اثر ذخیره انرژی در صنعت برق تجدیدپذیر و بهبود پایداری شبکه برق
باتری‌های ذخیره، باتری‌های جریان، ابرخازن‌ها، ذخیره هیدروژن و موارد دیگر شیوه تولید، انتقال و توزیع برق در حال تحول است و ذخیره انرژی به عنوان کاتالیزوری کلیدی برای یک سیستم انرژی پایدار عمل می‌کند. ما از نوآوری در راهکارهای ذخیره انرژی در مقیاس بزرگ و کوچک برای ادغام انرژی‌های تجدیدپذیر در شبکه برق، ایجاد یک شبکه توزیع واکنش‌پذیرتر و غیرمتمرکز و ایجاد فرصت‌هایی برای بازیگران نوظهور انرژی حمایت می‌کنیم.
به طور کلی منابع انرژی تجدیدپذیر به انرژی خورشیدی، بادی و آبی اشاره دارد. با این حال، عمدتاً نیروگاه خورشیدی و بادی است که نیاز به سیستم‌های ذخیره انرژی دارند.

مقدمه
صنعت برق در حال گذار به سوی منابع انرژی تجدیدپذیر است. این تحول، فرصت‌های بی‌نظیری را برای کاهش انتشار گازهای گلخانه‌ای و بهبود پایداری محیط زیست فراهم آورده است. با این حال، نوسانات تولید انرژی در منابع تجدیدپذیری مانند نیروگاه‌های خورشیدی، چالشی جدی برای حفظ پایداری شبکه برق ایجاد می‌کند. در این مقاله، به بررسی نقش حیاتی ذخیره انرژی در مدیریت این نوسانات و بهبود پایداری شبکه برق خواهیم پرداخت.
چالش‌های ناشی از نوسانات تولید انرژی در نیروگاه‌های خورشیدی
ناپایداری تولید: تولید برق در نیروگاه‌های خورشیدی به طور مستقیم به میزان تابش خورشید وابسته است. این وابستگی، منجر به نوسانات قابل توجهی در تولید برق در طول روز و فصول مختلف سال می‌شود.
عدم تطابق تولید و مصرف: در بسیاری از موارد، زمان تولید بیشینه برق در نیروگاه‌های خورشیدی با زمان پیک مصرف برق همخوانی ندارد. این عدم تطابق، می‌تواند منجر به مشکلات جدی در مدیریت شبکه برق شود.
تأثیر بر فرکانس شبکه: نوسانات تولید برق می‌تواند باعث ناپایداری فرکانس شبکه و در نتیجه، اختلال در عملکرد تجهیزات متصل به شبکه شود.
نقش ذخیره انرژی در بهبود پایداری شبکه برق
ذخیره انرژی به عنوان یک راهکار مؤثر برای مدیریت نوسانات تولید انرژی در نیروگاه‌های خورشیدی و بهبود پایداری شبکه برق مطرح می‌شود. سیستم‌های ذخیره انرژی قادرند انرژی اضافی تولید شده در زمان‌های پیک تولید را ذخیره کرده و در زمان‌های پیک مصرف یا در مواقعی که تولید انرژی کاهش می‌یابد، آن را به شبکه تزریق کنند.
مزایای استفاده از ذخیره انرژی در صنعت برق تجدیدپذیر:

تثبیت تولید: سیستم‌های ذخیره انرژی می‌توانند نوسانات تولید انرژی در نیروگاه‌های خورشیدی را کاهش داده و تولید برق را پایدارتر کنند.
بهبود تطابق عرضه و تقاضا: با ذخیره انرژی در زمان‌های کم‌بار و آزادسازی آن در زمان‌های پیک مصرف، می‌توان به تعادل بین عرضه و تقاضا دست یافت.
افزایش انعطاف‌پذیری شبکه: سیستم‌های ذخیره انرژی به شبکه برق انعطاف‌پذیری بیشتری بخشیده و آن را در برابر اختلالات مقاوم‌تر می‌سازند.
کاهش تلفات انرژی: با بهینه سازی جریان انرژی در شبکه، می‌توان تلفات انرژی را کاهش داد.
افزایش بهره‌وری نیروگاه‌های خورشیدی: با استفاده از سیستم‌های ذخیره انرژی، می‌توان از حداکثر ظرفیت نیروگاه‌های خورشیدی بهره‌برداری کرد.

انواع سیستم‌های ذخیره انرژی
باتری‌ها: رایج‌ترین نوع سیستم ذخیره انرژی هستند و در ظرفیت‌های مختلفی در دسترس می‌باشند.
پمپ ذخیره: این سیستم‌ها از انرژی اضافی برای پمپاژ آب به مخزنی در ارتفاع بالاتر استفاده می‌کنند و در زمان نیاز، آب را از مخزن رها کرده تا توربینی را به حرکت درآورده و برق تولید کنند.
چرخ طیار: این سیستم‌ها از انرژی جنبشی یک چرخ دوار برای ذخیره انرژی استفاده می‌کنند.
هیدروژن: در این روش، انرژی اضافی برای تولید هیدروژن استفاده می‌شود و در زمان نیاز، هیدروژن با اکسیژن ترکیب شده و برق تولید می‌کند.

