روش جدید برای تخمین کاهش و قطع در نیروگاه‌های خورشیدی-بادی ترکیبی

به گزارش آرانیرو یک تیم تحقیقاتی اروپایی یک روش جدید برای طراحی بهینه نیروگاه‌های خورشیدی-بادی ترکیبی پیشنهاد کرده است. رویکرد آن‌ها مبتنی بر داده‌های با وضوح 1 دقیقه‌ای است که دانشمندان می‌گویند اطلاعات بسیار دقیق‌تری در مورد کاهش بالقوه و قطع ارائه می‌دهند در مقایسه با داده‌های با وضوح 1 ساعت.

یک تیم تحقیقاتی اروپایی تأثیر داده‌های با وضوح زمانی مختلف بر طراحی نیروگاه‌های خورشیدی-بادی ترکیبی (HyPPs) را بررسی کرده است و دریافت که وضوح پایین‌تر می‌تواند منجر به برآورد بیش از حد ارزش خالص فعلی (NPV) تاسیسات تا 3 درصد شود.

این گروه گفت: “هنگام انجام مطالعات امکان‌سنجی برای HyPPs، معمولاً از داده‌های با وضوح ساعتی یا پایین‌تر استفاده می‌شود، زیرا این وضوح است که معمولاً در پایگاه‌های داده هواشناسی در دسترس است. با این حال، هنگام بهینه‌سازی توپولوژی HyPPs با محدودیت‌های ظرفیت نقطه اتصال (POI)، امکان‌سنجی فنی-اقتصادی این نیروگاه‌ها ممکن است بیش از حد برآورد شود زیرا کاهش و قطع زمانی که از داده‌های ساعتی به جای داده‌های با وضوح بالاتر استفاده می‌شود، دست کم گرفته خواهد شد.”

 

این تحقیق بر اساس داده‌های به دست آمده از یک HyPP عملیاتی در شرق آلمان انجام شد. این نیروگاه دارای ظرفیت نصب شده PV 11.64 مگاوات و نسبت DC-AC 1.13 است. توربین‌های بادی دارای ظرفیت نصب شده 24 مگاوات هستند و از آنجایی که 1.6 کیلومتر از پنل‌های PV فاصله دارند، سایه‌ای بر آن‌ها نمی‌اندازند. در سال 2020، سالی که محققان تحقیق خود را انجام دادند، دارایی‌های بادی و PV به ترتیب 57.58 گیگاوات ساعت و 12.80 گیگاوات ساعت تولید کردند.

 

داده‌های هواشناسی و تولید از HyPP آلمانی با وضوح 5 ثانیه ثبت شد و برای مقایسه، به یک دقیقه و یک ساعت کاهش یافت. به عنوان بخشی از این تجزیه و تحلیل، نسبت‌های مختلف DC-AC برای قسمت PV فرض شد که در واقع ظرفیت واقعی نیروگاه را تغییر می‌دهد.

آن‌ها دریافتند: “نشان داده شده است که برای یک HyPP متشکل از 1 واحد (p.u.) از ظرفیت باد، PV و POI، به ترتیب، تلفات کاهش 1.45% برای داده‌های با وضوح 5 ثانیه و 1.09% برای داده‌های با وضوح 1 ساعت برآورد می‌شود که معادل کاهش درآمد 0.77% و 0.51% در بازار روزانه آلمان است، به ترتیب. این نتایج نشان دهنده اختلاف بین تلفات برآورد شده توسط داده‌های ساعتی و با وضوح بالا است.”

 

علاوه بر این، محققان دریافتند که استفاده از داده‌های با وضوح 1 دقیقه برای تقریب تلفات کاهش پیش‌بینی شده توسط مجموعه داده 5 ثانیه کافی به نظر می‌رسد. آن‌ها توضیح دادند: “به نظر می‌رسد دریافت داده‌ها با وضوح 1 دقیقه یک مصالحه خوب بین دقت و تلاش اندازه‌گیری است.”

 

با انجام یک برآورد فنی-اقتصادی برای یافتن اندازه بهینه HyPP، محققان دریافتند که استفاده از مجموعه داده 1 ساعت منجر به برآورد بیش از حد 1.86% از NPV کل در مقایسه با مجموعه داده 1 دقیقه می‌شود. آن‌ها همچنین گفتند که هنگام افزایش سهم ظرفیت‌های PV و باد نسبت به ظرفیت POI، این برآورد بیش از حد بزرگ‌تر می‌شود.

 

آن‌ها گفتند: “مدل فنی-اقتصادی نشان می‌دهد که توپولوژی بهینه HyPP از نظر هزینه برای این سایت شامل ظرفیت‌های باد و PV است که هر کدام کمی بزرگ‌تر از ظرفیت POI هستند، اما با آن هم سو هستند. استفاده از داده‌های 1 ساعت به جای 1 دقیقه تأثیر کمی بر شناسایی طراحی بهینه HyPP دارد. با این حال، برای توپولوژی بهینه HyPP که از مجموعه داده 1 ساعت به دست آمده است، NPV زمانی که با مجموعه داده 1 ساعت به جای 1 دقیقه محاسبه می‌شود، 2.99% بیش از حد برآورد می‌شود.”

 

یافته‌های آن‌ها در مقاله‌ای با عنوان “تأثیر داده‌های با وضوح بالا بر تخمین دقیق تلفات کاهش و طراحی بهینه نیروگاه‌های خورشیدی-بادی ترکیبی” منتشر شده در Applied Energy ارائه شد. این گروه شامل دانشگاهیان از موسسه فناوری انرژی نروژ (IFE)، دانشگاه اسلو (UiO) و موسسه Fraunhofer برای سیستم‌های انرژی خورشیدی (ISE) آلمان بود.

نویسنده: دپارتمان خبری آرا نیرو
منبع: www.pv-magazine.com

سرمایه گذاری Q-Sun Solar و Bakarat برای ساخت کارخانه پانل های خورشیدی 10 گیگاواتی در عمان

سازنده انرژی خورشیدی مستقر در چین و شرکت سرمایه گذاری انرژی های تجدیدپذیر عمان Bakarat Investment توافق کردند که به طور مشترک یک کارخانه ماژول خورشیدی 10 گیگاواتی را با سرمایه گذاری حدود 200 میلیون دلار در این کشور ایجاد کنند.

