نوشته‌ها

آلمادن قصد دارد کارخانه شیشه خورشیدی در امارات متحده عربی بسازد

شرکت چینی آلمادن اعلام کرده است که قصد دارد یک کارخانه تولید پنل خورشیدی با ظرفیت سالانه 500 هزار تن در امارات متحده عربی احداث کند. این اقدام در راستای برنامه‌های این شرکت برای گسترش جهانی در پی کاهش سود داخلی صورت می‌گیرد. آلمادن، تولیدکننده بزرگ پنل خورشیدی چینی مستقر در چانگژو، استان جیانگسو، از برنامه‌های خود برای ساخت یک واحد تولید پنل خورشیدی در امارات متحده عربی، به عنوان بخشی از یک تغییر استراتژیک گسترده‌تر به سوی بازارهای خارجی، رونمایی کرده است.

این اقدام، که در 25 آوریل توسط هیئت مدیره آلمادن تصویب شد، گامی مهم در توسعه بین‌المللی این شرکت محسوب می‌شود، زیرا این شرکت به دنبال مقابله با چالش‌های فزاینده در داخل چین، از جمله ظرفیت مازاد، کاهش قیمت‌ها و تشدید رقابت در بخش پنل خورشیدی چین است. گزارش مالی سال 2024 این شرکت نشان داد که درآمد سالانه با 20 درصد کاهش به 2.89 میلیارد یوان (397.4 میلیون دلار) رسیده و خالص زیان 127 میلیون یوان بوده است که 252 درصد نسبت به سال قبل کاهش نشان می‌دهد. حاشیه سود ناخالص نیز به تنها 4.5 درصد رسیده است.

پروژه جدید از طریق شرکت تابعه کاملاً متعلق به آلمادن در منطقه خاورمیانه و شمال آفریقا (MENA) اجرا خواهد شد و شامل یک کوره ذوب 1600 تنی در روز و خطوط پردازش عمیق خواهد بود. انتظار می‌رود ساخت و ساز ظرف 18 ماه به پایان برسد.

آلمادن موقعیت جغرافیایی استراتژیک امارات متحده عربی، لجستیک مطلوب، مناطق آزاد تجاری و دسترسی به انرژی مقرون به صرفه را به عنوان مزایای کلیدی این توسعه ذکر کرده است.

این شرکت در اطلاعیه خود اعلام کرد: «امارات متحده عربی در قلب خاورمیانه قرار دارد و ارتباطی با اروپا، جنوب آسیا و آفریقا ارائه می‌دهد.»

انتظار می‌رود این تأسیسات چرخه‌های تحویل را کوتاه کند، هزینه‌های حمل و نقل را کاهش دهد و پاسخگویی به بازار جهانی را بهبود بخشد.

ظرفیت جدید شامل محصولات اصلی مانند پنل فتوولتائیک فوق نازک 1.6 میلی‌متری خواهد بود. تحلیلگران می‌گویند این پروژه به طور نزدیک با توسعه شرکت ترینا سولار در امارات متحده عربی، یکی دیگر از شرکت‌های خورشیدی مستقر در چانگژو که آلمادن با آن مشارکت استراتژیک دیرینه‌ای دارد، همسو است. در ژوئن 2022، این دو شرکت توافقنامه تأمین 337.5 میلیون متر مربع پنل خورشیدی 1.6 میلی‌متری را تا پایان سال 2025 به ارزش 7.425 میلیارد یوان امضا کردند.

ترینا سولار، که پیش از این از سرمایه‌گذاری 5 میلیارد دلاری در یک پایگاه تولید خورشیدی در همان منطقه صنعتی امارات متحده عربی خبر داده است، قصد دارد یک زنجیره تولید شامل پلی‌سیلیکون با خلوص بالا، ویفر، سلول و ماژول ایجاد کند.

علیرغم مزایای استراتژیک این سرمایه‌گذاری، هزینه 1.753 میلیارد یوانی این پروژه فشار مالی بر ترازنامه آلمادن وارد می‌کند. نسبت بدهی به دارایی این شرکت در پایان سال 2024 به 43.6 درصد افزایش یافت که نزدیک به شش واحد درصد نسبت به سال قبل افزایش نشان می‌دهد، در حالی که هزینه‌های مالی تقریباً دو برابر شده و 99.2 درصد نسبت به سال قبل جهش داشته است.

این پروژه نشان‌دهنده یک روند گسترده‌تر در بین تولیدکنندگان انرژی خورشیدی چینی است که تلاش‌های خود را برای گسترش در خارج از کشور تسریع می‌بخشند. رهبران صنعت از جمله GCL Technology، JinkoSolar و TCL Zhonghuan همگی سرمایه‌گذاری‌هایی را در خاورمیانه آغاز کرده‌اند. امارات متحده عربی، که خود را به عنوان یک مرکز منطقه‌ای انرژی پاک معرفی می‌کند، متعهد به 200 میلیارد درهم (54.4 میلیارد دلار) سرمایه‌گذاری در زمینه کربن‌زدایی طی شش سال آینده شده است که زمینه مساعدی را برای شرکت‌های خورشیدی چینی که به دنبال تنوع بخشیدن و گسترش در خارج از کشور هستند، فراهم می‌کند.

نویسنده: دپارتمان خبری آرا نیرو

استفاده از مازاد برق خورشیدی برای پیش‌سرمایش و پیش‌گرمایش خانه‌ها

 

دانشمندانی در استرالیا نشان داده‌اند که چگونه می‌توان از مازاد برق تولیدی توسط سامانه‌های خورشیدی برای پیش‌سرمایش و پیش‌گرمایش ساختمان‌های مسکونی در این کشور بهره برد. تحلیل‌های آن‌ها حاکی از آن است که فصل تابستان بیشترین پتانسیل را برای کاهش تقاضای سیستم‌های تهویه مطبوع دارد.

جزئیات تحقیق:

پژوهشگران دانشگاه نیو ساوت ولز (UNSW) در استرالیا، چگونگی استفاده از مازاد برق خورشیدی تولید شده توسط تاسیسات فتوولتائیک (PV) پشت‌بامی برای پیش‌سرمایش و پیش‌گرمایش خورشیدی (SPCaH) در ساختمان‌های مسکونی را مورد بررسی قرار داده‌اند.

