌تواند به تعیین نقشه قدرت و روابط بین‌المللی نیز تأثیر بگذارد. همچنین، مسائلی مانند تغییرات اقلیمی، امنیت انرژی، و توسعه پایدار نیز به طور مستقیم در این زمینه تأثیرگذارند.

تجارت انرژی مبتنی بر نیروگاه‌های تجدیدپذیر به تبادل و خرید و فروش انرژی، که از منابع تجدیدپذیر مانند انرژی خورشیدی، باد، هیدروپاور، گرمای زمین، و سایر منابع پاک تولید می‌شود، اشاره دارد که از منابعی مانند نور خورشید ( نیروگاه خورشیدی فتوولتائیک ) ، باد ( نیروگاه بادی متشکل از توربین های مگاواتی )، آب‌های سطحی و زیرزمینی ( نیروگاه های برق آبی )، و سایر منابع تجدیدپذیر بهره می‌برد. این منابع به دلیل اینکه قابلیت تجدید خود را دارند، تامین انرژی پایدار و دوستدار محیط زیست را فراهم می‌کنند.

توسعه نیروگاه‌های تجدیدپذیر می‌تواند اشتغال، توسعه فناوری، و رشد اقتصادی را تحت تأثیر قرار دهد. همچنین، این تجارت می‌تواند به کاهش وابستگی به منابع انرژی سنتی و کاهش هزینه‌های انرژی کمک کند.

استفاده از نیروگاه‌های تجدیدپذیر به معنای کاهش انتشار گازهای گلخانه‌ای و دیگر آلودگی‌های زیست محیطی است. این تجارت می‌تواند به حفاظت از محیط زیست و کاهش تأثیرات منفی تغییرات اقلیمی کمک کند.

 

تجارت انرژی می‌تواند منافع اقتصادی زیادی برای کشورها فراهم کند. در زیر به برخی از این منافع اشاره شده است:

  1. افزایش درآمد ناخالص داخلی (GDI): صادرات انرژی، می‌تواند منبع اصلی درآمد برای کشورها باشد. درآمدهای حاصل از تجارت انرژی می‌تواند به افزایش GDI و توسعه اقتصادی کشورها کمک کند.

 

  1. ایجاد فرصت‌های اشتغال: صنایع انرژی، از جمله نیروگاه‌ها و زیرساخت‌های مرتبط، ایجاد فرصت‌های شغلی زیادی را برای جمعیت فراهم می‌کنند. این شغل‌ها اغلب در زمینه‌های مهندسی، تکنولوژی، حمل و نقل، و خدمات پشتیبانی فراهم می‌شوند.

 

  1. توسعه زیرساخت‌ها: برای تولید، انتقال، و صادرات انرژی، زیرساخت‌های حمل و نقل و انتقال انرژی نیاز است. سرمایه‌گذاری در این زیرساخت‌ها می‌تواند به توسعه زیرساخت‌های کلان و تقویت اقتصاد منطقه انرژی‌زا کمک کند.

 

  1. تحقق استقلال انرژی: بسیاری از کشورها سعی دارند با داشتن منابع انرژی داخلی قوی، استقلال بیشتری در تأمین نیازهای انرژی خود داشته باشند. این استقلال انرژی می‌تواند زیرساخت‌های اقتصادی و امنیت ملی را تقویت کند.

 

  1. تبادل تخصص و فناوری: تجارت انرژی ممکن است باعث تبادل تخصص و فناوری در زمینه‌های نوین انرژی شود. این تبادل می‌تواند به توسعه فناوری‌های پایدار و بهبود بهره‌وری در زمینه انرژی منجر شود.

 

  1. تأمین امنیت انرژی: کشورهای وابسته به واردات انرژی ممکن است از تجارت انرژی برای تأمین امنیت انرژی استفاده کنند. تنوع منابع انرژی و دسترسی به منابع انرژی پایدار از طریق تجارت می‌تواند به کاهش ریسک وابستگی به یک منبع خاص کمک کند.
    تصویر تابلو سبز بورس 1402 araniroo 1 آرانیرو copy - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی، اگر به درستی مدیریت شود، می‌تواند به توسعه اقتصادی، اشتغالزایی، و امنیت انرژی یک کشور کمک کند. همچنین، این تجارت می‌تواند بستری برای همکاری بین المللی و تبادل تجاری فراهم کند.

برای توسعه تجارت انرژی از منابع تجدیدپذیر، لازم است زیرساخت‌های مناسبی در نظر گرفته شوند از جمله احداث نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، بادی، هیدروپاور، و گاهی حتی نیروگاه‌های انرژی دریاها (مانند نیروگاه‌های موج و جاری). این نیروگاه‌ها به تولید برق از منابع تجدیدپذیر کمک می‌کنند. به منظور مدیریت موثر تولید انرژی از منابع تجدیدپذیر، زیرساخت‌های ذخیره‌سازی انرژی نیز حائز اهمیت هستند. این زیرساخت‌ها شامل سیستم‌های باتری، انرژی ذخیره‌شده در شکل گاز، یا حتی ساختارهای ذخیره‌سازی گرما می‌شوند و از تعادل سیستم انرژی استفاده می‌کنند و در مدیریت نیاز به انرژی در ساعات اوج و کم‌بار تاثیرگذار هستند.

انرژی، به عنوان رگ حیات صنایع، خانه‌ها و اقتصادها، ارتباط زیادی با فرصت‌های فراوانی برای کارآفرینان دارد. درک جزئیات بازار انرژی و مقابله با چالش‌ها گام‌های اساسی برای یک ورود موفق به این حوزه می‌باشد.

ایران، با منابع غنی و تقاضای رو به رشد برای انرژی، زمینهٔ خوبی را برای تجارت انرژی فراهم می‌کند. دینامیک بازار، تحت تأثیر عوامل داخلی و بین‌المللی، نقش مهمی در شکل‌گیری فرصت‌ها دارد. شناخت بازیگران اصلی و آگاهی از روندهای بازار برای تصمیم‌گیری مطلوب بسیار حائز اهمیت است.

تأمین مجوزها و پروانه‌های لازم و اطمینان از رعایت مقررات زیست‌محیطی، جنبه حیاتی یک تجارت انرژی است. درک چارچوب حقوقی و گنجاندن آن در استراتژی کسب و کار گام مهمی است.