نتیجه‌گیری 

ذخیره انرژی نقش بسیار مهمی در توسعه پایدار صنعت برق تجدیدپذیر و بهبود پایداری شبکه برق ایفا می‌کند. با استفاده از سیستم‌های ذخیره انرژی، می‌توان مشکلات ناشی از نوسانات تولید انرژی در نیروگاه‌های خورشیدی را برطرف کرده و به یک شبکه برق پایدارتر و انعطاف‌پذیرتر دست یافت.

مقایسه انواع مختلف سیستم‌های ذخیره انرژی با تمرکز بر کاربرد در کنار نیروگاه‌های خورشیدی
با گسترش روزافزون استفاده از انرژی‌های تجدیدپذیر به ویژه انرژی خورشیدی، نیاز به سیستم‌های ذخیره انرژی جهت بهبود پایداری و بهره‌وری شبکه برق بیش از پیش احساس می‌شود. سیستم‌های ذخیره انرژی قادرند انرژی تولید شده در زمان پیک تولید توسط نیروگاه‌های خورشیدی را ذخیره کرده و در زمان‌های نیاز به شبکه تزریق نمایند. در این مقاله، به مقایسه انواع مختلف سیستم‌های ذخیره انرژی با تمرکز بر کاربرد آن‌ها در کنار نیروگاه‌های خورشیدی خواهیم پرداخت.

انواع سیستم‌های ذخیره انرژی
سیستم‌های ذخیره انرژی را می‌توان بر اساس فناوری مورد استفاده به دسته‌های زیر تقسیم کرد:
باتری‌ها:
باتری‌های لیتیوم-یون: رایج‌ترین نوع باتری در سیستم‌های ذخیره انرژی هستند. دارای چگالی انرژی بالا، عمر طولانی و بازده بالا می‌باشند.
باتری‌های سدیم-یون: جایگزین ارزان‌تری برای باتری‌های لیتیوم-یون هستند و دارای چگالی انرژی پایین‌تری می‌باشند.
باتری‌های سرب-اسید: قدیمی‌ترین نوع باتری هستند و معمولاً در کاربردهای با توان پایین استفاده می‌شوند.
سیستم‌های ذخیره انرژی مکانیکی:
پمپ ذخیره: از انرژی اضافی برای پمپاژ آب به مخزنی در ارتفاع بالاتر استفاده می‌کند.
چرخ طیار: انرژی جنبشی یک چرخ دوار را ذخیره می‌کند.
هوای فشرده: انرژی را به صورت هوای فشرده در مخزنی ذخیره می‌کند.
سیستم‌های ذخیره انرژی حرارتی:
ذخیره حرارت در مواد جامد: از مواد با ظرفیت حرارتی بالا برای ذخیره حرارت استفاده می‌کند.
ذخیره حرارت در مواد مذاب: از مواد مذابی مانند نمک برای ذخیره حرارت استفاده می‌کند.

انتخاب سیستم مناسب
انتخاب سیستم ذخیره انرژی مناسب برای یک نیروگاه خورشیدی به عوامل مختلفی از جمله اندازه نیروگاه، نوع بار، هزینه، عمر مفید، سرعت پاسخگویی و سیاست‌های محلی بستگی دارد. برای مثال:
باتری‌های لیتیوم-یون: برای کاربردهای مسکونی و تجاری و همچنین شبکه‌های توزیع مناسب هستند.
سیستم‌های پمپ ذخیره: برای کاربردهای بزرگ مقیاس و تنظیم فرکانس شبکه مناسب هستند.
چرخ طیار: برای کاربردهایی با توان بالا و زمان پاسخگویی کوتاه مناسب هستند.
ذخیره حرارتی: برای کاربردهای صنعتی و ذخیره حرارت مناسب هستند.

نتیجه‌گیری
سیستم‌های ذخیره انرژی نقش بسیار مهمی در توسعه پایدار انرژی‌های تجدیدپذیر و بهبود پایداری شبکه برق ایفا می‌کنند. انتخاب سیستم مناسب به عوامل مختلفی بستگی دارد. با توجه به پیشرفت‌های اخیر در فناوری باتری‌ها و کاهش هزینه‌های آن‌ها، انتظار می‌رود که باتری‌های لیتیوم-یون به عنوان رایج‌ترین سیستم ذخیره انرژی در کنار نیروگاه‌های خورشیدی مورد استفاده قرار گیرند.
چالش‌های اقتصادی و فنی در پیاده‌سازی سیستم‌های ذخیره انرژی در کنار نیروگاه‌های خورشیدی
سیستم‌های ذخیره انرژی به عنوان یکی از کلیدی‌ترین فناوری‌ها برای افزایش بهره‌وری و پایداری شبکه‌های برق مبتنی بر انرژی‌های تجدیدپذیر، به‌ویژه نیروگاه‌های خورشیدی، شناخته می‌شوند. با این حال، پیاده‌سازی گسترده این سیستم‌ها با چالش‌های اقتصادی و فنی متعددی همراه است. در این مقاله، به بررسی این چالش‌ها خواهیم پرداخت.