گلوریا پیناتا، نویسنده اصلی این تحقیق، در مصاحبه با نشریه pv magazine گفت: “SPCaH با کاهش تقاضای بعدی برای تهویه مطبوع یا گرمایش، به استفاده کارآمدتر از انرژی ما کمک می‌کند. برخلاف بسیاری از مطالعات که بر مدل‌های نظری تکیه دارند، این تحقیق از داده‌های واقعی 450 خانوار استرالیایی استفاده می‌کند. با انجام این کار، تصویری واقعی از میزان انرژی قابل صرفه‌جویی و میزان کاهش انتشار کربن در زندگی روزمره در زمینه استرالیا ارائه می‌دهد.”

مکانیسم عملکرد SPCaH:

گروه تحقیقاتی توضیح داد که SPCaH بر اساس استفاده از سیستم‌های تهویه مطبوع (AC) با چرخه معکوس برای تبدیل مازاد برق خورشیدی به انرژی حرارتی استوار است. این انرژی حرارتی سپس به جرم حرارتی ساختمان منتقل می‌شود. در فصل گرما، این جرم حرارتی از قبل خنک شده و در فصل سرما از قبل گرم می‌شود. محققان تاکید کردند: “این رویکرد تقاضای سرمایش یا گرمایش را در اواخر بعد از ظهر و اوایل شب کاهش می‌دهد.”

1 s2.0 S0378778825002865 gr1 lrg 768x521 1 - استفاده از مازاد برق خورشیدی برای پیش‌سرمایش و پیش‌گرمایش خانه‌ها

مدل‌سازی و شبیه‌سازی:

دانشمندان مصالح ساختمانی مورد استفاده در ساختمان‌های مورد تجزیه و تحلیل را بر اساس وزن به سه دسته سبک، متوسط و سنگین تقسیم کردند. سپس عملکرد حرارتی نه نوع ساختمان مختلف را در شهرهای آدلاید، بریزبن، ملبورن و سیدنی شبیه‌سازی کردند. آن‌ها همچنین یک مدل دینامیک حرارتی تجمیعی (ATDM) بر اساس داده‌های ساعتی دمای داخلی، تقاضای AC، تابش خورشیدی و دمای بیرون توسعه دادند.

نتایج شبیه‌سازی:

نتایج شبیه‌سازی نشان داد که SPCaH در مقایسه با فصول بهار و پاییز، به کاهش بیشتر تقاضای AC در طول تابستان و زمستان کمک می‌کند. بالاترین میزان کاهش حداکثر تقاضا برای یک ساختمان در بریزبن گزارش شده است.

محققان تاکید کردند: “در طول فصول بهار و تابستان، پیاده‌سازی SPCaH ساختمان‌ها را قادر می‌سازد تا به کاهش انتشار گازهای گلخانه‌ای به میزان تقریبی 30 درصد از کل انتشار در فصول مربوطه دست یابند. با این حال، در فصل پاییز، تأثیر SPCaH بر کاهش انتشار در تمام مکان‌ها و انواع ساختمان‌ها حداقل است.”

انتشار یافته‌ها:

یافته‌های این تحقیق در مقاله‌ای با عنوان “کاهش انتشار گازهای گلخانه‌ای از ساختمان‌های مسکونی استرالیا از طریق پیش‌سرمایش و پیش‌گرمایش خورشیدی” که در مجله Energy and Buildings منتشر شده است، قابل دسترسی است.

نویسنده: دپارتمان خبری آرا نیرو

چرا ذخیره انرژی باتری برای اهداف خورشیدی آلمان ضروری است؟

در حالی که بخش ذخیره انرژی باتری آلمان در حال رونق است، توسعه‌دهندگان باید از موانع مختلف آگاه باشند و می‌توانند از تجربیات بازار باتری بریتانیا درس بگیرند.

صنعت انرژی تجدیدپذیر آلمان در حال رونق است و ظرفیت تولید برق جدید را با سرعت بی‌سابقه‌ای به شبکه تحویل می‌دهد. با ۹۰ گیگاوات ظرفیت نصب شده تا اواسط سال ۲۰۲۴، که ۷.۵ گیگاوات آن در شش ماه اول سال ۲۰۲۴ نصب شده است، بازار خورشیدی احتمالاً در سال ۲۰۲۵ به مرز ۱۰۰ گیگاوات خواهد رسید. با وجود این سرعت، هدف خورشیدی آلمان برای رسیدن به ظرفیت ۲۱۵ گیگاوات تا سال ۲۰۳۰ نیازمند سرعت بیشتری نسبت به نرخ فعلی ۱۵ گیگاوات در سال است.

با این حال، در عین حال، توسعه‌دهندگان خورشیدی با شرایط اقتصادی نامطلوب‌تری مواجه هستند که می‌تواند منجر به کاهش علاقه به حفظ این سرعت شود. چشم‌انداز کلی قیمت پایین‌تر انرژی، قیمت‌های تضمین‌شده نسبتاً پایین از مزایده‌های FIT/EEG (تغذیه در تعرفه/قانون انرژی‌های تجدیدپذیر آلمان) و افزایش فراوانی قیمت‌های منفی برق در طول روز به عنوان مقصران اصلی شناخته می‌شوند.

مورد دوم به یک پدیده چالش‌برانگیز تبدیل شده است، زیرا تعداد ساعات منفی در بازار آتی بورس انرژی اروپا (EEX) از ۶۹ ساعت در سال ۲۰۲۲ به ۳۰۱ ساعت در سال ۲۰۲۳ و به ۳۳۰ ساعت تا اواسط آگوست ۲۰۲۴ افزایش یافته است. این برای تولیدکنندگان برق مشکل‌ساز می‌شود. به عنوان مثال، آنها ترویج تغذیه خود را برای زمانی که قیمت انرژی منفی است از دست می‌دهند، مشروط بر اینکه قیمت‌ها حداقل برای سه ساعت متوالی منفی باقی بمانند. این “قاعده ۳ ساعته” قرار بود در سال‌های آینده به یک ساعت کاهش یابد، اما دولت آلمان اخیراً اعلام کرده است که “قاعده ۱ ساعته” ممکن است به سال ۲۰۲۵ منتقل شود. اینکه آیا این اتفاق واقعاً رخ خواهد داد یا خیر، هنوز مشخص نیست. ائتلاف حاکم فعلی به طور کلی بسیار تقسیم شده است و انتخابات پارلمانی برای سال ۲۰۲۵ برنامه‌ریزی شده است.