کسب و کارهای انرژی به سرمایه‌گذاری قابل توجهی نیاز دارند. کارآفرینان باید با دقت مناسب به بررسی منابع سرمایه‌ای بپردازند، گزینه‌های تأمین مالی را بررسی کنند و مدل مالی قوی ایجاد کنند تا بتوانند از نوسانات بازار جلوگیری کنند.

تکنولوژی نقش تحول‌آفرینی در حوزه انرژی دارد. کارآفرینان باید از پیشرفت‌های فناورانه بهره‌مند شوند تا به بهبود کارایی عملیاتی و ادغام فناوری‌های هوشمند برای تداوم شیوه‌های پایدار بپردازند.

شناسایی و کاهش ریسک‌ها جزء مؤلفه‌های اصلی یک تجارت انرژی موفق است. از ناپایداری‌های جغرافیایی تا نوسانات بازار، داشتن استراتژی‌های مدیریت ریسک قوی و برنامه‌های آمادگی ضروری است. شناخت و بهره‌مندی از سیاست‌های حمایتی دولت و انگیزه‌ها برای کارآفرینان انرژی، گام استراتژیکی است. کارآفرینان باید از این ایمنی‌ها، مانند معافیت مالیاتی و حمایت‌ها، بازدید کنند و بررسی کنند چگونه می‌توانند از آنها بهره‌مند شوند.

 

نتیجه‌گیری

در نتیجه، ورود به تجارت انرژی در ایران نیازمند یک رویکرد چندجانبه است. از فهم دینامیک بازار تا بهره‌گیری از نوآوری‌های فناورانه و ایجاد شراکت‌های استراتژیک، کارآفرینان باید در منظومه پیچیده‌ای حرکت کنند.

حضور در تجارت انرژی‌های تجدیدپذیر، به ویژه در زمینه نیروگاه خورشیدی در ایران، می‌تواند یک فرصت عالی برای سرمایه‌گذاری و توسعه کسب و کار باشد. قبل از ورود به این صنعت، تحقیقات دقیقی در مورد بازار انرژی تجدیدپذیر و نیروگاه‌ خورشیدی در ایران انجام دهید. ارزیابی نیازهای بازار، میزان تقاضا، قوانین و مقررات مرتبط با تجارت انرژی و دیگر عوامل بازاریابی می‌تواند کمک شایانی به شناخت بازار کند. آگاهی از قوانین و مقررات مرتبط با تولید و تجارت انرژی تجدیدپذیر در ایران بسیار حائز اهمیت است. بررسی مجوزها، حقوق ارتعاشی، تسهیلات دولتی و دیگر الزامات قانونی از جمله مسائلی هستند که باید به آنها توجه کنید.

   انتخاب مکان مناسب برای نصب نیروگاه خورشیدی از اهمیت بسیاری برخوردار است. بررسی شدت تشعشعات خورشیدی، نقشه‌های باد، دمای محل، ارتفاع و سایر شرایط جوی می‌تواند تأثیر زیادی در عملکرد نیروگاه داشته باشد.

   برای شروع یک پروژه نیروگاه خورشیدی، تأمین منابع مالی ضروری است. می‌توانید از تسهیلات بانکی، سرمایه‌گذاری‌های خصوصی یا حتی برنامه‌های حمایتی دولتی بهره‌مند شوید.

   برقراری همکاری با شرکت‌ها و متخصصان معتبر در زمینه نیروگاه‌ خورشیدی، از جمله مهندسان، مشاوران حقوقی و مدیران پروژه، به شما کمک می‌کند تا با چالش‌ها بهتر کنار بیایید و بهترین نتیجه را بگیرید.

   استفاده از تکنولوژی‌های به‌روز در نیروگاه خورشیدی شما را قادر به بهره‌مندی از کارایی بالاتر و هزینه‌های کمتر می‌کند.

   در تجارت انرژی، مسئولیت اجتماعی بازیگر کلیدی است. توجه به اثرات زیست‌محیطی، ایمنی کارگران، اشتغال محلی و سایر ابعاد مسئولیت اجتماعی می‌تواند تصمیم‌گیری‌های شما را بهبود بخشد.

   برنامه‌ریزی مناسب برای بازاریابی و فروش انرژی تولیدی از نیروگاه خورشیدی را انجام دهید. ایجاد روابط با خریداران محتمل، شرکت‌های انرژی، گروه‌های صنعتی و دیگر بازارهای هدف از این قسمت حائز اهمیت است.

   برنامه‌ریزی برای پایش و نگهداری نیروگاه خورشیدی به منظور حفظ عملکرد بهینه و کاهش هزینه‌ها بسیار ضروری است.

با رعایت این نکات و برنامه‌ریزی دقیق، حضور در تجارت انرژی تجدیدپذیر، به ویژه در زمینه نیروگاه‌ خورشیدی، می‌تواند فرصتی موفق‌ برای سرمایه‌گذاری و توسعه کسب و کار شما باشد.

ضمن اینکه با ورود به الگوی تجارت انرژی منطقه‌ای در قالب صادرات انرژی به کشورها یا مناطق همسایه میتوانید تجارت خود را بین المللی کنید. هچنین ما به عنوان شرکت آرا نیرو آمادگی داریم در این الگو، ارتباط شما را به طور گسترده در زمینه تجارت انرژی برقرار کنیم. این شامل صادرات و واردات انرژی به وسیله سیستم‌های انتقال برق بین‌المللی است. در دهه‌های اخیر، با توسعه انرژی‌های تجدیدپذیر، الگوهای تجارت انرژی نیز تغییر کرده است. کشورها و شرکت‌ها اکنون می‌توانند انرژی تولید شده از منابع تجدیدپذیر را تجارت کنند و به اشتراک بگذارند.

البته در دنیا اشکال دیگری از تجارت انرژی نیز مرسوم میباشد که نمونه آن تجارت انرژی همتا به همتا است و نیازمند شبکه هوشمند انرژی است که متاسفانه در ایران از ساختار شبکه هوشمند برق بی بهره هستیم.

Renewable Energy Business - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی همتا به همتا، یک مفهوم در زمینه انرژی است که به معنای تبادل مستقیم انرژی بین افراد یا واحدهای تولید انرژی می‌باشد، بدون واسطه‌های مرسوم چون شرکت‌های توزیع و انتقال انرژی. در این مدل، افراد یا واحدهای تولید انرژی مستقیماً با سایر افراد یا واحدها تبادل انرژی می‌کنند، بدون نیاز به شبکه‌های مرکزی یا شرکت‌های متعلق به دولت.