5 آگوست 2024 وینسنت شاو

تولیدکننده خورشیدی مستقر در چین، کیو سان سولار، قراردادی را با شرکت سرمایه گذاری انرژی های تجدیدپذیر عمان، Bakarat Investment امضا کرده است تا به طور مشترک یک کارخانه ماژول های خورشیدی 10 گیگاواتی در این کشور با سرمایه گذاری حدود 200 میلیون دلار ایجاد کند.

این تاسیسات که در منطقه آزاد تجاری صحار واقع شده است باید ظرفیت 8 گیگاوات برای ماژول ها و 2 گیگاوات برای سلول های خورشیدی  را داشته باشد. این پنل TOPCON و heterojunction (HJT) را تولید خواهد کرد.

Q-Sun Solar که در سال 2014 تأسیس شد و دفتر مرکزی آن در شهر چوژو، استان آنهویی قرار دارد، شعبه هایی در ایالات متحده، آلمان، سنگاپور و سایر کشورها دارد و محصولات آن در بیش از 50 کشور فروخته می شود.

سرمایه گذاری Bakarat، پیشرو در بخش انرژی های تجدیدپذیر عمان، دارای تخصص گسترده و قابلیت های مدیریت پروژه قوی است. سرمایه‌گذاری‌های آن از انرژی‌های تجدیدپذیر گرفته تا آزمایشگاه‌های پزشکی پیشرفته و برنامه‌های آموزشی جوانان را شامل می‌شود.

احمد بن سعود السلمی، مدیر اجرایی سرمایه گذاری Bakarat گفت: «این همکاری عمیق با کیو سان سولار نقطه عطف مهمی برای بخش انرژی های تجدیدپذیر عمان است. این پروژه تعهد ما به معرفی تکنولوژی روز، حمایت از “چشم انداز 2040” از طریق اقدامات ملموس و تقویت رشد اقتصادی از طریق ایجاد شغل و پیشرفت تکنولوژی را نشان می دهد.

Qin Wenming، رئیس Q-Sun Solar اظهار داشت: سرمایه گذاری ما در عمان بر عزم و تعهد ما برای پیشبرد صنعت فتوولتائیک جهانی از طریق نوآوری و مشارکت های استراتژیک تاکید می کند. این همکاری با سرمایه گذاری Bakarat نه تنها از اهداف انتقال انرژی های تجدیدپذیر عمان حمایت می کند، بلکه بخشی کلیدی از برنامه استراتژیک ما برای توسعه انرژی پایدار در خاورمیانه و فراتر از آن را نشان می دهد. ما امیدواریم که این مشارکت عمان را در صحنه انرژی های تجدیدپذیر جهانی قرار دهد و چشم انداز انرژی جدیدی را در خاورمیانه ایجاد کند و از ماموریت جهانی کربن صفر حمایت کند.

در اواخر ژوئن، شرکت فن‌آوری انرژی جدید Hainan Drinda، سازنده سلول‌های خورشیدی چینی فهرست شده در شنژن، قراردادی را با سازمان سرمایه‌گذاری عمان (OIA) برای ساخت یک مرکز تولید سلول 10 گیگاواتی در عمان امضا کرد. کل سرمایه گذاری برای این پروژه تقریباً 5.078 میلیارد یوان (699.4 میلیون دلار) است. شرکت فرعی Drinda که کاملاً متعلق به Drinda است، JTPV – یک تامین کننده عمده سلول مستقل فهرست شده در بورس اوراق بهادار شنژن – این کارخانه را خواهد ساخت. این اولین پروژه سرمایه گذاری خارج از کشور Drinda و JTPV است.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله فتوولتائیک PV

پیشرفت جدید برای «دیوار شناور توربین‌های بادی» کانسپتی قبل از راه‌اندازی برنامه‌ریزی‌شده در دریا

طراحی شناور و آینده‌نگرانه نیروگاه بادی در دریا، تاییدیه گرفت

یک طراحی شناور برای نیروگاه بادی در دریا که شامل یک سازه عظیم با تعداد زیادی توربین کوچک و توان تولید ۴۰ مگاوات برق است، تاییدیه موسسه طبقه‌بندی جهانی DNV را دریافت کرد.

انجمن انرژی بادی دریایی نروژ (Norwegian Offshore Wind) تاییدیه این طراحی با نام Windcatcher از شرکت نوپای نروژی Wind Catching Systems (WCS) را به عنوان “خبری عالی” برای این بخش اعلام کرد.

طراحی «ویندکچر» (Windcatcher) که بر اساس ردیف‌هایی از توربین‌های ۱ مگاواتی بنا شده، ادعا می‌کند که بیش از دو برابر کارایی مدل‌های سنتی سه پره‌ای را ارائه می‌دهد.

photo 2024 07 23 14 00 30 - پیشرفت جدید برای «دیوار شناور توربین‌های بادی» کانسپتی قبل از راه‌اندازی برنامه‌ریزی‌شده در دریا

CGI of Wind Catching Systems’ floating wind power concept, Windcatcher
Photo: WCS

استارت‌آپ فناوری انرژی دریایی نروژی، Wind Catching Systems (WCS)، موفق به دریافت ۹.۳ میلیون کرون نروژ (۹۰۰ هزار دلار) از صندوق دولتی انووا در این کشور برای ساخت نمونه اولیه طرح نوآورانه شناور چند توربینه خود شده است.
این کمک هزینه مقدماتی که توسط وزارت محیط زیست و آب و هوای نروژ تأمین می‌شود، برای اعتبارسنجی مفهوم جالب توجه این شرکت به کار خواهد رفت. این مفهوم حول محور ۱۱۷ توربین بادی سوار بر یک داربست عظیم فولادی به ارتفاع ۳۰۰ متر و عرض ۳۵۰ متر که روی یک سکوی شناور قرار گرفته، طراحی شده است. همچنین از این بودجه برای جزئیات دقیق‌تر محاسبات هزینه یک Windcatcher تمام‌عیار استفاده خواهد شد.

حمایت انووا تایید قوی بر فناوری و تیم ماست

مدیرعامل WCS، آقای اوله هگهایم گفت: «حمایت انووا تاییدی قوی بر فناوری و تیم ما است. ما اکنون تمام تمرکز خود را بر پیشرفت فناوری خود به سمت اولین نصب دریایی خود گذاشته‌ایم.»