از آنجایی که نرخ‌های جذب نیز کاهش یافته است، توسعه‌دهندگان PV به دنبال راه‌هایی برای کاهش این مشکل بوده‌اند. یکی از رویکردهای رایج این است که پنل‌های پارک‌های جدید به طور فزاینده‌ای در جهت شرق به غرب تراز می‌شوند که تولید انرژی را از ساعات اوج تولید در زمان ناهار متنوع می‌کند. “گلوله نقره‌ای” دیگر، اضافه کردن سیستم‌های ذخیره انرژی باتری (BESS) به پارک‌های خورشیدی است. در نتیجه، گفته می‌شود که حدود ۸۰ درصد از تمام پارک‌های خورشیدی جدید به عنوان سایت‌های هم‌محل برنامه‌ریزی شده‌اند، یعنی شامل BESS هستند.

BESS این مزیت آشکار را دارد که به تولیدکنندگان انرژی اجازه می‌دهد تا انتشار انرژی به شبکه را تا زمانی که قیمت‌ها جذاب‌ترین باشد، به تأخیر بیندازند، در نتیجه نرخ‌های جذب و سطح درآمد را بهبود می‌بخشد. بسته به تنظیمات، این همچنین به طور بالقوه به اپراتورهای BESS اجازه می‌دهد تا در برخی از خدمات کمکی شبکه، مانند بازارهای ظرفیت و تعادل، شرکت کنند که می‌تواند به افزایش درآمد کمک کند.

با این حال، توسعه‌دهندگان که قصد ساخت BESS را دارند باید از جنبه‌های قانونی زیر آگاه باشند:

image - چرا ذخیره انرژی باتری برای اهداف خورشیدی آلمان ضروری است؟

منبع: تحقیقات گرین‌کپ. معاملات شامل معاملات اعلام‌شده، امضا شده و در حال پیشرفت در سراسر اروپا است. آلمان، فرانسه، ایتالیا و اسپانیا. 

مراحل صدور مجوز برای BESS

در حال حاضر تجربه عملی کمی در مورد تأیید BESS در آلمان وجود دارد. BESS عموماً از طریق مجوز ساخت (Baugenehmigung) تحقق می‌یابد. با این حال، در موارد فردی، تأیید برنامه‌ریزی (Planfeststellung)، مطابق با قانون صنعت انرژی (Energiewirtschaftsgesetz، یا EnWG)، نیز امکان‌پذیر است. در چنین مواردی، رویه تأیید برنامه‌ریزی یک رویه اختیاری خواهد بود. بنابراین متقاضی می‌تواند تصمیم بگیرد که از طریق رویه تأیید برنامه‌ریزی پیش برود یا برای مجوز ساخت و هرگونه مجوزهای لازم دیگر درخواست دهد. پیش‌نیاز مجوز ساخت معمولاً یک طرح توسعه (Bebauungsplan) است که شهرداری باید آن را صادر کند.

علاوه بر این، حتی اگر طرح توسعه‌ای وجود نداشته باشد، BESS می‌تواند در نهایت تحت بخش ۳۴ قانون ساخت و ساز (Baugesetzbuch، BauGB) مجاز شود، اگر پروژه در یک منطقه داخلی (innenbereich) واقع شده باشد، یا حتی تحت بخش ۳۵ BauGB اگر پروژه در یک منطقه خارجی (außenbereich) واقع شده باشد. در حال حاضر، تأیید پروژه‌های مناطق خارجی چالش‌برانگیزتر است، زیرا BESS طبق نظر غالب، وضعیت ممتازی در BauGB ندارد. با این حال، اگر BESS پروژه‌های مستقل نباشند و در عوض به یک سیستم بادی یا خورشیدی خاص (که به طور منظم دارای امتیاز است) خدمت کنند، خود BESS نیز وضعیت ممتاز را به دست می‌آورد.

با این وجود، در چنین مواردی عدم قطعیت قانونی قابل توجهی وجود دارد. علاوه بر این، هر مقام ساختمان محلی به طور جداگانه تصمیم می‌گیرد که آیا مجوز می‌تواند صادر شود یا خیر، بنابراین در آینده نزدیک به سختی می‌توان در مورد امکان دریافت مجوز در چنین مواردی اظهار نظر کلی کرد.

یارانه هزینه ساخت

طبق بند ۱، پاراگراف ۱، جمله ۱ قانون EnWG، اپراتورهای شبکه‌های تأمین انرژی عموماً مجاز به دریافت یک یارانه هزینه ساخت یکباره (Baukostenzuschuss) از مشتریان اتصال هستند. این یارانه هزینه ساخت معمولاً بر اساس یک مدل قیمت عملکرد پیشنهادی توسط آژانس شبکه فدرال (Bundesnetzagentur) است. با توجه به BESS، دادگاه عالی منطقه‌ای دوسلدورف (Oberlandesgericht Düsseldorf) حکم داده است که مدل قیمت پیشنهادی توسط آژانس شبکه فدرال برای BESS اعمال نمی‌شود. با این حال، دادگاه همچنین حکم داد که اپراتورها مجاز به دریافت یارانه به طور کلی هستند. از آنجایی که آژانس شبکه فدرال به این تصمیم اعتراض کرده است، منتظر حکم دادگاه فدرال دادگستری (Bundesgerichtshof) هستیم.

هیچ اتصال اولویت‌دار به شبکه وجود ندارد

طبق بند ۱، پاراگراف ۱، جمله ۱ قانون انرژی‌های تجدیدپذیر (Erneuerbare-Energien-Gesetz، یا EEG)، اپراتورهای شبکه باید فوراً اولویت اتصال سیستم‌های تولید برق از انرژی‌های تجدیدپذیر و گاز معدنی را به شبکه خود بدهند. با این حال این امر در مورد BESS صدق نمی‌کند. با این حال، اگر BESS پروژه‌های مستقل نباشند، می‌توانند از همان اتصال شبکه به عنوان خود کارخانه استفاده کنند. در چنین مواردی، دسترسی سریع به شبکه به طور منظم ارائه خواهد شد. حتی در تمام موارد دیگر، اپراتور شبکه نمی‌تواند با استدلال اینکه سیستم‌های تحت EEG باید اولویت داده شوند، اتصال BESS را به تأخیر بیندازد. این به صراحت در بند ۲a، پاراگراف ۱۷ قانون EnWG تنظیم شده است.

شرکت در بازار تعادل

در اصل، کارخانه‌ها می‌توانند در بازار انرژی تعادل (Regelenergiemarkt) شرکت کنند. آمارها نشان می‌دهد که این اتفاق در حال رخ دادن است. مانند هر تاسیسات دیگری، BESS باید تحت یک رویه پیش‌تأیید (Präqualifikationsverfahren) قرار گیرد. در اینجا، باید نشان داده شود که کارخانه مربوطه شرایط لازم برای امنیت عرضه را برآورده می‌کند. پس از آن، BESS می‌تواند در مناقصه‌های بازار انرژی تعادل شرکت کند.