چالش‌های اقتصادی
هزینه اولیه بالا: هزینه بالای تجهیزات و نصب سیستم‌های ذخیره انرژی، یکی از اصلی‌ترین موانع گسترش آن‌ها است.
هزینه‌های نگهداری و تعمیرات: هزینه‌های مربوط به نگهداری و تعمیرات این سیستم‌ها در طول عمر مفید آن‌ها نیز قابل توجه است.
بازگشت سرمایه طولانی‌مدت: دوره بازگشت سرمایه در پروژه‌های ذخیره انرژی معمولاً طولانی است و این امر برای سرمایه‌گذاران جذابیت کمتری دارد.
عدم وجود بازارهای ثانویه مناسب: نبود بازارهای ثانویه قوی برای خرید و فروش انرژی ذخیره شده، می‌تواند مانع از توسعه این بازار شود.
عدم قطعیت در سیاست‌گذاری‌ها: تغییر در سیاست‌های حمایتی دولت‌ها و نوسانات قیمت انرژی، می‌تواند بر توجیه اقتصادی پروژه‌های ذخیره انرژی تأثیر بگذارد.

چالش‌های فنی
انتخاب فناوری مناسب: انتخاب فناوری مناسب برای ذخیره انرژی به عوامل مختلفی مانند ظرفیت، توان، طول عمر، هزینه و شرایط محیطی بستگی دارد و تصمیم‌گیری در این زمینه پیچیده است.
مدیریت حرارتی: مدیریت حرارت در باتری‌ها و سایر سیستم‌های ذخیره انرژی، به ویژه در مناطق گرمسیری، یکی از چالش‌های مهم است.
تعیین ظرفیت بهینه: تعیین ظرفیت بهینه سیستم ذخیره انرژی برای هر پروژه، نیازمند تحلیل دقیق داده‌های تولید و مصرف انرژی است.
یکپارچه‌سازی با شبکه: یکپارچه‌سازی سیستم‌های ذخیره انرژی با شبکه برق موجود، نیازمند استانداردسازی و توسعه پروتکل‌های ارتباطی مناسب است.
طول عمر و قابلیت اطمینان: افزایش طول عمر و قابلیت اطمینان سیستم‌های ذخیره انرژی، یکی از اهداف اصلی پژوهشگران و مهندسان است.
راهکارهای مقابله با چالش‌ها
حمایت‌های دولتی: ارائه مشوق‌های مالی، تسهیلات اعتباری و ایجاد بازارهای ثانویه برای انرژی ذخیره شده، می‌تواند به کاهش هزینه‌ها و افزایش جذابیت سرمایه‌گذاری در این حوزه کمک کند.
توسعه فناوری: تحقیق و توسعه در زمینه فناوری‌های جدید ذخیره انرژی، می‌تواند به کاهش هزینه‌ها و افزایش کارایی این سیستم‌ها کمک کند.

بهینه‌سازی طراحی: طراحی هوشمندانه سیستم‌های ذخیره انرژی و استفاده از الگوریتم‌های بهینه‌سازی، می‌تواند به کاهش هزینه‌ها و افزایش بهره‌وری آن‌ها کمک کند.
توسعه بازارهای انرژی: ایجاد بازارهای انرژی با قابلیت خرید و فروش انرژی ذخیره شده، می‌تواند به ایجاد انگیزه برای سرمایه‌گذاری در این حوزه کمک کند.

همکاری بین‌بخشی: همکاری بین بخش‌های مختلف مانند صنعت، دانشگاه و دولت، می‌تواند به حل چالش‌های فنی و اقتصادی در این حوزه کمک کند.

نتیجه‌گیری
سیستم‌های ذخیره انرژی نقش بسیار مهمی در توسعه پایدار انرژی‌های تجدیدپذیر و بهبود پایداری شبکه برق ایفا می‌کنند. با این حال، پیاده‌سازی گسترده این سیستم‌ها با چالش‌های اقتصادی و فنی متعددی همراه است. برای غلبه بر این چالش‌ها، نیاز به همکاری بین‌بخشی، حمایت‌های دولتی و توسعه فناوری‌های جدید است.
در مقاله بعدی به بررسی موردی پروژه‌های موفق پیاده‌سازی سیستم‌های ذخیره انرژی در کنار نیروگاه‌های خورشیدی خواهیم پرداخت.