ویژگی‌های Windcatcher:

طراحی شده برای بادهای شدید شمال اروپا: Windcatcher قول می‌دهد که هزینه تراز شده انرژی بادی شناور را به 40-60 یورو در هر مگاوات ساعت (48-72 دلار در هر مگاوات ساعت) کاهش دهد – محدوده ای که به طور کلی در این بخش پیش بینی می شود تا پایان دهه به آن برسد.

ظرفیت تولید برق برای ۸۰ هزار خانوار: هر Windcatcher قادر است انرژی کافی برای ۸۰ هزار خانوار تولید کند. همچنین یک ایستگاه فرعی یکپارچه در یک “کشتی مادر” وجود دارد که تمام واحدها را به هم متصل می‌کند و برق را به خشکی صادر می‌کند.

پتانسیل تولید هیدروژن: همچنین امکان استفاده از این مفهوم در مقیاس میدانی برای طراحی Power-to-X برای تولید هیدروژن وجود دارد.

photo 2024 07 23 14 53 56 - پیشرفت جدید برای «دیوار شناور توربین‌های بادی» کانسپتی قبل از راه‌اندازی برنامه‌ریزی‌شده در دریا

CGI of Wind Catching Systems’ floating wind power concept, Windcatcher
Photo: WCS

مقایسه با سایر طرح‌ها:

* چندین شرکت از جمله غول توربین ساز دانمارکی Vestas روی طرح‌های چند روتوره کار می‌کنند، اما در فضای شناور، این طرح‌ها عموماً به طرح‌های دو توربینه مانند TwinWindشرکت Hexicon و Nezzy شرکت Aerodyn محدود شده‌اند.

* بودجه اخیر انووا برای WCS پس از دریافت ۲۲ میلیون کرون نروژی در پاییز گذشته و اضافه شدن به ۱۰ میلیون دلاری که بخش سرمایه‌گذاری خطرپذیر شرکت خودروسازی جنرال موتورز آمریکا در آگوست برای تجاری‌سازی مفهوم Windcatcher اختصاص داد، به دست آمد. ساخت اولین نمونه اولیه این طرح بر عهده پیمانکار دریایی Aibel است.

نویسنده: دپارتمان خبری آرا نیرو

منبع: www.rechargenews.com

اولین نیروگاه خورشیدی دو برجی جهان رونمایی شد، سالانه ۱.۸ میلیارد کیلووات ساعت برق تولید خواهد کرد

این نیروگاه شامل دو برج به ارتفاع ۲۰۰ متر است که ۳۰ هزار آینه دارند و مساحتی ۸۰۰ هزار مترمربعی را برای جمع‌آوری نور خورشید پوشش می‌دهند.

 

 

چین به منظور افزایش بازده و کاهش انتشار دی اکسید کربن، اولین نیروگاه حرارتی خورشیدی دوبرجی جهان را در نزدیکی شهرستان گواژو در استان گانسو توسعه داده است.

 

این نیروگاه به جای زغال سنگ از گرمای خورشید برای تبدیل آب به بخار پرفشار استفاده می کند و این بخار باعث چرخش توربین ها و تولید برق می شود.

 

شرکت برق شرکت سد سه دره چین برای دستیابی به این هدف، ادعا می کند که دو برج جذب حرارت مجاور را با یک توربین بخار ژنراتور ترکیب کرده است. تقریباً 30 هزار آینه هلیوستات روی برج ها نصب شده است که مساحتی 800 هزار متر مربع را برای جمع آوری نور پوشش می دهد.

 

این آینه ها از مواد خاصی ساخته شده اند که بازده بازتابی تا 94 درصد دارند. 

 

به گفته شبکه دولتی تلویزیون جهانی چین (CGTN)، هر دو برج که هر کدام 200 متر ارتفاع دارند، دارای آینه هایی هستند که دو دایره بزرگ و همپوشانی را تشکیل می دهند. این دایره ها نور خورشید را بر روی هر برج متمرکز می کنند.

 

تولید برق با نمک مذاب

 

طراحی نیروگاه جدید از نمک مذاب برای تولید برق در شب و زمانی که خورشید در دسترس نیست استفاده می کند.

 

بر اساس گزارش CGTN، نمک مذاب ذخیره شده در برج ها به عنوان یک باتری حرارتی عمل می کند و گرمای اضافی را در طول روز ذخیره کرده و برای ادامه کار ژنراتورها در شبانه روز آزاد می کند.

 

چین از سال ۲۰۱۶ شروع به بررسی انرژی حرارتی خورشیدی کرده است و این پروژه جدید با طراحی دو برج، آن را یک گام به جلو می برد.

 

ون جیانگ‌هونگ، مدیر پروژه نیروگاه، به CGTN گفت: «آینه های موجود در ناحیه همپوشانی می توانند توسط هر دو برج مورد استفاده قرار گیرند. انتظار می رود این پیکربندی بازده را 24 درصد افزایش دهد.»

 

آینه ها حرکت خورشید را ردیابی می کنند، پرتوهای آن را در صبح روی برج شرقی متمرکز می کنند و به طور خودکار در بعد از ظهر به سمت غرب تنظیم می شوند.

 

چین ادعا می کند که این طراحی به دو برج محدود نمی شود و پتانسیل استفاده از برج های متعدد برای دستیابی به بازدهی بیشتر را دارد. انتظار می رود این نیروگاه تا پایان سال 2024 عملیاتی شود.

 

تولید سالانه 1.8 میلیارد کیلووات ساعت برق

 

این نیروگاه بخشی از یک مجموعه انرژی پاک است که از نیروگاه های خورشیدی، حرارتی و بادی تشکیل شده است که با همکاری هم سالانه بیش از 1.8 میلیارد کیلووات ساعت برق تولید کرده و از انتشار 1.53 میلیون تن کربن جلوگیری می کند، همانطور که CGTN گزارش کرده است.

 

چین در ماه ژوئن اعلام کرد که بزرگترین نیروگاه خورشیدی جهان را در شمال غربی استان سین‌کیانگ به شبکه برق متصل کرده است.