تامین دسترسی به شبکه برای توسعه‌دهندگان از اهمیت اقتصادی خاصی برخوردار است، همانطور که تجربه بریتانیا نشان می‌دهد – کشوری که بخش BESS آن سه تا پنج سال از آلمان جلوتر است.

با بیش از ۸۰۰ پروژه BESS که در حال حاضر در مراحل مختلف توسعه هستند، بریتانیا در تلاش‌های اروپا برای ساخت ظرفیت ذخیره‌سازی انرژی باتری برای اهداف خورشیدی، به‌ویژه در سطح تاسیسات عمومی، پیشرو است. با این حال، تعداد قابل توجهی از این پروژه‌ها تا اواسط دهه ۲۰۳۰ یا حتی بعد از آن به دسترسی به شبکه نخواهند رسید. این به نوبه خود چالش بزرگی برای توسعه‌دهندگان است زیرا آنها برای حفظ سودآوری پروژه‌های خود تلاش می‌کنند.

علاوه بر این، درآمد حاصل از عملیات BESS چالش برانگیزتر شده است. با افزایش پروژه‌های BESS که در مناقصه‌های خدمات کمکی شرکت می‌کنند، قیمت‌های پاکسازی به طور قابل توجهی کاهش یافته است و منجر به کاهش چشمگیر سطح درآمد برای اپراتورها نسبت به اوج سال‌های ۲۰۲۱ و ۲۰۲۲ شده است. در حالی که به طور حکایتی، ما درآمدهای ۱۴۰،۰۰۰ پوند تا ۱۶۰،۰۰۰ پوند (۱۷۵،۰۰۰ دلار – ۲۰۰،۰۰۰ دلار)

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله فتوولتائیک PV

شرکت CHN انرژی، اتصال یک گیگاوات نیروگاه خورشیدی دریایی در چین را آغاز کرد

به گزارش آرا نیرو : شرکت CHN انرژی، اولین فاز پروژه یک گیگاواتی خورشیدی دریایی خود را در چین به شبکه برق متصل کرد. این پروژه که بزرگترین آرایه خورشیدی دریایی جهان نامیده می‌شود، پس از تکمیل قادر به تامین برق ۲.۶۷ میلیون نفر از ساکنان شهری خواهد بود.

شرکت سرمایه‌گذاری انرژی گوا هوا، زیرمجموعه CHN انرژی، اولین دسته از واحدهای فتوولتائیک را در پروژه یک گیگاواتی خورشیدی دریایی خود، در ۸ کیلومتری دونگ‌یینگ در استان شاندونگ چین، به شبکه برق متصل کرده است.

این پروژه در مساحتی حدود ۱۲۲۳ هکتار گسترده شده است و دارای ۲۹۳۴ سکوی فتوولتائیک است که با استفاده از پایه‌های ثابت تروس فولادی دریایی در مقیاس بزرگ نصب شده‌اند. هر سکو ۶۰ متر طول و ۳۵ متر عرض دارد.

شرکت JinkoSolar ماژول‌های دوطرفه تایگر نئو با فناوری TOPCon نوع N را برای این پروژه تامین کرده است. این شرکت اعلام کرده است که ماژول‌های خود را برای شرایط سخت دریایی سفارشی‌سازی کرده است و از شیشه دو جداره، شیشه نیمه سخت شده و پوشش POE برای مقاومت در برابر رطوبت، خوردگی مه نمکی، قرار گرفتن در معرض آب دریا، بادهای شدید و دمای شدید استفاده کرده است.

پس از تکمیل، انتظار می‌رود این آرایه خورشیدی نیازهای برق حدود ۲.۶۷ میلیون نفر از ساکنان شهری چین را تامین کند.

شرکت CHN انرژی اعلام کرده است که از یک مدل توسعه یکپارچه ماهیگیری و فتوولتائیک استفاده می‌کند که ماهی‌پروری را با تولید انرژی خورشیدی ترکیب می‌کند.

اوایل این هفته، شرکت CHN انرژی نیروگاه خورشیدی ۳ گیگاواتی منگشی لانهای خود را به شبکه برق متصل کرد. این نیروگاه در حال حاضر دومین پروژه خورشیدی بزرگ در چین و جهان است.

بزرگترین آرایه خورشیدی شناور دریایی تکمیل شده در جهان در حال حاضر پروژه ۴۴۰ مگاواتی در تایوان است که اوایل این ماه راه‌اندازی شد.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله فتوولتائیک PV

توربین‌های بادی عمودی تخم‌مرغی: آینده‌ای برای انرژی تجدیدپذیر

توربین‌های بادی سه پره، یک منظره‌ی رایج در افق و دریا هستند. این توربین‌ها می‌توانند از نظر اندازه متفاوت باشند، اما معمولاً بر ساختمان‌ها و تپه‌های اطراف خود غلبه می‌کنند. بلندترین این غول‌ها می‌توانند به اندازه برج ایفل و حتی بلندتر از برج راکفلر در نیویورک بایستند. یک طراحی جدید توربین بادی محور عمودی به شکل یک تخم‌مرغ، در حال رقابت جدی با توربین‌های سنتی سه پره قرار گرفته است. این توربین نوآورانه در واقع یک طراحی احیاشده است که کارشناسان را از کارایی و پتانسیل آن شوکه کرده است.

صنعت انرژی بادی در سال‌های اولیه تنها یک طراحی توربین بادی را پذیرفت و اکنون به اشتباه خود پی برده است

جهان برای جلوگیری از بحران آب و هوا باید بیشتر به انرژی‌های تجدیدپذیر متکی شود و انرژی بادی به مردم در این زمینه کمک می‌کند. سال‌هاست که شرکت‌ها تنها می‌خواهند توربین‌های بادی سه پره را تولید و نصب کنند. این توربین‌ها از فناوری پیش‌بینی‌پذیری مشابه هواپیماها استفاده می‌کنند و قطعات آن‌ها می‌توانند به راحتی در کارخانه‌های موجود تولید شوند. با این حال، این توربین‌ها بسیار سنگین هستند، که منجر به مشکلاتی در نصب آن‌ها در آب‌های عمیق دریا شده است، جایی که باد بسیار قوی تمایل به پایدار بودن دارد.