 

این رویکرد به منظور افزایش کارآیی، کاهش هزینه‌ها، و حمایت از تولید انرژی پایدار مطرح شده است. این سیستم می‌تواند باعث ایجاد یک بازار محلی برای انرژی شود که در آن تولید کنندگان و مصرف‌کنندگان می‌توانند به طور مستقیم با یکدیگر معامله کنند.

به عنوان مثال، یک فرد یا شرکتی که انرژی را از منابع تجدیدپذیر تولید می‌کند، می‌تواند این انرژی را به صورت مستقیم به همسایگان یا دیگر افراد در یک منطقه فرستاده و با آنها تبادل کند، بدون اینکه نیاز به انتقال انرژی از طریق شبکه‌های مرکزی باشد.

تجارت انرژی همتا به همتا به توسعه انرژی‌های تجدیدپذیر، افزایش بهره‌وری و کاهش اثرات منفی بر محیط زیست کمک می‌کند. این مدل همچنین می‌تواند اقتصاد محلی را تقویت کرده و به ایجاد یک سیستم انرژی مستقل و پایدار کمک کند.

جلوتر ماندن از منحنی فناوری به معنای تقویت مزیت رقابتی شماست. به همین دلیل است که ما بینش های نوآوری مبتنی بر داده در صنعت انرژی را به شما ارائه می دهیم. در پایان با امید به شکل گیری زیرساخت های شبکه هوشمند برق در ایران، 5 راه حل دستچین شده برای تجارت انرژی همتا به همتا را با ذکر مثال از چند شرکت و استارت آپ موفق جهانی ارائه میدهیم:

 

  1. Hygge یک بازار انرژی مستقل ایجاد می کند

سال تاسیس: 2017

مکان: تورنتو، کانادا

شریک: تجارت انرژی های تجدیدپذیر

استارتاپ کانادایی Hygge Energy یک بازار تجارت انرژی های تجدیدپذیر را ارائه می دهد که در سراسر جهان قابل دسترسی است. پلت فرم استارت آپ خدمات تراکنشی را هم در جلو و هم در پشت کنتور فعال می کند. اولی به شرکت های خدمات شهری اجازه می دهد تا از دارایی های توزیع شده خود با افزایش معاملات انرژی استفاده کنند، در حالی که دومی از رویکرد تجارت همتا به همتا استفاده می کند که مبتنی بر جامعه، بازار، و توسعه دهنده است. Hygge از طریق باکس سفارشی خود که ترکیبی از هوش مصنوعی AI، بلاکچین خصوصی و قدرت محاسباتی بالا است، به این مهم دست می یابد. این استارت‌آپ همچنین یک برنامه کاربردی تلفن هوشمند ارائه می‌کند که به تولیدکنندگان انرژی خصوصی اجازه می‌دهد تا تولید مازاد خود را به شرکت‌های برق بفروشند و انرژی کم‌هزینه را با همسایگان معامله کنند. این امر بازده سرمایه گذاری را برای نیروگاه های خصوصی افزایش می دهد و درآمد شرکت های برق را از طریق بهبود توان عملیاتی انرژی افزایش می دهد.

 

  1. Exodus یک برنامه تجارت همتا به همتا را ارائه می دهد

سال تاسیس: 2018

مکان: لیدز، انگلستان

شریک برای: اشتراک انرژی خانه به خانه

Exodus یک استارت‌آپ مستقر در بریتانیا است که ExodusHOME را توسعه می‌دهد، برنامه‌ای برای گوشی‌های هوشمند برای فعال کردن تجارت همتا به همتا در جوامع محلی. ExodusHOME به صاحبان خانه با واحدهای تولید برق محلی اجازه می دهد تا بر تولید، مصرف و سطوح ذخیره انرژی نظارت کنند. با این بینش، مصرف کنندگان می توانند انرژی مازاد خود را با سایر خریداران و مصرف کنندگان مبادله کنند و همچنین آن را به شبکه برق انتقال دهند. این بازار انرژی به نفع جامعه است و راه اندازی واحدهای تولید انرژی تجدیدپذیر محلی را از طریق مشوق های مالی ترویج می کند. بنابراین، منجر به توسعه راه‌حل‌های سخت‌افزاری در دسترس برای تولید انرژی‌های تجدیدپذیر خارج از شبکه می‌شود و انتقال انرژی را تسریع می‌کند. این همچنین بار هزینه های سرمایه ای را بر اپراتورهای شبکه و واحدهای تولید برق کاهش می دهد.

 

  1. سوئیچ تجارت انرژی خورشیدی را فعال می کند

سال تاسیس: 2018

مکان: کیپ تاون، آفریقای جنوبی

شریک: بازرگانی انرژی خورشیدی

استارت‌آپ انرژی سوئیچ انرژی مستقر در آفریقای جنوبی راه‌حل‌های هوشمند اندازه‌گیری و مدیریت انرژی را ارائه می‌دهد. مودم استارت‌آپ برق را در زمان واقعی مشاهده و کنترل می‌کند، تعویض لوازم خانگی را زمان‌بندی می‌کند و تجارت برق خورشیدی را فعال می‌کند. Switch Energy همچنین یک پلت فرم نرم افزاری را توسعه می دهد که شامل یک برنامه تلفن همراه و یک کنسول مدیریت برای تسهیل نظارت بر تولید و مصرف انرژی در زمان واقعی است. علاوه بر این، به کاربران اجازه می دهد تا انرژی را بین ساختمان های دارای تولید خورشیدی در شبکه های زیر متری مبادله کنند، بنابراین وابستگی خانوارها به شبکه اصلی کاهش می یابد.

 

  1. TroonDx تبادل برق غیرمتمرکز را توسعه می دهد

سال تاسیس: 2019

مکان: چنای، هند

شریک: تجارت غیرمتمرکز انرژی، بازار انرژی مبتنی بر بلاک چین

TroonDx یک استارت آپ هندی است که یک پلتفرم نرم افزاری مبتنی بر بلاک چین را فراهم می کند که زیرساخت های حیاتی را در شبکه انرژی برای تبادل نیرو به هم متصل می کند. پلتفرم تبادل برق غیرمتمرکز این استارت آپ، تراکنش های دیجیتالی امن را بدون وابستگی به یک نقطه مرکزی قدرت امکان پذیر می کند. این پلتفرم قراردادهای هوشمندی را ارائه می‌کند که اجرای تراکنش‌ها را خودکار می‌کند و شفافیت در توافق‌نامه‌های خریدار و فروشنده را افزایش می‌دهد و امکان معاملات بی‌درنگ را فراهم می‌کند. این باعث ایجاد چندین بازار انرژی ابرمحلی خودکفا با حداقل وابستگی به شبکه اصلی می شود. علاوه بر این، بلاک چین یک مسیر حسابرسی تغییرناپذیر از هر تراکنش انرژی را حفظ می کند که به حسابداری، حل و فصل صورتحساب و فرآیندهای حل اختلاف خودکار کمک می کند.