نویسنده: دپارتمان خبری آرا نیرو

رصد تحولات در چشم‌انداز انرژی‌های تجدیدپذیر آفریقای جنوبی

 

این مقاله به رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی پرداخته و چالش‌های مربوط به نوسانات تولید برق بادی در زمستان به دلیل عبور جبهه‌های سرد، و همچنین تاثیر آن بر تقاضای برق را توضیح می‌دهد.

 

برنامه تامین انرژی تجدیدپذیر آفریقای جنوبی با مشارکت بخش خصوصی، موجب افزایش تولید برق بادی شده است.

روزنامه دیلی ماوریک از مزارع بادی Brandvalley و Rietkloof در منطقه Karoo بازدید کرد که در حال ساخت هستند. هر یک از این مزارع پس از تکمیل، قادر خواهند بود سالانه حدود ۵۹۰ گیگاوات ساعت انرژی تولید کنند.

غول‌های سفید دست‌ساز مزارع بادی Brandvalley و Rietkloof، تضادی خیره‌کننده با چشم‌انداز ناهموار و خالی از سکنه Karoo ایجاد کرده‌اند. این پروژه‌های خواهر در امتداد مرز بین استان‌های کیپ غربی و کیپ شمالی، درست در کنار جاده R354 که شهرهای Matjiesfontein و Sutherland را به هم متصل می‌کند، قرار دارند.

پس از تکمیل، هر مزرعه بادی دارای 32 توربین بادی Vestas V150-4.5MW خواهد بود که قادر به تولید حدود 590 گیگاوات ساعت انرژی در سال است. این امر به هر پروژه اجازه می‌دهد سالانه حدود 183000 خانوار را تامین انرژی کند و در عین حال از انتشار تقریباً 620,000 تن معادل CO2 در هر سال جلوگیری کند.

1.1 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : در حال ساخت در نیروگاه بادی Brandvalley: تصویری از یک توربین بادی در حال تکمیل. (عکس: تامسین متلرکمپ)

 

مزارع بادی Brandvalley و Rietkloof بخشی از گروهی از پروژه‌هایی هستند که در فوریه ۲۰۲۳ تحت پنجره مزایده ۵ برنامه تامین انرژی تجدیدپذیر آفریقای جنوبی با مشارکت بخش خصوصی (REIPPP) به مرحله تامین مالی نهایی رسیدند. انتظار می‌رود هر دو پروژه در سه ماهه چهارم سال جاری به صورت تجاری به بهره‌برداری برسند.

2 fb30ae - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

تیغه یک توربین بادی توسط جرثقیل در نیروگاه بادی Brandvalley بلند می‌شود. (عکس: تامسین متلرکمپ)

 

 

3 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

کارگران در پایه‌ی یک توربین بادی در حال ساخت در نیروگاه بادی Brandvalley. کارگران سمت راست با استفاده از طناب‌های بلند، زاویه تیغه‌ای را که توسط جرثقیل بلند می‌شود، تنظیم می‌کنند. (عکس: تامسین متلرکمپ)

توسعه بخش تولید برق بادی در آفریقای جنوبی

در سال‌های اخیر، بخش انرژی‌های تجدیدپذیر آفریقای جنوبی با سرعت زیادی گسترش یافته است. انبوهی از پروژه‌های ساختمانی ظرفیت تولید برق از طریق انرژی خورشیدی و بادی را افزایش داده است.

شرکت Eskom گزارش داد که از تاریخ ۱ ژوئن ۲۰۲۳ تا ۳۱ می ۲۰۲۴، ۱۱.۴ تراوات ساعت انرژی از مزارع بادی خصوصی تحت برنامه REIPPPP خریداری کرده است. در حال حاضر ۴۰ مزرعه بادی تحت این برنامه وجود دارد که ۳۴ مورد از آنها با ظرفیت مشترک ۳۳۵۷.۳ مگاوات در حال بهره‌برداری تجاری هستند. شش مزرعه بادی دیگر نیز در حال ساخت می‌باشند.

4 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

نیروگاه بادی Brandvalley در حال ساخت در سایتی در امتداد مرزهای کیپ غربی و کیپ شمالی. (عکس: تامسین متلرکمپ)

 

نوسان در میزان تولید برق بادی در آفریقای جنوبی

شرکت Eskom اعلام کرده است که میزان برقی که روزانه توسط انرژی بادی وارد شبکه برق آفریقای جنوبی می‌شود، بسیار متغیر است. بالاترین میزان ثبت‌شده تولید برق بادی در یک روز، ۳۱۰۰ مگاوات بوده است، در حالی که این میزان می‌تواند تا حدود ۲۰۰ مگاوات نیز کاهش یابد.