چون توربین بادی سه پره از همان ابتدا برجسته شد، صنعت انرژی بادی متوجه اشتباهی که با تنوع‌ندادن طراحی توربین‌ها مرتکب شده بود، نشد. یک طراحی قدیمی ناگهان فرصت دوم برای موفقیت پیدا می‌کند، زیرا شرکت‌ها به دنبال یک مدل توربین بادی سبک‌تر و انعطاف‌پذیرتر هستند. این توربین تخم‌مرغی روی یک محور عمودی قرار دارد و نیازی به ساخت روی یک برج سنگین مانند مدل سه پره ندارد. مدل جدید در هزینه‌های ساخت صرفه‌جویی خواهد کرد و حتی می‌توان از آن در اسکله شناور در دریا استفاده کرد.

یک توربین بادی محور عمودی تخم‌مرغی می‌تواند پاسخی باشد که کارشناسان انرژی تجدیدپذیر به دنبال آن هستند

کارشناسان قبلاً فکر می‌کردند که توربین‌های بادی محور عمودی به اندازه مدل‌های سه پره مؤثر نیستند. فناوری برای طراحی سابق در ۱۵ سال گذشته پیشرفت چشمگیری داشته است و اکنون یک طراحی تخم‌مرغی صنعت را تحت تأثیر قرار داده است. این مدل سبک‌تر، پایدارتر و احتمالاً ارزان‌تر از مدل سه پره است، که می‌تواند به آن انعطاف‌پذیری بیشتری از نظر مکان و استفاده بدهد.

به دست آوردن انرژی باد پایدار آسان نیست، اما از آنجایی که باد همه جا وجود دارد، این راه حلی است که اکثر دولت‌ها می‌خواهند از آن بهره‌برداری کنند. دولت‌ها معمولاً بودجه‌ای برای سرمایه‌گذاری در توربین‌های بادی سنگین دارند، اما صاحبان خانه‌های شخصی و کسب‌وکار اغلب باد را به عنوان یک جایگزین انرژی قابل اجرا نمی‌دانند. توربین‌های بادی محور عمودی می‌توانند برای مردم مقرون‌به‌صرفه‌تر شوند و زمینه را برای یک انقلاب انرژی در آمریکا فراهم کنند.

انرژی بادی به طور قابل توجهی متغیر است، بنابراین آمریکا می‌خواهد از فناوری جدید برای گرفتن بادهای دریایی استفاده کند

یکی از بزرگترین چالش‌های انرژی بادی، پیدا کردن راهی برای پایدار نگه داشتن خروجی برق است. باد همیشه نمی‌وزد و بادهای سبک ممکن است به اندازه کافی قوی نباشند تا توربین‌ها را بچرخانند. محققان روی طراحی‌ها و فناوری‌های جدید توربین بادی کار کرده‌اند تا به غلبه بر این مشکل کمک کنند.

آمریکا می‌خواهد توربین‌های بادی شناور را در اقیانوس نصب کند تا از انرژی باد دریا استفاده کند. مدل‌های توربین بادی سه پره بسیار سنگین هستند و ممکن است شناور خوبی نباشند، اما توربین محور عمودی تخم‌مرغی جدید به برج مرکزی متکی نیست و می‌تواند بسیار آسان‌تر شناور شود. این نوآوری ممکن است به آمریکا کمک کند تا روند انرژی بادی را تغییر دهد.

کارشناسان از کاربردهای بالقوه توربین بادی محور عمودی تخم‌مرغی به‌روز شده هیجان‌زده هستند. این سبک در حال حاضر در برخی مکان‌های جهان استفاده می‌شود، اما هنوز در آمریکا رایج نشده است. تیم‌هایی از محققان و سرمایه‌گذاران خصوصی در حال تلاش برای راه‌اندازی یک مزرعه توربین بادی محور عمودی در نزدیکی ساحل مین در آینده نزدیک هستند.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله فتوولتائیک PV

نصب ماژول‌های خورشیدی ممکن است در سال ۲۰۲۴ به ۵۹۲ گیگاوات برسد.

بلومبرگ‌NEF می‌گوید که صنعت خورشیدی جهانی امسال ۵۹۲ گیگاوات ماژول نصب خواهد کرد که نسبت به سال ۲۰۲۳، ۳۳٪ افزایش داشته است. این مشاوره همچنین برآورد خود را برای تولید پلی‌سیلیکون در سال ۲۰۲۴ کاهش داده است، زیرا تولیدکنندگان به طور موقت تولید را کاهش می‌دهند.

 

صنعت خورشیدی جهانی در مسیر نصب ۵۹۲ گیگاوات ماژول در سال جاری قرار دارد که نسبت به سال ۲۰۲۳، ۳۳٪ افزایش داشته است. بلومبرگ‌NEF در گزارش جدید خود با عنوان “چشم‌انداز بازار جهانی PV در سه‌ماهه سوم ۲۰۲۴” اعلام کرده است که “قیمت‌های پایین ماژول‌ها در سال جاری تقاضا را در بازارهای جدید تحریک می‌کند، اما به تولیدکنندگان آسیب می‌زند که برای حفظ سهم بازار به شدت رقابت می‌کنند.”

 

تحلیل‌های فصلی نشان می‌دهد که در ۲۸ بازار بزرگ جهان، افزایش ۱٪ مشاهده شده است. پاکستان، عربستان سعودی ،عمان و هند پیشتاز توسعه‌های بزرگ هستند، در حالی که ژاپن و آفریقای جنوبی کاهش قابل توجهی را تجربه می‌کنند. بازارهای خورشیدی مستقر همچنان به طور پیوسته رشد می‌کنند.

 

این گزارش پیش‌بینی می‌کند که نصب ماژول‌های خورشیدی به طور سالانه افزایش یابد و تا سال ۲۰۳۵ به ۹۹۶ گیگاوات برسد. بلومبرگ‌NEF همچنین برآورد خود را برای تولید پلی‌سیلیکون در سال ۲۰۲۴ به ۱.۹۶ میلیون تن متریک کاهش داده است که برای تولید ۹۰۰ گیگاوات ماژول کافی است.

 

جنی چیس، تحلیلگر ارشد خورشیدی بلومبرگ‌NEF، به مجله pv گفت که دلیل اصلی کاهش تولید پلی‌سیلیکون از ۲.۲ میلیون تن برآورد شده در سه‌ماهه دوم ۲۰۲۴ این است که “تولیدکنندگان به دلیل قیمت‌های پایین و عرضه بیش از حد، برنامه‌ریزی برای نگهداری یا استفاده از روش‌های دیگر برای کاهش موقت تولید دارند.” این گزارش بیان می‌کند که قیمت‌های پلی‌سیلیکون در حال حاضر ۴.۹ دلار به ازای هر کیلوگرم است که زیر هزینه‌های تولید برای تقریباً همه تولیدکنندگان است.