 

  1. nyway یک بازار انرژی های تجدیدپذیر ایجاد می کند

سال تاسیس: 2017

مکان: هامبورگ، آلمان

شریک: بازار انرژی های تجدیدپذیر

استارت‌آپ آلمانی به هر حال بازار انرژی‌های تجدیدپذیر را برای معاملات انرژی همتا به همتا ایجاد می‌کند. پلت فرم این استارت آپ به مصرف کنندگان انرژی این امکان را می دهد که فروشنده های خصوصی برق را انتخاب و انتخاب کنند. این به مشتریان اجازه می دهد تا انرژی پاک را با قیمت های پایین در محل خود خریداری کنند. enyway همچنین از فناوری مبتنی بر بلاک چین برای ثبت و حسابرسی این تراکنش ها استفاده می کند. علاوه بر این، بازار استارت آپ نیازی به نصب دستگاه یا زیرساخت جدیدی برای تامین انرژی خریداری شده به مشتریان خود ندارد. راه حل enyway تضمین می کند که انرژی کاملاً پایدار، شفاف و ایمن است، بنابراین از هرگونه وقفه در عرضه جلوگیری می کند.

 

نویسنده: مهدی پارساوند

 

 

اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

 

موتورهای الکتریکی در تراکر نیروگاه خورشیدی:

   – تراکرها مجهز به موتورهای الکتریکی هستند که مسئولیت حرکت پنل‌ها را برعهده دارند. این موتورها معمولاً با استفاده از برق شبکه یا منابع تولید برق مستقل مانند پنل‌های خورشیدی انرژی می‌گیرند.

موتورهای الکتریکی که در تراکرهای نیروگاه‌های خورشیدی به کار می‌روند، باید از ویژگی‌ها و امکانات خاصی برخوردار باشند تا بتوانند به طور دقیق و با کارایی بالا پنل‌های خورشیدی را در سمت خورشید دنبال کنند. در زیر به برخی از جزئیات این موتورهای الکتریکی اشاره می‌شود:

   – موتورهای الکتریکی استفاده شده در تراکرهای نیروگاه‌های خورشیدی معمولاً از نوع موتورهای الکتریکی مستقیم(DC)  یا موتورهای الکتریکی سنکرون (AC) با اینورترهای خاص میباشند.

   – این موتورها ممکن است از سیستم‌های تغذیه مختلفی استفاده کنند. برخی از تراکرها ممکن است از برق شبکه برای تغذیه موتورهای خود استفاده کنند، در حالی که برخی دیگر از پنل‌های خورشیدی برای تأمین انرژی مورد نیاز موتورها استفاده می‌کنند.

   – موتورهای الکتریکی تراکرها دارای سیستم کنترل پیشرفته‌ای هستند که با استفاده از سنسورها و الگوریتم‌های خاص، حرکت دقیق و بهینه را برای دنبال کردن مسیر حرکت خورشید فراهم می‌کنند.

   – موتورهای الکتریکی برای تراکرها باید با کارایی بالا عمل کنند تا انرژی الکتریکی بهینه به حرکت تراکرها تأمین شود. بازدهی بالا و عدم ایجاد گرمای زیاد مهمترین ویژگی‌های این موتورهاست.

   – موتورهای الکتریکی تراکر باید مقاوم در برابر شرایط محیطی نظیر دما، رطوبت، گرد و غبار و شرایط آب و هوایی مختلف باشند.

   – برخی از موتورهای الکتریکی تراکرها از قابلیت تنظیم سرعت برای تطبیق بهتر با تغییرات در زاویه و مسیر حرکت خورشید استفاده می‌کنند.

   – به منظور جلوگیری از افزایش دما و حفظ بازده موتورها، سیستم خنک‌کننده نیز در برخی از موتورهای الکتریکی مورد استفاده قرار می‌گیرد.

   – موتورهای الکتریکی تراکرها باید کم‌صدا و با نویز کم عمل کنند تا تأثیر کمتری بر محیط زیست و نزدیکی به مناطق مسکونی داشته باشند.

برخی از موتورهای الکتریکی معروف که در تراکرها به‌کار می‌روند عبارتند از:

  1. موتورهای الکتریکی جریان مستقیم (DC) :

   – موتورهای جریان مستقیم(DC)  به فراوانی در تراکرهای خورشیدی دیده می‌شوند. موتورهایی از نوع براشلس (Brushless)  نیز جزء گزینه‌های معمول محسوب می‌شوند. این موتورها معمولاً با استفاده از اینورترها برای تغذیه الکتریکی کار می‌کنند.

در زیر، نحوه عملکرد موتورهای DC در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

تغذیه الکتریکی:

   – موتورهای DC نیاز به تغذیه الکتریکی مستقیم دارند. این تغذیه الکتریکی ممکن است از شبکه برق یا از منابع تولید برق مستقل مانند پنل‌های خورشیدی تأمین شود.

الگوریتم کنترل:

   – سیستم کنترل تراکر با استفاده از الگوریتم‌های خاص و سنسورهای نوری محیطی تعیین می‌کند که در کدام جهت و چه مقدار باید پنل‌های خورشیدی حرکت کنند. این الگوریتم‌ها معمولاً بهینه‌سازی شده‌اند تا به بهترین شکل ممکن از تابش خورشید استفاده شود.

موتور الکتریکی:

   – موتورهای DC به عنوان سیستم حرکتی اصلی تراکر بکار می‌روند. این موتورها در پاسخ به دستورات سیستم کنترل حرکت می‌کنند تا پنل‌های خورشیدی را به سمت مناسب جهت‌دهی کنند.

انتقال حرکت:

   – برخی از تراکرها از گیربکس (چرخ دنده) برای انتقال حرکت موتور به پنل‌های خورشیدی استفاده می‌کنند. گیربکس معمولاً برای تغییر سرعت و افزایش گشتاور موتور به‌کار می‌رود.