این بخش اطلاعات تکمیلی راجع به نوسانات تولید برق بادی در آفریقای جنوبی ارائه می‌دهد و با متن قبلی در مورد توسعه این بخش مرتبط است.

نوسانات فصلی در تولید برق بادی

بر اساس گفته‌های Eskom، «به دلیل نصب بیشتر ژنراتورهای بادی در امتداد مناطق ساحلی کیپ، در تولید برق بادی آفریقای جنوبی، قطعاً فصل‌بندی وجود دارد. در تابستان، تولید برق بادی در طول شب به شدت کاهش می‌یابد و در زمان غروب آفتاب به حداکثر میزان خود در طول روز می‌رسد.»

«این امر به دلیل بادهای قوی دریایی است که به سمت غروب آفتاب می‌وزند و ناشی از اختلاف دما بین خشکی و دریا است. این الگو تقریباً به طور کامل با الگوی تقاضای برق کشور مطابقت دارد، زیرا بالاترین تقاضا در عصر و حوالی غروب آفتاب است.»

این متن جزئیات بیشتری را در مورد دلایل نوسانات روزانه تولید برق بادی ارائه می دهد و همچنین به ارتباط بین این نوسانات و تقاضای برق کشور اشاره می کند.

5 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

بادسنج و جهت‌یاب باد در بالاترین نقطه توربین بادی نیروگاه Brandvalley، بر روی محفظه (محل قرارگیری تجهیزات) یا بالای دکل نصب شده‌اند. (عکس: تامسین متلرکمپ)

چالش‌های تولید برق بادی در زمستان

متاسفانه، میزان تولید برق بادی در زمستان تحت تاثیر جبهه‌های سردی است که از مناطق کیپ عبور می‌کنند. قبل از رسیدن جبهه سرد، بادهای شدید می‌وزند و این امر به طور قابل توجهی خروجی تولید برق بادی را افزایش می‌دهد. با عبور جبهه سرد از مناطق کیپ، حوضه کم‌فشار پشت این جبهه باعث کاهش شدید تولید برق بادی می‌شود.

موسسه Eskom گزارش می‌دهد که: «این خروجی بالا به دنبال خروجی پایین اغلب طی ۳۶ تا ۴۸ ساعت اتفاق می‌افتد و با رسیدن هوای سرد به گائوتنگ همزمان می‌شود. بنابراین، علاوه بر تامین تقاضای اضافی ناشی از هوای سرد، باید کمبود ناشی از کاهش تولید برق بادی را نیز جبران کند.»

6 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : هاب روتور یک توربین بادی در مزرعه بادی برندوالی. توپی روتور پره ها را نگه می دارد و آنها را به محور اصلی توربین بادی متصل می کند. (عکس: Tamsin Metelerkamp)

غول‌های بادی مقاوم

شرکت Red Rocket Energy، تولیدکننده مستقل انرژی و مسئول این پروژه‌ها، اعلام کرده است که توربین‌های بادی در مزارع بادی Brandvalley و Rietkloof دارای عمر مفید حداقل ۲۰ ساله هستند، اما بسته به شرایط خاص محل، می‌توانند تا ۳۰ سال یا بیشتر عمر کنند.

بزرگی قطعات تشکیل دهنده هر توربین بادی، افراد حاضر در محل را بسیار کوچک نشان می‌دهد. به گفته اولوین هوفمان، رئیس بخش مدیریت پروژه، تدارکات و ساخت‌وساز در شرکت Red Rocket Energy، طول هر تیغه تقریباً ۷۴ متر و قطر کامل روتور برای یک سازه کامل ۱۵۰ متر است. همچنین ارتفاع محل اتصال پره‌ها (هاب) ۹۰ متر و ارتفاع نوک تیغه‌ها ۱۶۵ متر می‌باشد.

7 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : تیغه یک توربین بادی در مزرعه بادی برندوالی. (عکس: Tamsin Metelerkamp)

 

8 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : اولوین هافمن، رئیس پروژه، مدیریت تدارکات و ساخت و ساز در Red Rocket Energy، در مقابل تیغه یک توربین بادی در مزرعه بادی برندوالی. (عکس: Tamsin Metelerkamp)

 

هافمن گفت: جرثقیل مورد استفاده برای بلند کردن پره ها در بالای توربین ها باید دمونتاژ شود و با استفاده از 25 کامیون حمل و نقل شود.

 

در حالی که تعداد کارکنان شاغل در سایت های مزرعه بادی در طول فرآیند ساخت و ساز متفاوت است، در این مرحله به طور متوسط ​​روزانه 600 کارمند در هر سایت وجود دارد. بیش از 25 درصد از این کارکنان از جوامع اطراف پروژه ها هستند.