 

“ظرفیت بیش از حد سیستماتیک در زنجیره تأمین خورشیدی منجر به کاهش مداوم قیمت‌ها شده است.” این گزارش می‌گوید: “تولیدکنندگان در تمام بخش‌های زنجیره تأمین از پلی‌سیلیکون تا ماژول‌ها با ضرر مواجه هستند و با کاهش حقوق، کاهش هزینه‌ها، اخراج‌ها و حتی تأخیر در پرداخت به تأمین‌کنندگان در حالی که سعی در حفظ تولید دارند، پاسخ داده‌اند.”

نویسنده: دپارتمان خبری آرا نیرو
منبع: www.pv-magazine.com

روش جدید برای تخمین کاهش و قطع در نیروگاه‌های خورشیدی-بادی ترکیبی

به گزارش آرانیرو یک تیم تحقیقاتی اروپایی یک روش جدید برای طراحی بهینه نیروگاه‌های خورشیدی-بادی ترکیبی پیشنهاد کرده است. رویکرد آن‌ها مبتنی بر داده‌های با وضوح 1 دقیقه‌ای است که دانشمندان می‌گویند اطلاعات بسیار دقیق‌تری در مورد کاهش بالقوه و قطع ارائه می‌دهند در مقایسه با داده‌های با وضوح 1 ساعت.

یک تیم تحقیقاتی اروپایی تأثیر داده‌های با وضوح زمانی مختلف بر طراحی نیروگاه‌های خورشیدی-بادی ترکیبی (HyPPs) را بررسی کرده است و دریافت که وضوح پایین‌تر می‌تواند منجر به برآورد بیش از حد ارزش خالص فعلی (NPV) تاسیسات تا 3 درصد شود.

این گروه گفت: “هنگام انجام مطالعات امکان‌سنجی برای HyPPs، معمولاً از داده‌های با وضوح ساعتی یا پایین‌تر استفاده می‌شود، زیرا این وضوح است که معمولاً در پایگاه‌های داده هواشناسی در دسترس است. با این حال، هنگام بهینه‌سازی توپولوژی HyPPs با محدودیت‌های ظرفیت نقطه اتصال (POI)، امکان‌سنجی فنی-اقتصادی این نیروگاه‌ها ممکن است بیش از حد برآورد شود زیرا کاهش و قطع زمانی که از داده‌های ساعتی به جای داده‌های با وضوح بالاتر استفاده می‌شود، دست کم گرفته خواهد شد.”

 

این تحقیق بر اساس داده‌های به دست آمده از یک HyPP عملیاتی در شرق آلمان انجام شد. این نیروگاه دارای ظرفیت نصب شده PV 11.64 مگاوات و نسبت DC-AC 1.13 است. توربین‌های بادی دارای ظرفیت نصب شده 24 مگاوات هستند و از آنجایی که 1.6 کیلومتر از پنل‌های PV فاصله دارند، سایه‌ای بر آن‌ها نمی‌اندازند. در سال 2020، سالی که محققان تحقیق خود را انجام دادند، دارایی‌های بادی و PV به ترتیب 57.58 گیگاوات ساعت و 12.80 گیگاوات ساعت تولید کردند.

 

داده‌های هواشناسی و تولید از HyPP آلمانی با وضوح 5 ثانیه ثبت شد و برای مقایسه، به یک دقیقه و یک ساعت کاهش یافت. به عنوان بخشی از این تجزیه و تحلیل، نسبت‌های مختلف DC-AC برای قسمت PV فرض شد که در واقع ظرفیت واقعی نیروگاه را تغییر می‌دهد.

آن‌ها دریافتند: “نشان داده شده است که برای یک HyPP متشکل از 1 واحد (p.u.) از ظرفیت باد، PV و POI، به ترتیب، تلفات کاهش 1.45% برای داده‌های با وضوح 5 ثانیه و 1.09% برای داده‌های با وضوح 1 ساعت برآورد می‌شود که معادل کاهش درآمد 0.77% و 0.51% در بازار روزانه آلمان است، به ترتیب. این نتایج نشان دهنده اختلاف بین تلفات برآورد شده توسط داده‌های ساعتی و با وضوح بالا است.”

 

علاوه بر این، محققان دریافتند که استفاده از داده‌های با وضوح 1 دقیقه برای تقریب تلفات کاهش پیش‌بینی شده توسط مجموعه داده 5 ثانیه کافی به نظر می‌رسد. آن‌ها توضیح دادند: “به نظر می‌رسد دریافت داده‌ها با وضوح 1 دقیقه یک مصالحه خوب بین دقت و تلاش اندازه‌گیری است.”

 

با انجام یک برآورد فنی-اقتصادی برای یافتن اندازه بهینه HyPP، محققان دریافتند که استفاده از مجموعه داده 1 ساعت منجر به برآورد بیش از حد 1.86% از NPV کل در مقایسه با مجموعه داده 1 دقیقه می‌شود. آن‌ها همچنین گفتند که هنگام افزایش سهم ظرفیت‌های PV و باد نسبت به ظرفیت POI، این برآورد بیش از حد بزرگ‌تر می‌شود.

 

آن‌ها گفتند: “مدل فنی-اقتصادی نشان می‌دهد که توپولوژی بهینه HyPP از نظر هزینه برای این سایت شامل ظرفیت‌های باد و PV است که هر کدام کمی بزرگ‌تر از ظرفیت POI هستند، اما با آن هم سو هستند. استفاده از داده‌های 1 ساعت به جای 1 دقیقه تأثیر کمی بر شناسایی طراحی بهینه HyPP دارد. با این حال، برای توپولوژی بهینه HyPP که از مجموعه داده 1 ساعت به دست آمده است، NPV زمانی که با مجموعه داده 1 ساعت به جای 1 دقیقه محاسبه می‌شود، 2.99% بیش از حد برآورد می‌شود.”

 

یافته‌های آن‌ها در مقاله‌ای با عنوان “تأثیر داده‌های با وضوح بالا بر تخمین دقیق تلفات کاهش و طراحی بهینه نیروگاه‌های خورشیدی-بادی ترکیبی” منتشر شده در Applied Energy ارائه شد. این گروه شامل دانشگاهیان از موسسه فناوری انرژی نروژ (IFE)، دانشگاه اسلو (UiO) و موسسه Fraunhofer برای سیستم‌های انرژی خورشیدی (ISE) آلمان بود.