 

گزارش شده است که این نیروگاه مساحتی معادل 33 هزار هکتار (200 هزار مو چینی) را پوشش می دهد و خروجی سالانه آن 6.09 میلیارد کیلووات ساعت است.

 

اطلاعات منتشر شده توسط آژانس ملی چین در ژانویه نشان داد که ظرفیت تولید برق خورشیدی این کشور در سال 2023 باورنکردنی 55.2 درصد افزایش یافته است.

 

این اعداد نشان دهنده بیش از 216 گیگاوات (GW) برق خورشیدی است که چین در طول سال ساخته است. این بیشتر از کل ناوگان خورشیدی ایالات متحده است.

 

چین همچنین برنامه هایی برای ترکیب انرژی خورشیدی با تولید برق آبی و بادی دارد.

 

تمرکز چین بر انرژی خورشیدی بخشی از هدف این کشور برای رسیدن به اوج انتشار کربن تا سال 2030 و رسیدن به کربن خنثی تا سال 2060 است. دولت برای حمایت از این اهداف متعهد شده است که تا سال 2030، 1200 گیگاوات ظرفیت تجدیدپذیر بسازد.

 

با این سرعت، چین در حال حاضر در مسیر دستیابی به این هدف، یعنی پنج سال زودتر از موعد مقرر، قرار دارد. افزایش قابل توجه انرژی خورشیدی همچنین با افزایش 20.7 درصدی ظرفیت تولید برق بادی همراه است که نشان دهنده تعهد این کشور به انرژی پاک است.

 

نویسنده: دپارتمان خبری آرا نیرو 

 

منبع: https://interestingengineering.com

الاستوکلریک جایگزین پمپ‌های حرارتی و سیستم‌های تهویه مطبوع می‌شود

بر اساس یافته‌های اخیر، الاستوکلریک‌ها می‌توانند جایگزین سیستم‌های تهویه مطبوع و گرمایش فعلی شوند و در صورت استفاده همزمان با فناوری‌هایی مانند سلول‌های خورشیدی، صرفه‌جویی قابل توجهی در مصرف انرژی را به همراه داشته باشند.
این پیشرفت هیجان‌انگیز در تاریخ ۱۶ جولای ۲۰۲۴ توسط Jochen Siemer گزارش شد.

فناوری الاستوکلریک جایگزین سیستم‌های گرمایش و سرمایش فعلی می‌شود

دانشگاهیان دانشگاه سارلند آلمان موفق به دریافت بودجه از برنامه پیشرو شورای نوآوری اروپا (EIC) برای توسعه فناوری گرمایش و سرمایش الاستوکلریک به عنوان جایگزینی برای پمپ‌های حرارتی و سیستم‌های تهویه مطبوع شده‌اند.

این پروژه تحقیقاتی به ارزش ۴ میلیون یورو (۴.۳۶ میلیون دلار) با عنوان “چالش پیشرو EIC” قصد دارد ظرف مدت سه سال نمونه اولیه‌ای برای سیستم تهویه مطبوع غیرمتمرکز اتاق ارائه دهد. طبق گفته تیم تحقیقاتی، این فناوری توسط مجمع جهانی اقتصاد (WEF) به عنوان یکی از «ده فناوری برتر ۲۰۲۴» معرفی شده است. همچنین وزارت انرژی ایالات متحده و کمیسیون اروپا آن را به عنوان امیدوارکننده‌ترین جایگزین برای سیستم‌های گرمایش و سرمایش متعارف معرفی کرده‌اند.

فرآیند گرمایش و سرمایش حالت جامد بر اساس انتقال گرما به داخل یا خارج از اتاق با بارگذاری و تخلیه ماده‌ای به نام «شکل حافظه» (مثلاً به شکل سیم) انجام می‌شود. این ماده هنگام بارگذاری گرما را جذب کرده و با برداشتن بار، دوباره آن را آزاد می‌کند.

محققان به رهبری پیشگام الاستوکلریک، پاول موتسکی، برای این منظور از آلیاژ فوق الاستیک نیکل-تیتانیوم استفاده می‌کنند. مواد ساخته شده از این آلیاژ به دلیل داشتن دو شبکه بلوری و در نتیجه دو فاز، پس از تغییر شکل به شکل اصلی خود باز می‌گردند. در حالی که آب به عنوان مثال، فازهای جامد، مایع و گازی را به خود می‌گیرد، در نیکل-تیتانیوم هر دو فاز جامد هستند اما در هم ادغام می‌شوند.

موتسکی که استاد مشترک دانشگاه سارلند و مرکز فناوری مکاترونیک و اتوماسیون (ZeMA) است، کنسرسیومی را به عنوان بخشی از پروژه SMACool رهبری می‌کند که اکنون توسط EIC تأمین مالی می‌شود. این کنسرسیوم همچنین شامل دانشگاه‌های لیوبلیانا و ناپل و همچنین شرکت ایرلندی Exergyn می‌شود.

هدف، توسعه مشترک نمونه اولیه یک واحد تهویه مطبوع برای ساختمان‌های مسکونی است. هوای تازه از طریق شکاف‌های تهویه باریک در دیوارهای خارجی وارد شده و در صورت نیاز گرم یا سرد می‌شود تا به دمای مطلوب برای اتاق پشت برسد.

موتسکی گفت: «با فناوری خود، ما نمی‌خواهیم خانه‌ها را با یک سیستم مرکزی گرم و سرد کنیم، بلکه می‌خواهیم هر اتاق را به صورت غیرمتمرکز و جداگانه گرم و سرد کنیم.»

این واحد کوچک قابل توسعه همچنین می‌تواند در آینده به طور مستقیم در ساختمان‌های جدید با سیستم‌های تهویه نصب شود.

با یک سیستم الکتروکلریک، می‌توان هنگام خنک‌سازی و گرمایش به اختلاف دمای حدود ۲۰ درجه سانتیگراد دست یافت. این فناوری می‌تواند به جایگزینی برای روش‌های گرمایش و سرمایش متعارف تبدیل شود، زیرا به مبرد نیاز ندارد و انرژی بسیار کمتری مصرف می‌کند.

موتسکی گفت: «بازده مواد الاستوکلریک بیش از ده برابر سیستم‌های تهویه مطبوع یا گرمایش امروزی است – آنها به برق بسیار کمتری نیاز خواهند داشت.»