سیستم قفل و تثبیت:

   – موتورهای DC برای جلوگیری از حرکت ناخواسته پنل‌ها در شرایط بادی یا هوایی نامساعد، دارای سیستم‌های قفل و تثبیت هستند که در زمان‌های غیرفعالیت تراکر عمل می‌کنند.

سنسورها:

   – سیستم حرکت تراکر مجهز به سنسورهای نوری است که نور خورشید را اندازه‌گیری می‌کنند. این سنسورها به کنترلر اطلاعات می‌فرستند تا زمان و جهت حرکت را تعیین کند.

پنل‌های خورشیدی:

   – موتورهای DC با تغذیه پنل‌های خورشیدی از انرژی نور خورشید بهره می‌برند. انرژی الکتریکی تولیدی این پنل‌ها تامین کننده توان الکتریکی لازم برای حرکت تراکر هستند.

به این ترتیب، موتورهای DC با همکاری با سیستم کنترل و سایر اجزای تراکر، به دنبال کردن دقیق تر مسیر حرکت خورشید و بهره‌وری بیشتر از تابش خورشید کمک می‌کنند.

استفاده از موتورهای الکتریکی جریان مستقیم در تراکرهای نیروگاه‌های خورشیدی با محدودیت‌ها و معایبی نیز همراه است. در زیر، محدودیت‌ها و معایب استفاده از موتورهای DC در تراکرها توضیح داده شده‌اند:

ابتلا به سایش:

   – موتورهای DC ممکن است در معرض سایش و فرسایش باشند، به ویژه در صورت استفاده مداوم و در شرایط محیطی سخت مانند گرد و غبار و شرایط آب و هوایی نامساعد.

نیاز به تعویض قطعات:

   – به دلیل ابتلا به سایش، بعضی از قطعات موتورهای DC ممکن است نیاز به تعویض داشته باشند، که این امر می‌تواند هزینه نگهداری را افزایش دهد.

بازدهی محدودتر در سرعت های پایین:

   – موتورهای DC ممکن است در سرعت های پایین بازدهی کمتری داشته باشند. این مسئله ممکن است در شرایطی که سیستم تراکر با سرعت پایین حرکت می‌کند (به عنوان مثال، در حالت‌های کمینه‌ی خورشید) به چالش کشیده شود.

نیاز به تدابیر خنثی‌سازی نویز:

   – موتورهای DC ممکن است نویزهای الکترومغناطیسی ایجاد کنند که ممکن است تدابیر خاصی برای کنترل یا کاهش این نویزها نیاز باشد.

محدودیت در مقاومت در برابر بارهای سنگین:

   – موتورهای DC ممکن است در مقابل بارهای سنگین کمتر مقاوم باشند، که این موضوع نیاز به نصب گیربکس یا تنظیمات خاص برای مقابله با این مسئله را ایجاب کند.

تأثیر حرارت:

   – افزایش حرارت در موتورهای DC ممکن است باعث کاهش بازدهی و عمر مفید آنها شود. در شرایط دمای بالا، نیاز به سیستم خنک‌کننده و یا تدابیر دیگر جهت مدیریت حرارت احتمالی افزایش می‌یابد.

نیاز به تدابیر خاص برای افزایش بازدهی:

   – برخی از مدل‌های موتورهای DC نیاز به تدابیر خاصی برای افزایش بازدهی دارند، مثل استفاده از تکنولوژی‌های حسگر مغناطیسی (encoder) برای بهبود کنترل موقعیت.

بازدهی محدود در محیط‌های متغیر:

   – در محیط‌هایی که دما، رطوبت یا شرایط محیطی دیگر تغییرات زیادی دارند، بازدهی موتورهای DC ممکن است متغیر شود.

هزینه نگهداری:

   – هزینه نگهداری موتورهای DC ممکن است نسبت به برخی از سایر گزینه‌ها بالاتر باشد، به خصوص اگر نیاز به تعویض قطعات و تعمیرات مداوم وجود داشته باشد.

201912191429019042662 - اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

  1. موتورهای الکتریکی متناوب (AC):

   – موتورهای AC با سیستم‌های تغذیه مستقیم (Direct Drive) یا تغذیه مستقیم بدون سیستم گیربکس (Gearless) در تراکرهای خورشیدی نیز به کار می‌روند. این موتورها معمولاً به دلیل بازدهی بالا و نیاز کم به نگهداری مورد توجه قرار می‌گیرند.

در زیر، نحوه عملکرد موتورهای AC در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

تغذیه الکتریکی:

   – موتورهای AC نیاز به تغذیه الکتریکی متناوب دارند. این تغذیه الکتریکی ممکن است از شبکه برق یا از منابع تولید برق مستقل مانند پنل‌های خورشیدی تأمین شود.

انواع موتور AC:

   – در تراکرهای نیروگاه‌های خورشیدی، دو نوع موتور AC رایج مورد استفاده قرار می‌گیرد: موتورهای سنکرون (Synchronous Motors) و موتورهای آسنکرون (Asynchronous Motors)، که به عنوان موتورهای الکتریکی بدون گیربکس شناخته می‌شوند.

سیستم کنترل:

   – همانند موتورهای DC، موتورهای AC نیز با استفاده از سیستم کنترل پیشرفته و الگوریتم‌های مختلفی که بر اساس سنسورها تنظیم می‌شوند، جهت و سرعت حرکت پنل‌های خورشیدی را کنترل می‌کنند.

گیربکس (اختیاری):

   – برخی از تراکرها از گیربکس (چرخ دنده) برای انتقال حرکت موتور به پنل‌های خورشیدی استفاده می‌کنند. اما برخی از موتورهای AC بدون گیربکس نیز طراحی شده‌اند که به عنوان موتورهای الکتریکی بدون گیربکس شناخته می‌شوند.

کنترل دقیق سرعت:

   – یکی از ویژگی‌های برجسته موتورهای AC این است که می‌توانند به‌طور دقیق کنترل شوند. این ویژگی باعث می‌شود موتورها بتوانند با تغییرات در زاویه و مسیر حرکت خورشید به بهترین شکل ممکن پنل‌های خورشیدی را در مسیر خورشید جهت‌دهی کنند.

بازدهی بالا:

   – موتورهای AC با بازدهی بالا عمل می‌کنند و به دلیل این کارایی بالا، گاهی اوقات نیازی به گیربکس ندارند که این امر باعث کاهش هزینه‌ها و افزایش بازدهی می‌شود.