بر اساس گفته های شرکت انرژی رد راکت، نگرانی مهمی که کار در سایت های برندولی و ریتکلوف را هدایت می کند، اطمینان از طراحی، ساخت و بهره برداری از تمام سازه ها مطابق با قوانین ملی و بین المللی، دستورالعمل ها و بهترین روش های موجود برای محافظت از محیط زیست و حفظ تنوع زیستی است.

این پروژه ها از طریق فرآیندهای ارزیابی تأثیر زیست محیطی مجوز معتبر زیست محیطی دریافت کرده اند.

شرکت رد راکت توضیح داد: «این پروژه ها برای دستیابی به رویکرد “بدون کاهش خالص” [در زمینه] تنوع زیستی، به ویژه برای گونه های در معرض خطر و اکوسیستم ها تلاش می کنند. اگرچه تأثیرات پرندگان را نباید به تنهایی در نظر گرفت، اما این تأثیرات از طریق مجوزهای زیست محیطی (EA) و برنامه های مدیریت زیست محیطی (EMPr) پروژه ها به شدت مورد نظارت و مدیریت قرار می گیرند.»

«هر دو نیروگاه بادی برندولی و ریتکلوف برای کاهش تأثیر بر پرندگان، از تیغه های توربین با الگوی خاص به عنوان اولین سطح کاهش آسیب استفاده کرده اند. علاوه بر این، نیروگاه بادی برندولی از فناوری پیشرو در صنعت به نام سیستم خاموش شدن خودکار بر اساس تقاضا استفاده خواهد کرد… سایر اقدامات تکنولوژیکی زیست محیطی در محل شامل اجرای روشنایی فعال با حسگر برای کاهش تأثیرات بصری در شب طبق مقررات هواپیمایی کشوری است.»

نویسنده : دپارتمان خبری آرا نیرو 

 

 

 

 

 

 

 

چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

حذف ارز نیمایی برای پنل و اینورتر خورشیدی و همچنین خروج کالاهای مرتبط با نیروگاه‌های خورشیدی از فهرست 750 قلم کالای قابل واردات با ارز نیمایی، چالش‌های متعددی را برای این صنعت در ایران به وجود خواهد آورد.

برخی از این چالش‌ها عبارتند از:
* افزایش قیمت تجهیزات: با حذف ارز نیمایی، قیمت پنل‌ها و اینورترهای خورشیدی به طور قابل توجهی افزایش یافته است. این امر باعث شده تا سرمایه‌گذاری در احداث نیروگاه‌های خورشیدی از صرفه اقتصادی خارج شده و از تمایل بخش خصوصی برای سرمایه‌گذاری در این حوزه کاسته شود.

* کاهش تولید: افزایش قیمت تجهیزات، به طور مستقیم در روند تولید و احداث نیروگاه‌های خورشیدی تاثیر منفی خواهد گذاشت. از آنجایی که قیمت تمام شده تولید برق خورشیدی افزایش میابد، تمایل برای احداث نیروگاه‌های جدید کاهش پیدا خواهد کرد.

* مشکلات تامین تجهیزات: در صورتیکه واردات پنل و اینورتر خورشیدی با ارز نیمایی امکان‌پذیر نباشد،  یافتن و تامین این تجهیزات از طریق واردات با ارز آزاد با دشواری‌های زیادی همراه خواهد شد. این امر علاوه بر افزایش قیمت، به طولانی شدن زمان احداث نیروگاه‌های خورشیدی نیز منجر می‌شود.
با وجود تاکید بر توسعه انرژی‌های تجدیدپذیر،  میبایست حمایت‌های کافی از سوی دولت برای جبران چالش‌های پیش روی این صنعت صورت گیرد. نبود سیاست‌های تشویقی و عدم ارائه تسهیلات مناسب به سرمایه‌گذاران، از جمله موانعی است که بر سر راه توسعه این صنعت در ایران قرار دارد.
علاوه بر این چالش‌ها، موارد زیر نیز می‌توانند به عنوان پیامدهای حذف ارز نیمایی برای صنعت  خورشیدی ایران در نظر گرفته شوند:

* افزایش وابستگی به سوخت‌های فسیلی: با افزایش هزینه تولید برق خورشیدی، تمایل به استفاده از سوخت‌های فسیلی افزایش خواهد یافت. این امر نه تنها مغایر با اهداف توسعه پایدار و حفظ محیط زیست است،  بلکه به تشدید آلودگی هوا و افزایش آلاینده‌های زیست‌محیطی نیز منجر می‌شود.

* از دست رفتن فرصت‌های شغلی: صنعت  خورشیدی در ایران پتانسیل ایجاد اشتغال قابل توجهی را دارد. با توقف روند توسعه این صنعت،  فرصت‌های شغلی زیادی از بین خواهد رفت.