نویسنده: دپارتمان خبری آرا نیرو
منبع: www.pv-magazine.com

اولین نیروگاه خورشیدی دو برجی جهان رونمایی شد، سالانه ۱.۸ میلیارد کیلووات ساعت برق تولید خواهد کرد

این نیروگاه شامل دو برج به ارتفاع ۲۰۰ متر است که ۳۰ هزار آینه دارند و مساحتی ۸۰۰ هزار مترمربعی را برای جمع‌آوری نور خورشید پوشش می‌دهند.

 

 

چین به منظور افزایش بازده و کاهش انتشار دی اکسید کربن، اولین نیروگاه حرارتی خورشیدی دوبرجی جهان را در نزدیکی شهرستان گواژو در استان گانسو توسعه داده است.

 

این نیروگاه به جای زغال سنگ از گرمای خورشید برای تبدیل آب به بخار پرفشار استفاده می کند و این بخار باعث چرخش توربین ها و تولید برق می شود.

 

شرکت برق شرکت سد سه دره چین برای دستیابی به این هدف، ادعا می کند که دو برج جذب حرارت مجاور را با یک توربین بخار ژنراتور ترکیب کرده است. تقریباً 30 هزار آینه هلیوستات روی برج ها نصب شده است که مساحتی 800 هزار متر مربع را برای جمع آوری نور پوشش می دهد.

 

این آینه ها از مواد خاصی ساخته شده اند که بازده بازتابی تا 94 درصد دارند. 

 

به گفته شبکه دولتی تلویزیون جهانی چین (CGTN)، هر دو برج که هر کدام 200 متر ارتفاع دارند، دارای آینه هایی هستند که دو دایره بزرگ و همپوشانی را تشکیل می دهند. این دایره ها نور خورشید را بر روی هر برج متمرکز می کنند.

 

تولید برق با نمک مذاب

 

طراحی نیروگاه جدید از نمک مذاب برای تولید برق در شب و زمانی که خورشید در دسترس نیست استفاده می کند.

 

بر اساس گزارش CGTN، نمک مذاب ذخیره شده در برج ها به عنوان یک باتری حرارتی عمل می کند و گرمای اضافی را در طول روز ذخیره کرده و برای ادامه کار ژنراتورها در شبانه روز آزاد می کند.

 

چین از سال ۲۰۱۶ شروع به بررسی انرژی حرارتی خورشیدی کرده است و این پروژه جدید با طراحی دو برج، آن را یک گام به جلو می برد.

 

ون جیانگ‌هونگ، مدیر پروژه نیروگاه، به CGTN گفت: «آینه های موجود در ناحیه همپوشانی می توانند توسط هر دو برج مورد استفاده قرار گیرند. انتظار می رود این پیکربندی بازده را 24 درصد افزایش دهد.»

 

آینه ها حرکت خورشید را ردیابی می کنند، پرتوهای آن را در صبح روی برج شرقی متمرکز می کنند و به طور خودکار در بعد از ظهر به سمت غرب تنظیم می شوند.

 

چین ادعا می کند که این طراحی به دو برج محدود نمی شود و پتانسیل استفاده از برج های متعدد برای دستیابی به بازدهی بیشتر را دارد. انتظار می رود این نیروگاه تا پایان سال 2024 عملیاتی شود.

 

تولید سالانه 1.8 میلیارد کیلووات ساعت برق

 

این نیروگاه بخشی از یک مجموعه انرژی پاک است که از نیروگاه های خورشیدی، حرارتی و بادی تشکیل شده است که با همکاری هم سالانه بیش از 1.8 میلیارد کیلووات ساعت برق تولید کرده و از انتشار 1.53 میلیون تن کربن جلوگیری می کند، همانطور که CGTN گزارش کرده است.

 

چین در ماه ژوئن اعلام کرد که بزرگترین نیروگاه خورشیدی جهان را در شمال غربی استان سین‌کیانگ به شبکه برق متصل کرده است.

 

گزارش شده است که این نیروگاه مساحتی معادل 33 هزار هکتار (200 هزار مو چینی) را پوشش می دهد و خروجی سالانه آن 6.09 میلیارد کیلووات ساعت است.

 

اطلاعات منتشر شده توسط آژانس ملی چین در ژانویه نشان داد که ظرفیت تولید برق خورشیدی این کشور در سال 2023 باورنکردنی 55.2 درصد افزایش یافته است.

 

این اعداد نشان دهنده بیش از 216 گیگاوات (GW) برق خورشیدی است که چین در طول سال ساخته است. این بیشتر از کل ناوگان خورشیدی ایالات متحده است.

 

چین همچنین برنامه هایی برای ترکیب انرژی خورشیدی با تولید برق آبی و بادی دارد.

 

تمرکز چین بر انرژی خورشیدی بخشی از هدف این کشور برای رسیدن به اوج انتشار کربن تا سال 2030 و رسیدن به کربن خنثی تا سال 2060 است. دولت برای حمایت از این اهداف متعهد شده است که تا سال 2030، 1200 گیگاوات ظرفیت تجدیدپذیر بسازد.

 

با این سرعت، چین در حال حاضر در مسیر دستیابی به این هدف، یعنی پنج سال زودتر از موعد مقرر، قرار دارد. افزایش قابل توجه انرژی خورشیدی همچنین با افزایش 20.7 درصدی ظرفیت تولید برق بادی همراه است که نشان دهنده تعهد این کشور به انرژی پاک است.

 

نویسنده: دپارتمان خبری آرا نیرو 

 

منبع: https://interestingengineering.com

کاهش قیمت پنل های خورشیدی در پاکستان به دلیل معافیت مالیاتی جدید

قیمت پنل های خورشیدی در پاکستان طی شش ماه گذشته به میزان قابل توجهی کاهش یافته است.  انتظار می رود تخفیف مالیاتی اخیر که در بودجه 2024-2025 به این بخش داده شده است، قیمت ها را بیشتر کاهش دهد.

روز جمعه، مجلس لایحه مالی جدیدی را تصویب کرد که بر اساس آن معافیت مالیاتی برای واردات پنل‌های خورشیدی و تجهیزات مربوطه اعلام شد.
مشوق های مالیاتی شامل واردات پنل های خورشیدی کامل و همچنین ماشین آلات، مواد اولیه و قطعات مرتبط با انرژی خورشیدی می شود.  هدف این رویکرد جامع تقویت صنعت خورشیدی محلی است.
پیش از این، اینورترها مشمول مالیات بر فروش 18 درصدی بودند.