مقاومت در برابر بارهای سنگین:

   – این نوع موتورها معمولاً مقاومت بالا در برابر بارهای سنگین دارند و می‌توانند به خوبی با دامنه های مختلف حرکت های مربوط به تراکر سازگار شوند.

استفاده از موتورهای الکتریکی متناوب در تراکرهای نیروگاه‌های خورشیدی نیز با محدودیت‌ها و معایب خاصی همراه است. در زیر، به برخی از این محدودیت‌ها و معایب موتورهای الکتریکی متناوب اشاره شده است:

پیچیدگی سیستم کنترل:

   – سیستم کنترل موتورهای AC پیچیده‌تر از موتورهای DC است. این پیچیدگی ممکن است نیاز به تجهیزات و دانش مهندسی بیشتری داشته باشد.

نیاز به تجهیزات جانبی بیشتر:

   – برای اجرای بهینه موتورهای AC، نیاز به تجهیزات جانبی مانند مبدل‌های فرکانس، سنسورها و کنترل‌گرهای پیشرفته است. این موارد هزینه و پیچیدگی را افزایش می‌دهند.

هزینه بالاتر در مقایسه با موتورهای جریان مستقیم:

   – معمولاً هزینه تجهیزات و نگهداری موتورهای AC بیشتر از موتورهای DC است. این موضوع ممکن است در مواقعی که برنامه بودجه مهم است، تأثیر منفی داشته باشد.

بازدهی کم در حالت‌های کم‌نوری:

   – موتورهای AC معمولاً در سرعتهای پایین در شرایط کمینه‌ی خورشید و حالت‌های کم‌نوری بازدهی کمی دارند.

نیاز به منابع برق مستقل:

   – اجرای موتورهای AC نیاز به منابع برق مستقل و پایداری ولتاژ دارند. در صورت نوسانات ولتاژ، عملکرد آنها تحت‌تأثیر قرار می‌گیرد.

نیاز به تجهیزات خنک‌کننده:

   – موتورهای AC به دلیل تولید حرارت بیشتر در مقایسه با موتورهای DC، ممکن است نیاز به سیستم‌های خنک‌کننده داشته باشند.

بازدهی محدودتر در محیط‌های متغیر:

   – مانند موتورهای DC، موتورهای AC نیز ممکن است در محیط‌هایی با تغییرات شدید در دما، رطوبت یا شرایط محیطی دیگر، بازدهی متغیر شود.

نیاز به تخصص فنی:

   – نصب، تنظیم و نگهداری موتورهای AC نیاز به تخصص فنی بیشتری دارد که این مسئله ممکن است برخی از پروژه‌ها را به چالش بکشد.

533035022 - اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

  1. موتورهای خطی (Linear Motors):

   – موتورهای خطی در تراکرهای نیروگاه‌های خورشیدی به عنوان یکی از انواع موتورهای حرکتی استفاده می‌شوند. این موتورها به جای چرخهای گردان، حرکت خطی دارند و به پیگیری دقیق‌تر خورشید و افزایش بهره‌وری کمک می‌کنند. در زیر، نحوه عملکرد موتورهای خطی در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

ساختار موتور خطی:

   – موتورهای خطی از ساختار خاصی برخوردار هستند که حرکت خطی را به جای حرکت گردان ایجاد می‌کنند. این موتورها شامل بخش‌های مغناطیسی و الکترومغناطیسی هستند که با هم تعامل دارند.

سیستم تغذیه الکتریکی:

   – موتورهای خطی نیاز به تغذیه الکتریکی برق مستقیم (DC) دارند. این تغذیه می‌تواند از شبکه برق یا از منابع تولید برق مستقل مانند پنل‌های خورشیدی تأمین شود.

تأثیر میدان مغناطیسی:

   – در موتورهای خطی، تأثیر میدان مغناطیسی بر روی سیم‌ها یا المان‌های مغناطیسی خطی باعث ایجاد نیروی خطی می‌شود. این نیرو باعث جلب یا دفع المان‌ها می‌شود و حرکت خطی ایجاد می‌کند.

سنسورها و بازخورد:

   – موتورهای خطی معمولاً دارای سیستم‌های سنسوری هستند که جهت و موقعیت را نظارت می‌کنند. این سنسورها به سیستم کنترل اطلاعات می‌فرستند تا موتور بتواند به دقت حرکت کند.

سیستم کنترل:

   – برای مدیریت حرکت موتورهای خطی و پیگیری دقیق خورشید، سیستم کنترل پیشرفته‌ای نیاز است. این سیستم‌ها با استفاده از الگوریتم‌های خاصی که بر اساس بازخورد سنسوری تنظیم می‌شوند، موتور را به سمت و مسیر مطلوب جهت‌دهی می‌کنند.

بدون گیربکس:

   – یکی از ویژگی‌های مهم موتورهای خطی این است که معمولاً نیازی به گیربکس برای انتقال حرکت ندارند. این ویژگی باعث می‌شود که سیستم ساده‌تر و با کمترین افت انرژی عمل کند.

بازدهی بالا:

   – موتورهای خطی به دلیل ساختار خاص و عدم نیاز به گیربکس، معمولاً بازدهی بالایی دارند که این امر موجب افزایش عملکرد و کاهش اتلاف انرژی می‌شود.

استفاده از موتورهای خطی در تراکرهای نیروگاه‌های خورشیدی به بهبود عملکرد و دقت در رهگیری موقعیت خورشید کمک می‌کند و به افزایش بهره‌وری نهایی نیروگاه می‌انجامد.

موتورهای خطی نیز با محدودیت‌ها و معایب خاصی در تراکرهای نیروگاه‌های خورشیدی همراه هستند. در زیر، به برخی از این محدودیت‌ها و معایب موتورهای خطی اشاره شده است:

هزینه بالا:

   – موتورهای خطی به دلیل فناوری پیشرفته و پیچیدگی ساختار، هزینه تولید و نصب بالاتری دارند که ممکن است به عنوان یکی از معایب اصلی محسوب شود.

نیاز به سیستم کنترل پیشرفته:

   – اجرای بهینه موتورهای خطی نیاز به سیستم‌های کنترل پیشرفته دارد که این امر ممکن است نیاز به تجهیزات پیچیده و دانش فنی برتر داشته باشد.

حساسیت به محیط:

   – موتورهای خطی به عوامل محیطی نظیر گرد و غبار، رطوبت، و شرایط جوی حساس هستند و نیازمند محافظت مناسب در مقابل این عوامل هستند.