تیم‌هایی در زاربروکن آلمان حدود ۱۵ سال را صرف تحقیق و توسعه فناوری با استفاده از ورق‌های نازک نیکل-تیتانیوم برای دستیابی به اثرات خنک‌کننده یا گرمایشی بهینه در سیستم‌های circulating (گردشی) کرده‌اند. این شامل ایجاد یک سیستم نمایشگر گرمایش و سرمایش و یک یخچال با عملکرد مداوم است.

نویسنده: دپارتمان خبری آرا نیرو
منبع: www.pv-magazine.com

کاهش قیمت پنل های خورشیدی در پاکستان به دلیل معافیت مالیاتی جدید

قیمت پنل های خورشیدی در پاکستان طی شش ماه گذشته به میزان قابل توجهی کاهش یافته است.  انتظار می رود تخفیف مالیاتی اخیر که در بودجه 2024-2025 به این بخش داده شده است، قیمت ها را بیشتر کاهش دهد.

روز جمعه، مجلس لایحه مالی جدیدی را تصویب کرد که بر اساس آن معافیت مالیاتی برای واردات پنل‌های خورشیدی و تجهیزات مربوطه اعلام شد.
مشوق های مالیاتی شامل واردات پنل های خورشیدی کامل و همچنین ماشین آلات، مواد اولیه و قطعات مرتبط با انرژی خورشیدی می شود.  هدف این رویکرد جامع تقویت صنعت خورشیدی محلی است.
پیش از این، اینورترها مشمول مالیات بر فروش 18 درصدی بودند.

کارشناسان معتقدند که معافیت های مالیاتی بر روی پنل های خورشیدی و تجهیزات مربوطه قیمت ها را کاهش می دهد، در حالی که تولید محلی پنل های خورشیدی پتانسیل ایجاد انقلابی در راه حل های انرژی سبز را دارد.
با این حال، جذب سرمایه‌گذاری خارجی برای صنعت تولید پنل خورشیدی نیازمند زمان و تلاش‌های بیشتر است.

آرا نیرو امیدوار است دولتمردان در ایران نیز ضرورت حمایت از نیروگاه های خورشیدی را درک کنند که اکنون در کل دنیا بر این موضوع اتفاق نظر وجود دارد تنها راه حل پاک و ارزان برای ناترازی برق، سرمایه گذاری روی صنعت نیروگاه های تجدیدپذیر پذیر است.

نویسنده: دپارتمان خبری آرا نیرو

منبع: https://www.bolnews.com

شرکت شیمی تک، پاک کننده اکسیدهای فلزی را برای پنل های خورشیدی ارائه می دهد.

این شرکت مستقر در پرتغال، محصول پاک کننده اکسیدهای فلزی را برای تاسیسات فتوولتائیک واقع در نزدیکی ریخته گری ها، کارخانه های فولاد و معادن سنگ معدن فلز توسعه داده است.
۴ جولای ۲۰۲۴ – والری تامپسون

شرکت شیمی تک سولار، تولید کننده پرتغالی محصولات نگهداری صنعتی برای صنعت فتوولتائیک، خط تولید جدیدی را برای حذف اکسیدهای فلزی مانند آلومینیوم اکسید و آهن اکسید (زنگ زدگی) از پنل های خورشیدی نصب شده در نزدیکی ریخته گری ها، کارخانه های فولاد و معادن سنگ آهن راه اندازی کرده است.

این محصول به صورت تغلیظ شده در بشکه های ۵ و ۲۰ کیلوگرمی عرضه می شود و می توان آن را از طریق تیرهای آبپاش، برس چرخشی برقی، ربات، روش های تراکتور برس دار و به صورت دستی با برس اعمال کرد.

سازنده در یک بیانیه مطبوعاتی اعلام کرد: “آزمایش های گسترده آزمایشگاهی و میدانی، اثربخشی این پاک کننده را تایید کرده و نشان می دهد که به روکش های ضد بازتاب، سیلیکون یا فریم آلومینیومی پنل های خورشیدی آسیب نمی رساند.” همچنین اضافه کرد که پاک کننده اکسیدهای فلزی با نام اختصاری MRA غیر ساینده بوده و به پنل ها آسیبی وارد نمی کند.

این پاک کننده توسط نهاد اعتبارسنجی آلمانی TÜV Süd تایید شده است. علاوه بر این، مرکز بازیافت زباله پرتغال (CVR) به درخواست شیمی تک، تجزیه پذیری زیستی محصول را طبق دستورالعمل سازمان همکاری اقتصادی و توسعه برای آزمایش مواد شیمیایی – تست سنجش تنفس سنجشی Manometric 301 F ارزیابی کرد. شیمی تک گفت: “این مطالعه با استفاده از لجن فعال شده از یک تصفیه خانه فاضلاب محلی، تجزیه پذیری آسان MRA را تعیین کرد و آزمایش ها انطباق آن با استانداردهای صنعتی را تایید کرد.”

این شرکت به عنوان یک اقدام تمیزکاری پیشگیرانه، استفاده از MRA را همراه با پوشش های ضد الکتریسیته ساکن خود، Solar Wash Protect و Antistatic Solar Armor، برای کند کردن تجمع و چسبندگی آلاینده ها توصیه می کند.

منبع: مجله PV

نویسنده: دپارتمان خبری آرا نیرو

فناوری فتوولتائیک برای سیستم‌های تبرید تراکم بخار
دانشمندان چینی موفق به توسعه یک سیستم تبرید مبتنی بر سلول‌های خورشیدی (فتوولتائیک) با محرک مستقیم برای خنک‌کاری دستگاه‌های الکترونیکی شده‌اند [تصویر پنل‌های خورشیدی روی پشت‌بام]. این سیستم پیشنهادی تاکنون سطوح پایین اگزرژی را ارائه کرده است، در عین حال هزینه‌های آن به مراتب پایین‌تر از فناوری‌های مرسوم تبرید تراکم بخار می‌باشد.