کارشناسان معتقدند که معافیت های مالیاتی بر روی پنل های خورشیدی و تجهیزات مربوطه قیمت ها را کاهش می دهد، در حالی که تولید محلی پنل های خورشیدی پتانسیل ایجاد انقلابی در راه حل های انرژی سبز را دارد.
با این حال، جذب سرمایه‌گذاری خارجی برای صنعت تولید پنل خورشیدی نیازمند زمان و تلاش‌های بیشتر است.

آرا نیرو امیدوار است دولتمردان در ایران نیز ضرورت حمایت از نیروگاه های خورشیدی را درک کنند که اکنون در کل دنیا بر این موضوع اتفاق نظر وجود دارد تنها راه حل پاک و ارزان برای ناترازی برق، سرمایه گذاری روی صنعت نیروگاه های تجدیدپذیر پذیر است.

نویسنده: دپارتمان خبری آرا نیرو

منبع: https://www.bolnews.com

راهکارهای شبکه هوشمند Smart Grid برای رفع ناترازی برق
شبکه‌های هوشمند (Smart Grids) مجموعه‌ای از فناوری‌ها و راه‌حل‌ها هستند که می‌توانند برای بهبود پایداری، انعطاف‌پذیری و راندمان شبکه‌های برق

مورد استفاده قرار گیرند. این شبکه‌ها می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند.

برخی از راهکارهای شبکه هوشمند برای رفع ناترازی برق عبارتند از:

1. مدیریت تقاضا که شامل موارد زیر می‌باشد؛

قیمت‌گذاری پویا: با تغییر قیمت برق در زمان‌های مختلف روز، می‌توان مصرف‌کنندگان را به مصرف در زمان‌های کم‌بار ترغیب کرد.

کنترل بار: با استفاده از فناوری‌های هوشمند، می‌توان مصرف برق را در زمان‌های اوج مصرف به طور خودکار کاهش داد.

پاسخگویی به تقاضا: با ارائه مشوق به مصرف‌کنندگان، می‌توان آنها را به کاهش مصرف برق در زمان‌های بحرانی تشویق کرد.

2. افزایش تولید برق؛

استفاده از منابع انرژی تجدیدپذیر: با استفاده از منابع انرژی تجدیدپذیر مانند نیروگاه خورشیدی و بادی می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد.
ذخیره‌سازی انرژی: با ذخیره‌سازی انرژی در زمان‌های تولید مازاد، می‌توان از آن در زمان‌های کمبود برق استفاده کرد.

3. ارتقای شبکه؛

استفاده از فناوری‌های دیجیتال: با استفاده از فناوری‌های دیجیتال مانند هوش مصنوعی و یادگیری ماشین می‌توان شبکه را به طور بهینه‌تر مدیریت کرد.

ایجاد شبکه‌های توزیع هوشمند: با ایجاد شبکه‌های توزیع هوشمند، می‌توان به طور موثرتری برق را به مصرف‌کنندگان رساند.

4. افزایش تعامل با مصرف‌کنندگان؛

ارائه اطلاعات به مصرف‌کنندگان: با ارائه اطلاعات به مصرف‌کنندگان در مورد مصرف برقشان، می‌توان آنها را به مصرف بهینه‌تر برق تشویق کرد.

توانمندسازی مصرف‌کنندگان: با ارائه ابزارهای لازم به مصرف‌کنندگان، می‌توان آنها را در مدیریت مصرف برق خود مشارکت داد.

مزایای استفاده از شبکه‌های هوشمند برای رفع ناترازی برق:

کاهش وابستگی به منابع انرژی فسیلی: با استفاده از شبکه‌های هوشمند می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد و انتشار گازهای گلخانه‌ای را کاهش داد.

افزایش پایداری شبکه: شبکه‌های هوشمند می‌توانند پایداری شبکه را در برابر اختلالات و حوادث افزایش دهند.

کاهش هزینه‌ها: با استفاده از شبکه‌های هوشمند می‌توان هزینه‌های تولید و توزیع برق را کاهش داد.

چالش‌های استفاده از شبکه‌های هوشمند:

هزینه اولیه بالا: پیاده‌سازی شبکه‌های هوشمند نیازمند سرمایه‌گذاری اولیه بالا است.

امنیت سایبری: شبکه‌های هوشمند به دلیل استفاده از فناوری‌های دیجیتال، در معرض تهدیدات سایبری هستند.

نیاز به آموزش: برای استفاده از شبکه‌های هوشمند، نیاز به آموزش و ظرفیت‌سازی در بین مصرف‌کنندگان و اپراتورها وجود دارد.

نتیجه‌گیری:

شبکه‌های هوشمند می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند. با استفاده از این شبکه‌ها می‌توان پایداری، انعطاف‌پذیری و راندمان شبکه‌های

برق را افزایش داد و هزینه‌ها را کاهش داد. با وجود برخی چالش‌ها، مزایای استفاده از شبکه‌های هوشمند بسیار بیشتر از هزینه‌های آن است.

در مقالات آتی به جزئیات بیشتری از شبکه‌های هوشمند می‌پردازیم.

 

نویسنده: دپارتمان خبری آرا نیرو

منابع:
وب‌سایت‌ها:
• U.S. Department of Energy – Office of Electricity
• National Institute of Standards and Technology (NIST): (https://www.nist.gov/smartgrid)
• Smart Grid International
• Electric Power Research Institute (EPRI)
مجله‌ها:
• IEEE Transactions on Smart Grid: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
• IET Smart Grid
• Elsevier – Renewable and Sustainable Energy Reviews: https://www.sciencedirect.com/journal/renewable-and-sustainable-energy-reviews
کتاب‌ها:
• Smart Grid: Modernization of Electric Power Delivery, by James Momoh
• The Smart Grid: An Introduction, by Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, and Akihiko Yokoyama
• Power Systems: Modeling, Computation, and Applications, by Abhijit Chakrabarti and Sunita Misra
گزارش‌ها:
• The Smart Grid: An Overview of Opportunities and Challenges, by the U.S. Department of Energy
• Modernizing the Electric Grid: A Primer on Smart Grid Technologies and Their Benefits, by the Electric Power Research Institute
سازمان‌ها:
• International Smart Grid Action Network (ISGAN)
• Smart Grid European Technology Platform (SG-ETP)
•  Google Scholar