* کاهش تنوع در منابع تولید برق:  حذف ارز نیمایی برای  خورشیدی  تنوع در منابع تولید برق را کاهش خواهد داد و وابستگی کشور به یک منبع خاص انرژی را افزایش می‌دهد. این امر می‌تواند امنیت انرژی کشور را به خطر انداخته و در زمان‌های بحران،  مشکلات عدیده‌ای را به وجود آورد. ضمن اینکه مشکل ناترازی برق کشور قابل حل نخواهد بود مگر با رویکرد حمایتی از نیروگاه های خورشیدی‌.
در نهایت،  لازم است به این نکته توجه شود که حذف ارز نیمایی برای تجهیزات خورشیدی  تنها به ضرر این صنعت نیست،  بلکه پیامدهای منفی آن دامنه‌ گسترده‌تری را شامل می‌شود و می‌تواند به طور کلی بر روند توسعه پایدار ایران تاثیر منفی بگذارد.

 

energy renewable solar panel transmission lines - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

راهکارهای پیشنهادی:

*حفظ ارز نیمایی و البته بهتر از آن تخصیص ارز ترجیحی به تجهیزات نیروگاه خورشیدی؛
نجات کشور از ریسک خاموشی سراسری، به حمایت‌های دولتی از صنعت فتوولتائیک وابسته است. این حمایت ها می‌تواند احداث نیروگاه های خورشیدی در ایران را تسریع کند و علاوه بر حل مشکل ناترازی برق و افزایش قابلیت اطمینان شبکه توزیع برق کشور به اقتصاد کشور کمک شایانی کرده و سبب ارز آوری برای کشور باشد.

* اعطای  تسهیلات و حمایت‌های مالی به سرمایه‌گذاران در این حوزه:  ارائه وام‌های کم‌بهره،  تخفیف در مالیات و عوارض گمرکی،  و همچنین ارائه یارانه‌های حمایتی از جمله اقداماتی هستند که می‌توانند برای جبران افزایش قیمت تجهیزات و تشویق سرمایه‌گذاری در این صنعت  مفید باشند.

* تدوین قوانین و مقررات حمایتی:  برقراری قوانین و مقررات شفاف و  حمایتی  می‌تواند  به  ایجاد  محیطی  مناسب برای  توسعه  این  صنعت  در  ایران  کمک  کند.

* تخصیص خطوط اعتباری: می‌تواند با اختصاص خطوط اعتباری کم‌بهره به سرمایه‌گذاران در این حوزه،  زمینه را برای احداث و توسعه نیروگاه‌های خورشیدی فراهم کرد.

* جذب  سرمایه‌گذاری  بخش  خصوصی  در  حوزه  خورشیدی :  دولت  می‌تواند  با  ایجاد  فضایی  مناسب  برای  فعالیت  بخش  خصوصی  و  ارائه  تسهیلات  لازم،  زمینه  را  برای  جذب  سرمایه‌گذاری  بیشتر  در  این  حوزه  فراهم  کند.

* توسعه  مشارکت‌های  عمومی-خصوصی:  توسعه  مشارکت‌های  عمومی-خصوصی  می‌تواند  به  اجرای  پروژه‌های  بزرگ  خورشیدی  و  کاهش  هزینه‌های  احداث  این  نیروگاه‌ها  کمک  کند.

istockphoto 1345681583 612x612 1 - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

با  اجرای  این  راهکارها  می‌توان  امید  داشت  که  چالش‌های  موجود  در  مسیر  توسعه  صنعت  خورشیدی  در  ایران  تا  حد  زیادی  مرتفع  شود  و  این  صنعت  به  عنوان  یکی  از  منابع  اصلی  تولید  برق  در  کشور  نقش  آفرینی  کند.
علاوه بر موارد ذکر شده، موارد زیر نیز می‌توانند به عنوان راهکارهای تکمیلی برای مقابله با چالش‌های نیروگاه‌های خورشیدی در ایران در نظر گرفته شوند:

* تسهیل صدور مجوزها:  بسیاری از سرمایه‌گذاران در این حوزه با بروکراسی پیچیده و زمان‌بر صدور مجوزها مواجه هستند.  تسهیل و streamlined کردن این فرآیند می‌تواند به تسریع روند احداث نیروگاه‌های خورشیدی و کاهش هزینه‌های سرمایه‌گذاری کمک کند.

* آموزش  نیروی  انسانی  متخصص:  توسعه  برنامه‌های  آموزشی  در  دانشگاه‌ها  و  مراکز  آموزشی  می‌تواند  به  تربیت  نیروی  انسانی  متخصص  در  زمینه  خورشیدی  و  ایجاد  زیربنای  لازم  برای  رشد  و  توسعه  این  صنعت  در  کشور  کمک  کند.