سیستم خنک‌کننده مستقیم با سلول‌های خورشیدی برای خنک‌کاری مؤثر دستگاه‌های الکترونیکی با توان حرارتی بالا

پژوهشگران دانشگاه فناوری هِبِی در چین، یک سیستم تبرید مستقیم با سلول‌های خورشیدی (فتوولتائیک) را برای خنک‌کاری دستگاه‌های الکترونیکی با توان حرارتی بالا و مصرف انرژی پایین طراحی کرده‌اند.
سرپرست این تحقیق، آقای شیائوهوئی یو، به مجله‌ی pv می‌گوید: «این سیستم پیشنهادی، تولید برق از سلول‌های خورشیدی را با خنک‌کاری مستقیم و تبرید تراکم بخار (VCR) ادغام می‌کند. ترکیب میکرو-تبخیرکننده و روش خنک‌کاری مستقیم می‌تواند به بازده تبادل حرارتی خوبی دست یابد.»
این سیستم از دو زیرمجموعه تشکیل شده است: یک واحد فتوولتائیک شامل باتری و کنترل‌کننده‌ی ردیابی بیشترین توان (MPPT)؛ و یک واحد VCR شامل کمپرسور دورانی DC، کندانسور خنک‌شونده با هوای باله‌ها، شیر انبساط الکترونیکی، تبخیرکننده‌ی خنک‌کننده‌ی مستقیم تعبیه‌شده و یک خشک‌کننده.

در پیکربندی سیستم پیشنهادی، کمپرسور دورانی DC، مبرد را به گاز با دما و فشار بالا متراکم می‌کند که سپس برای دفع گرما به کندانسور خنک‌شونده با هوای باله‌ها منتقل می‌شود. محققان توضیح دادند: «مبرد از طریق شیر انبساط الکترونیکی به حالت جریان دو فازی گاز-مایع با دمای پایین و فشار پایین در می‌آید و در نهایت برای جذب گرما از دستگاه‌های الکترونیکی به تبخیرکننده‌ی خنک‌کننده‌ی مستقیم تعبیه‌شده می‌رود.»

واحد فتوولتائیک، کمپرسور DC را تامین انرژی می‌کند و از دستگاه MPPT برای کنترل شارژ و دشارژ باتری‌ها استفاده می‌شود.
این دانشمندان تأکید کردند که توان گرمایشی و سرعت کمپرسور سیستم تأثیر زیادی بر عملکرد اگزرژی زیرمجموعه VCR دارد که به گفته‌ی آنها ارتباط نزدیکی با شدت تابش خورشیدی دارد. اگزرژی حداکثر کاری است که می‌تواند توسط جریان انرژی در هنگام رسیدن به تعادل با محیط مرجع تولید شود.

این گروه عملکرد اگزرژی و اقتصادی سیستم را تحت شرایط عملیاتی مختلف آزمایش کردند و دریافتند که ضریب عملکرد آن زمانی که توان گرمایشی و سرعت کمپرسور به ترتیب 400 وات و 4350 دور در دقیقه باشد، به 8.5 می‌رسد.با توجه به شدت متوسط تابش خورشیدی 776.5 وات بر متر مربع، سلول‌های خورشیدی سیستم ارائه شده با 7 ساعت کارکرد، 1.81 کیلووات ساعت برق تولید می‌کنند، در حالی که 24.9 درصد از برق در زیرسامانه VCR مصرف می‌شود. [تصویر یک سلول خورشیدی]
محققان در این باره افزودند: «باقی‌مانده‌ی برق ذخیره شده و می‌تواند این زیرسامانه را برای 5.3 ساعت بدون تابش خورشیدی به طور مداوم تامین کند.»

دانشگاهیان عملکرد اگزرژی واحد فتوولتائیک و کمپرسور را ناکافی توصیف کردند. آنها اضافه کردند: «سلول‌های خورشیدی با 1059.4 وات بیشترین تخریب اگزرژی را دارند که 91 درصد از کل تخریب اگزرژی سیستم را تشکیل می‌دهد. کمپرسور با داشتن دومین تخریب بزرگ اگزرژی به 86.3 وات می‌رسد و 7.4 درصد از کل تخریب اگزرژی را تشکیل می‌دهد.» همچنین اشاره کردند که افزایش سرعت کمپرسور از 4350 به 6500 دور در دقیقه منجر به دو برابر شدن تخریب اگزرژی خود کمپرسور می‌شود.
با این حال، تحلیل اقتصادی آنها نشان داد که این سیستم نسبت به سیستم‌های VCR متداول 79.5 درصد ارزان‌تر است و زمان بازگشت سرمایه آن حدود 2.2 سال می‌باشد.

یو گفت: «در حال حاضر، تبخیرکننده میکروکانال خنک‌کننده مستقیم تعبیه‌شده در حال آزمایش برای عملکرد بلندمدت در نیمکت تست ما است. کار ما می‌تواند راهنمای توسعه و کاربرد آینده این سیستم باشد. علاوه بر این، می‌تواند توسعه و کاربرد سیستم تبرید تراکم بخار با محرک مستقیم سلول‌های خورشیدی برای گرمایش، سرمایش و آب گرم خانگی را ترویج کند.»

این سیستم در مقاله‌ای با عنوان «ارزیابی انرژی، اگزرژی، اقتصادی و زیست‌محیطی سیستم تبرید تراکم بخار با محرک مستقیم سلول‌های خورشیدی برای خنک‌کاری دستگاه‌های الکترونیکی» که اخیراً در مجله‌ی Renewable Energy منتشر شده است، شرح داده شده است.

 

پمپ‌های حرارتی خورشیدی در مقابل پمپ‌های حرارتی هوا

گروهی از پژوهشگران ایرانی ضریب عملکرد و مصرف انرژی دو نوع پمپ حرارتی را با هم مقایسه کرده‌اند: پمپ حرارتی خورشیدی و پمپ حرارتی هوا. آن‌ها دریافتند که عملکرد سالانه این پمپ‌ها تحت تاثیر سه عامل کلیدی قرار دارد: میزان تابش خورشید، دمای محیط و سرعت باد.

یک گروه بین‌المللی از دانشمندان، به مدت یک سال، دو نوع پمپ حرارتی برای گرم کردن آب را با هم مقایسه کردند: یکی پمپ حرارتی خورشیدی با انبساط مستقیم (DX-SAHPWH) و دیگری پمپ حرارتی هوا (AHPWH). عملکرد هر دو سیستم با استفاده از مدل‌سازی عددی بررسی شد و فرض بر این بود که هر دو در تهران، پایتخت ایران، با پارامترهای یکسان به کار گرفته شده‌اند.