نیاز به سیستم خنک‌کننده:

   – به دلیل تولید حرارت بالا در اثر حرکت و انتقال الکتریکی، موتورهای خطی ممکن است به سیستم‌های خنک‌کننده نیاز داشته باشند.

پیچیدگی نصب و نگهداری

   – نصب، تنظیم و نگهداری موتورهای خطی نسبت به سایر نوع‌های موتورها پیچیده‌تر است و نیاز به مهارت‌ها و دانش تخصصی بیشتری دارد.

بازدهی در دماهای بالا:

   – در دماهای بالا، ممکن است بازدهی موتورهای خطی کاهش یابد. برای مدیریت حرارت و بهبود بازدهی، سیستم‌های خنک‌کننده ویژه ممکن است نیاز باشند.

پیچیدگی نوع تکنولوژی:

   – استفاده از موتورهای خطی نیاز به تسلط بر تکنولوژی‌های خاص دارد و در صورت نیاز به تعویض یا ارتقاء، پیچیدگی بیشتری ایجاد می‌شود.

محدودیت در بارهای سنگین:

   – موتورهای خطی ممکن است در مقابل بارهای سنگین کمتر مقاوم باشند و نیاز به تجهیزات افزوده یا تغییرات در ساختار داشته باشند.

 

  1. موتورهای برقی فشار آب:

موتورهای برقی که با استفاده از فشار آب عمل می‌کنند، به عنوان یکی دیگر از انواع موتورهای حرکتی مورد استفاده در تراکرهای نیروگاه‌های خورشیدی شناخته می‌شوند. این موتورها از انرژی آب برای ایجاد حرکت در سیستم تراکر استفاده می‌کنند. در زیر، عملکرد موتورهای برقی با فشار آب در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

مبدأ انرژی:

   – موتورهای برقی با فشار آب از انرژی آب برای ایجاد حرکت در سیستم تراکر استفاده می‌کنند. این آب ممکن است از منابع مانند چاه‌ها، رودخانه‌ها، یا منابع آبی محلی تأمین شود.

تأثیر فشار آب:

   – فشار آب به عنوان منبع اصلی انرژی بر روی توربین یا مکانیسم دیگری اثر می‌گذارد که حرکت پنل‌های خورشیدی را فراهم می‌کند. فشار آب این توربین یا مکانیسم را به حرکت تبدیل می‌کند.

مکانیسم تبدیل حرکت:

   – فشار آب باعث چرخش یا جابه‌جایی مکانیسم تبدیل حرکت می‌شود. این مکانیسم معمولاً به صورت مستقیم یا غیرمستقیم به پنل‌های خورشیدی متصل است.

سیستم کنترل:

   – برای مدیریت حرکت پنل‌های خورشیدی و پیگیری خورشید، سیستم کنترل پیچیده‌ای در سیستم تراکر نصب شده است. این سیستم‌ها بر اساس اطلاعات سنسوری از جمله موقعیت خورشید و جهت حرکت سیستم تراکر عمل می‌کنند.

بدون گیربکس (گاهی اوقات):

   – برخی از موتورهای برقی با فشار آب به دلیل ساختار ساده‌تر خود و توانایی بالا در تحمل فشار آب، نیاز به گیربکس برای انتقال حرکت به پنل‌های خورشیدی ندارند.

استفاده از انرژی هیدروپنیک:

   – در برخی موارد، این نوع موتورها از انرژی هیدروپنیک (انرژی مستقیماً به‌دست آمده از فشار آب) به عنوان منبع اصلی انرژی استفاده می‌کنند.

پیشرفت‌های تکنولوژیک:

   – با پیشرفت تکنولوژی، موتورهای برقی با فشار آب بهبود یافته‌اند و توانسته‌اند با کمترین اتلاف انرژی حرکت مطلوب را ایجاد کنند.

استفاده از موتورهای برقی با فشار آب در تراکرهای نیروگاه‌های خورشیدی به عنوان یک روش پایدار و قابل تجدید استفاده از منابع آب و انرژی هیدروپنیک را تسهیل می‌کند.

موتورهای برقی که با استفاده از فشار آب عمل می‌کنند، نیز با محدودیت‌ها و معایب خاصی در استفاده از آنها در تراکرهای نیروگاه‌های خورشیدی همراه هستند. در زیر، به برخی از این محدودیت‌ها و معایب موتورهای برقی با فشار آب اشاره شده است:

وابستگی به منابع آب:

   – عملکرد موتورهای برقی با فشار آب به میزان منابع آب و دسترسی به آنها وابسته است. در مناطق با مشکلات آبی، استفاده از این نوع موتورها ممکن است با مشکلات مواجه شود.

نیاز به سیستم‌های پمپاژ:

   – استفاده از موتورهای برقی با فشار آب نیازمند سیستم‌های پمپاژ قوی و پیچیده است که ممکن است نیاز به هزینه و نگهداری بیشتر داشته باشد.

حساسیت به تغییرات فشار:

   – موتورهای برقی با فشار آب حساس به تغییرات فشار آب هستند. نوسانات فشار می‌توانند به کاهش بازدهی و عمر مفید آنها منجر شوند.

نیاز به تعهدات سیستم خنک‌کننده:

   – این نوع موتورها به دلیل تولید حرارت بالا، نیاز به سیستم‌های خنک‌کننده دارند. این ممکن است در شرایط آب و هوایی خاص و مخصوصاً در دماهای بالا یا مناطق گرم تر به چالش کشیده شود.

 

هزینه نگهداری:

   – هزینه نگهداری موتورهای برقی با فشار آب ممکن است بالاتر از برخی دیگر از گزینه‌های موتوری باشد، به ویژه اگر نیاز به تعمیرات و تغییرات مداوم باشد.

نیاز به تجهیزات الکترونیکی مقاوم در برابر آب:

   – با توجه به استفاده از آب در محیط، نیاز به تجهیزات الکترونیکی مقاوم در برابر آب (waterproof) و محافظت در مقابل خرابی ناشی از آب وجود دارد.

محدودیت در محیط‌های سرد:

   – در شرایط دمای پایین، ممکن است فشار آب منجر به تشکیل یخ شود و عملکرد موتورها را تحت تأثیر قرار دهد. این موضوع نیازمند تدابیر خاصی در مناطق سردسیر است.