گروه تحقیقاتی می‌گوید: «برای اینکه بتوان این آبگرمکن‌ها را با هم مقایسه کرد، فرض می‌کنیم تمام پارامترهای طراحی برای هر دو پمپ حرارتی یکسان بوده و از قطعات مشابهی استفاده شده است.» «در سیستم آبگرمکن پمپ حرارتی خورشیدی، تبخیرکننده همان کلکتور حرارتی تخت خورشیدی است، در حالی که در آبگرمکن پمپ حرارتی هوا، تبخیرکننده یک مبدل حرارتی مایع به هوا با دمای پایین با همان مساحت و پیکربندی کلکتور بدون پوشش است، با این حال، صفحه بالایی آن برداشته شده است.»

فرض بر این بود که کلکتور حرارتی و مبدل حرارتی مایع به هوا دارای مساحت سطح 4.21 متر مربع باشند. در مورد DX-SAHPWH، کندانسور شامل یک لوله مسی مارپیچ ۶۰ متری است که در مخزن آب گرم خانگی غوطه ور شده و به عنوان مبدل حرارتی ترموسیفون عمل می کند. سیال عامل انتخاب شده R-134a است.

دانشگاهیان اضافه کردند: «در فرمول‌بندی آبگرمکن پمپ حرارتی هوا، روابط ترمودینامیکی اجزا و همچنین پارامترها مشابه پمپ حرارتی خورشیدی است. فقط معادله تبخیرکننده نیاز به اصلاح دارد، با فرض اینکه سرعت فن برابر با ۱۰ متر بر ثانیه باشد.»

image 1536x1147 1 - پمپ‌های حرارتی خورشیدی در مقابل پمپ‌های حرارتی هوا

دانشگاه کالج دوبلین، مجله بین‌المللی ترموسیالات، مجوز کریتیو کامنز CC BY 4.0
در این تصویر، دو نوع پمپ حرارتی برای گرم کردن آب به نمایش گذاشته شده است: پمپ حرارتی خورشیدی با انبساط مستقیم (DX-SAHPWH) و پمپ حرارتی هوا (AHPWH). source:https://www.pvmagazine.com

محققان با مدل‌سازی این دو سیستم، ضریب عملکرد ماهانه (COP) و مصرف برق آن‌ها را در طول یک دوره ۱۲ ماهه محاسبه کردند. آنها برای هر ماه، داده های میانگین روزانه در مورد فاکتور ابرناکی، تابش افقی، دمای محیط و سرعت باد را به عنوان ورودی استفاده کردند. در تمام موارد، دمای هدف آب گرم ۵۰ درجه سانتیگراد، ۶۰ درجه سانتیگراد و ۷۰ درجه سانتیگراد در نظر گرفته شد.

نتایج نشان داد: «مقایسه ضریب عملکرد (COP) بین این سیستم‌ها برای هر سه دمای آب گرم در تمام ماه‌ها نشان می‌دهد که اختلاف کمتر از ۰.۱ در COP وجود دارد. به عبارت دیگر، عملکرد هر دو سیستم در فصول مختلف و نیاز به دماهای مختلف آب تقریباً یکسان است. برای هر دو سیستم، ضریب عملکرد در سردترین ماه ژانویه کمترین مقدار ۲.۰ و در گرمترین ماه مرداد بالاترین مقدار ۲.۸ را دارد. سیستم DX-SAHPWH در تمام ماه ها از نظر ضریب عملکرد عملکرد کمی بهتر از سیستم AHPWH دارد.»

تحلیل مصرف برق نشان داد که هر دو سیستم در فصول مختلف و نیاز به دماهای مختلف آب تقریباً به یک اندازه برق مصرف می کنند. محققان گفتند: «برای هر دو سیستم، مصرف انرژی در سردترین ماه ژانویه کمترین مقدار ۳۸۵۰ مگاژول و در گرمترین ماه مرداد بالاترین مقدار ۴۹۰۰ مگاژول را دارد. سیستم DX-SAHPWH در برخی ماه ها نسبت به سیستم AHPWH کمی کمتر برق مصرف می کند، در حالی که در برخی ماه های دیگر برعکس است.»

گروه علمی با انجام تحلیل حساسیت دریافتند که هنگامی که تابش از ۵۰۰ وات بر متر مربع به ۱۰۰۰ وات بر متر مربع دو برابر می شود، افزایش حرارتی خورشیدی در DX-SAHPWH برای آب گرم با دمای ۵۰ درجه سانتیگراد ۴۹ درصد افزایش می یابد. همچنین برای همین افزایش تابش و دمای آب یکسان، دمای تبخیرکننده از ۲۲.۳۲ درجه سانتیگراد به ۳۴.۶۵ درجه سانتیگراد معادل ۵۵ درصد افزایش می یابد.

آنها افزودند: «با تغییر شرایط آب و هوایی از نظر تابش و دمای محیط در طول سال، عملکرد DX-SAHPWH برای اکثر پارامترهای عملیاتی به طور چشمگیری تغییر می کند. به عنوان مثال، اختلاف دمای تبخیرکننده بین ژانویه و مرداد برای دمای آب گرم ۵۰ درجه سانتیگراد، ۲۱.۸ درجه سانتیگراد (از ۴.۹ درجه سانتیگراد به ۲۶.۷ درجه سانتیگراد) است. به طور مشابه، کار کمپرسور بین ۲۸۵۰ تا ۵۸۶۸ مگاژول در سال متغیر است،

به طور مشابه، کار کمپرسور در طول سال بین ۲۸۵۰ تا ۵۸۶۸ مگاجول تغییر می‌کند، یعنی تغییری معادل ۱۰۶ درصد. با این حال، ضریب عملکرد (COP) برای مخزن آب با دمای ۵۰ درجه سانتیگراد، بین ۲.۰۴ تا ۲.۷۹ نوسان داشته و تغییر کمتری را در ماه‌های مختلف نشان می‌دهد.

پژوهشگران در نتیجه‌گیری خود بیان کردند که برای دماهای پایین‌تر و سطوح بالاتر تابش خورشیدی، استفاده از پمپ حرارتی خورشیدی با انبساط مستقیم (DX-SAHPWH) توصیه می‌شود. اما آن‌ها همچنین اشاره کردند که در دماهای بالاتر و تابش کمتر، پمپ حرارتی هوا (AHPWH) عملکرد بهتری دارد.

یافته‌های این پژوهش در مقاله‌ای با عنوان «عملکرد سالانه مقایسه‌ای پمپ‌های حرارتی خورشیدی با انبساط مستقیم و پمپ‌های حرارتی هوا برای گرمایش آب مسکونی» منتشر شده در مجله بین‌المللی ترموسیالات ارائه شد. این تحقیق توسط دانشمندانی از دانشگاه کالج دوبلین ایرلند، مرکز انرژی MaREI، دانشگاه نفت چین و دانشگاه رایس ایالات متحده انجام شده است.

الگوریتم‌هایی برای تشخیص پنل‌های خورشیدی کم‌بازده روی پشت‌بام

پژوهشگران استرالیایی الگوریتم‌های چند مرحله‌ای را برای تشخیص از راه دور و دقیق پنل‌های خورشیدی کم‌بازده در سیستم‌های فتوولتائیک (PV) مسکونی و تجاری توسعه داده‌اند.

پژوهشگران دانشگاه نیو ساوت ولز (UNSW) و دانشگاه تکنولوژی سیدنی الگوریتم‌هایی را توسعه داده‌اند که ادعا می‌کنند می‌توانند به‌طور خودکار مجموعه‌ای از مشکلات رایج کم‌بازده بودن پنل‌های خورشیدی را شناسایی کنند، از جمله خرابی سیم‌کشی، فرسودگی و اثر سایه.

فیاکر روژیو، استاد ارشد دانشکده مهندسی فتوولتائیک و انرژی‌های تجدیدپذیر UNSW، گفت که این فناوری همچنین می‌تواند محدودیت‌های اتصال، قطع و نشتی را شناسایی کند و پتانسیل انقلابی کردن تشخیص عیب سیستم‌های فتوولتائیک (PV) را دارد.

او گفت: «این یک تغییر اساسی برای بهره‌برداران سیستم‌های مسکونی و تجاری است. این الگوریتم با تجزیه و تحلیل داده‌های اینورتر و حداکثر توان هر پنج دقیقه، می‌تواند مشکلات عملکرد پایین را به طور دقیق تشخیص دهد، امکان مداخله زودهنگام و به حداکثر رساندن تولید انرژی را فراهم کند.»

روژیو گفت که محققان، با همکاری به عنوان بخشی از پروژه شبکه حسگر هوشمند نیو ساوت ولز، از حسگرها و انواع مختلف رویکردهای تحلیلی برای توسعه یک رویکرد دو سطحی برای تشخیص عملکرد پایین پنل‌های خورشیدی استفاده کردند که سالانه حدود ۷ میلیارد دلار استرالیا (۴.۶ میلیارد دلار آمریکا) هزینه در بر دارد. ضررهای قابل پیشگیری در سطح جهانی.

او گفت: «ما با استفاده از داده‌های برق AC، یک تشخیص سطح بالا ایجاد کرده‌ایم که می‌تواند دسته‌های وسیعی از مسائل مانند تولید صفر و قطع شدن را تشخیص دهد. مزیت این رویکرد این است که این تشخیص کاملاً از نظر فناوری مستقل است و می‌تواند با هر برند اینورتر و ردیاب حداکثر توان کار کند.»

روژیو با اشاره به اینکه بسیاری از برندهای اینورتر اطلاعات فنی AC و DC را ارائه می‌دهند، گفت که این تیم همچنین یک الگوریتم دقیق‌تر با استفاده از هر دو داده AC و DC توسعه داده‌اند که می‌تواند با تشخیص و طبقه‌بندی عیوب خاص‌تر مانند سایه‌زنی و مشکلات آرایه ها، بینش‌های عملی‌تری را برای مالکان نیروگاه خورشیدی فراهم کند.

وی گفت: «این نوع تشخیص نیازمند هر دو روش مبتنی بر قوانین آماری است که توسط رویکردهای یادگیری ماشین برای مواردی که توسط روش‌های مبتنی بر قوانین متعارف قابل تشخیص نیست، پشتیبانی می‌شود.»

این فناوری اکنون به طور کامل در یک پلتفرم تولید تجاری ادغام شده است که توسط شریک صنعتی پروژه، Global Sustainable Energy Solutions برای نظارت بر بیش از ۱۰۰ مگاوات انرژی خورشیدی استفاده می‌شود.

ابراهیم ابراهیم، سرپرست تیم UTS گفت که این فناوری که قابلیت پیاده‌سازی روی بیش از ۱۲۰۰ سیستم فتوولتائیک را دارد، امکان اجرای اقدامات پیشگیرانه‌ای را فراهم می‌کند که تولید انرژی را به حداکثر می‌رساند و قابلیت اطمینان سیستم را افزایش می‌دهد.

وی گفت: «با کاهش قابل توجه تلفات قابل پیشگیری که ارزش آن در سطح جهان میلیاردها دلار است، چنین فناوری‌هایی صرفه‌جویی قابل توجهی در هزینه برای مالکان سیستم‌های فتوولتائیک را تضمین می‌کنند.»

روژیو گفت که این نرم‌افزار می‌تواند جایگزین نیاز به پیمانکاران گران‌قیمت برای رفتن به محل برای کشف علت عملکرد پایین سیستم خورشیدی شود.

او گفت: «ما شورایی داشتیم که به مدت پنج ماه متوالی یک سیستم کم‌بازده داشت. آن پیمانکار قراردادی برای عملیات و نگهداری داشت، با این حال این مشکل عمده ماه‌ها کشف نشده بود. الگوریتم‌های ما تقریباً بلافاصله آن را تشخیص دادند. شگفتی بزرگ برای ما تعداد قابل توجهی از سیستم‌هایی بود که یک پیمانکار عملیات و نگهداری عملکرد پایین را که ما تشخیص داده بودیم کاملاً از دست داده بود.»

تیم تحقیقاتی اکنون در حال کار بر روی بهبود الگوریتم هستند تا بتواند طیف گسترده‌تری از مسائل مانند سایه‌زنی، آلودگی و خطاهای دقیق سمت شبکه را تشخیص دهد.

نویسنده: دپارتمان خبری آرا نیرو