نیاز به ایستگاه پمپاژ:

   – برای بهینه کردن عملکرد موتورهای برقی با فشار آب، نیاز به ایستگاه‌های پمپاژ با عملکرد بالا و کنترل دقیق دارند. این ایستگاه‌ها نیاز به محیط های سرپوشیده و نگهداری مناسب دارند.

توجه داشته باشید که نوع موتورهای مورد استفاده در تراکرها به معماری و تکنولوژی مربوط به هر تولیدکننده و پروژه خاص بستگی دارد. هر یک از این موتورها ویژگی‌ها و مزایای خود را دارند که بر اساس نیازهای خاص هر پروژه انتخاب می‌شوند.

Array Technologies single axis tracker underside pxuf0ksmvbdgq6xaibb5940vy3gs6o0pawpb5qxcaw - اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

تولیدکنندگان موتورهای الکتریکی برای تراکرهای نیروگاه‌های خورشیدی متعدد هستند. برخی از شرکت‌های معتبر که در این حوزه فعالیت دارند عبارتند از:

  1. ABB

   – ABB یک شرکت بین‌المللی سوئیسی است که در زمینه فناوری‌های برق و اتوماسیون فعالیت دارد. این شرکت موتورها و تجهیزات الکتریکی برای صنایع مختلف تولید می‌کند.

 

  1. NEXTracker

   – NEXTracker یک شرکت تخصصی در زمینه توسعه و تولید تراکرهای نیروگاه‌های خورشیدی است. این شرکت از موتورهای الکتریکی متنوعی در تراکرهای خود استفاده می‌کند.

 

  1. PVH

   – PVH یک تولیدکننده بین‌المللی تجهیزات نیروگاه‌های خورشیدی است و از موتورهای الکتریکی برای حرکت تراکرهای خود استفاده می‌کند.

 

  1. DEGERenergie

   – DEGERenergie یک شرکت آلمانی است که در زمینه توسعه و تولید تجهیزات نیروگاه‌های خورشیدی فعالیت دارد. این شرکت نیز سازنده موتورهای الکتریکی برای تراکرهای خورشیدی است.

 

  1. SunPower

   – SunPower یک شرکت آمریکایی است که در زمینه توسعه و تولید تجهیزات نیروگاه‌های خورشیدی فعالیت دارد. این شرکت از تکنولوژی‌های مدرن در موتورهای الکتریکی برای تراکرهای خود بهره می‌برد.

 

گیربکس (چرخ دنده) در تراکر نیروگاه خورشیدی

گیربکس یا چرخ دنده در تراکرهای نیروگاه‌های خورشیدی یک عنصر مهم برای تنظیم حرکت و جهت پنل‌های خورشیدی است. گیربکس با انتخاب نسبت‌های مناسب بین دنده‌ها، سرعت و جهت حرکت پنل‌ها را تنظیم می‌کند. در زیر به برخی از جنبه‌ها و انواع گیربکس‌ها در تراکرهای خورشیدی اشاره می‌شود:

وظیفه گیربکس در تراکر:

گیربکس در تراکرهای خورشیدی عملکرد اصلی تنظیم سرعت و جهت حرکت پنل‌های خورشیدی را دارد. این عنصر به دنباله دنده‌ها و سازه‌های مکانیکی دیگری که در سیستم نصب شده‌اند، متصل می‌شود و با تغییر نسبت بین دنده‌ها، حرکت پنل‌ها را مطابق با مسیر خورشید تنظیم می‌کند.

انواع تایپ گیربکس:

  1. گیربکس مارپیچ (Helical Gearbox):

   – دنده‌های این گیربکس به شکل مارپیچ (پیچدار) هستند. این ساختار باعث کاهش نویز و افزایش صحت در انتقال حرکت می‌شود. گیربکس مارپیچ در پروژه‌هایی که به دقت بالا در رهگیری خورشید نیاز دارند، مناسب است.

 

  1. گیربکس دنده‌ای مخروطی (Bevel Gearbox):

   – این گیربکس برای انتقال حرکت بین دو محور متقارن با یکدیگر (مانند محور افقی و عمودی) استفاده می‌شود. گیربکس دنده‌ای مخروطی مناسب برای سیستم‌هایی است که نیاز به تغییر جهت حرکت دارند.

 

  1. گیربکس موازی (Parallel Shaft Gearbox):

   – این گیربکس دارای دنده‌های موازی با یکدیگر است و معمولاً در مواقعی که نیاز به انتقال حرکت به خطوط موازی و دقت بالا داریم، مورد استفاده قرار می‌گیرد.

 

  1. گیربکس مخلوط (Planetary Gearbox):

   – در گیربکس مخلوط، دنده‌ها در ساختار مانند یک سیستم خورشیدی و سیاره‌ای طراحی شده‌اند. این ساختار به موتور این امکان را می‌دهد که با سرعتهای مختلف چرخانده شود و کارایی بالایی در انتقال حرکت ارائه دهد.

 

  1. گیربکس هیپوئید (Hypoid Gearbox):

   – این گیربکس دارای دنده‌های هلیکال مخروطی است که در زوایای شیب‌دار قرار دارند. این ساختار باعث کاهش نویز و افزایش کارایی در انتقال حرکت می‌شود.

 

هر کدام از این انواع گیربکس‌ها با توجه به نیازها و شرایط خاص پروژه‌های خورشیدی انتخاب می‌شوند.

 

سیستم‌های الکترونیکی تراکر نیروگاه خورشیدی:

   – سنسورها: تراکرها از سنسورهای نوری برای تشخیص جهت خورشید استفاده می‌کنند. این سنسورها نیازمند الگوریتم‌ها و سیستم‌های الکترونیکی پیچیده‌ای هستند.

   – کنترلرها: سیستم کنترل تراکر برای مدیریت حرکت‌ها و تنظیمات الکترونیکی نیازمند کنترل‌های پیچیده و سیستم‌های میکروکنترلری است.

   – ارتباط بین تراکرها: در نیروگاه‌های خورشیدی بزرگ، امکان تعامل بین تراکرها به منظور هماهنگی حرکت‌ها و جلوگیری از اشکالات نیازمند سیستم‌های ارتباطات پیشرفته است.

   – ارتباط با سیستم اصلی نیروگاه: تراکرها باید با سیستم کلی نیروگاه خورشیدی ارتباط برقرار کنند تا داده‌ها و اطلاعات مورد نیاز برای کنترل بهینه سیستم به‌دست آید.

 

نویسنده: مهدی پارساوند