* استفاده  از  ظرفیت  صادرات:  ایران  از  نظر  پتانسیل  خورشیدی  یکی  از  کشورهای  برخوردار  در  منطقه  است.  با  توسعه  این  صنعت  و  کاهش  هزینه‌های  تولید،  می‌توان  از  ظرفیت  صادرات  برق  خورشیدی  به  کشورهای  همسایه  نیز  استفاده  کرد.

در  نهایت،  لازم  است  به  این  نکته  توجه  شود  که  توسعه  صنعت  خورشیدی  در  ایران  نیازمند  یک  عزم  ملی  و  همکاری  همه  دستگاه‌ها  و  نهادهای  ذیربط  است.  با  اتخاذ  سیاست‌های  مناسب  و  حمایت  از  این  صنعت،  می‌توان  امید  داشت  که  ایران  به  یکی  از  پیشگامان  منطقه  در  زمینه  استفاده  از  انرژی  خورشیدی  تبدیل  شود.

نویسنده: دپارتمان خبری آرا نیرو

اولین ایستگاه ذخیره انرژی باتری سدیم در مقیاس بزرگ چین به بهره برداری رسید

 

چین اولین نیروگاه ذخیره سازی انرژی با باتری سدیم در مقیاس بزرگ را راه اندازی کرده است. این نیروگاه ۱۰ مگاوات ساعت ظرفیت دارد و در استان گوانگشی در جنوب غربی چین واقع شده است. این پروژه اولین نیروگاه ذخیره سازی انرژی در چین است که از باتری های سدیمی در چنین ابعادی استفاده می کند.

بهره برداری از این نیروگاه نقطه عطفی برای استفاده گسترده از باتری های سدیمی کم هزینه در ذخیره سازی انرژی های تجدیدپذیر به شمار می رود.
نیروگاه ذخیره سازی انرژی که توسط شعبه گوانگشی شرکت برق جنوب چین ساخته شده، فاز اول یک پروژه ۱۰۰ مگاوات ساعتی است.

طبق بیانیه‌ای که در ۱۱ می از سوی بخش ذخیره سازی انرژی شرکت برق جنوب چین منتشر شد، پس از تکمیل کل پروژه، این نیروگاه قادر خواهد بود سالانه ۷۳ میلیون کیلووات ساعت برق پاک تأمین کند، نیازهای برق ۳۵۰۰۰ مشترک خانگی را برآورده سازد و انتشار گاز دی اکسید کربن را تا ۵۰ هزار تن کاهش دهد.

این بیانیه همچنین اشاره می کند که تا پایان سه ماهه اول سال، ظرفیت کل نصب شده پروژه های جدید ذخیره سازی انرژی چین به ۳۵.۳ میلیون کیلووات ساعت رسیده است که از این میان، بیش از ۹۵ درصد آن مربوط به ذخیره سازی الکتروشیمیایی، از جمله باتری های لیتیوم یونی، می باشد.

بیانیه مذکور همچنین به کمبود منابع مواد اولیه باتری های لیتیوم یونی اشاره می کند که مانعی برای توسعه پایدار و سریع صنعت ذخیره سازی انرژی جدید چین به شمار می‌رود.

باتری های سدیمی و لیتیوم یونی از لحاظ مکانیزم الکتروشیمیایی شباهت دارند. هر دو نوع باتری از طریق جداسازی و جایگذاری برگشت پذیر کاتیون ها بین الکترودهای مثبت و منفی، به ذخیره و رهاسازی انرژی دست می‌یابند.

آند هر دو نوع باتری از کربن ساخته شده است، با این تفاوت که ماده کاتد باتری های لیتیوم یونی حاوی یون های لیتیوم و ماده کاتد باتری های سدیمی حاوی یون های سدیم است.

در هنگام شارژ، یون های سدیم از الکترود مثبت باتری خارج شده و از طریق الکترولیت و جداکننده وارد الکترود منفی می شوند و بدین ترتیب انرژی در باتری ذخیره می گردد.
در فرایند دشارژ، این یون ها دوباره از الکترود منفی خارج شده و از طریق الکترولیت به الکترود مثبت باز می گردند و انرژی ذخیره شده در باتری را به شبکه برق منتقل می کنند.

شرکت ذخیره سازی انرژی شرکت برق جنوب چین اعلام کرد که باتری های سدیمی در مقایسه با باتری های لیتیوم یونی از مزایای قابل توجهی برخوردار هستند، زیرا ذخایر مواد اولیه آن‌ها فراوان، استخراجشان آسان، قیمتشان پایین، عملکردشان در دماهای پایین بهتر و برای ذخیره سازی انرژی در مقیاس بزرگ مناسب‌تر هستند.

طبق گفته چن من، کارشناس فنی شرکت برق جنوب چین، با ورود باتری های سدیمی به عرصه کاربردهای وسیع، هزینه آن ها می‌تواند ۲۰ تا ۳۰ درصد کاهش یابد و قیمت هر کیلووات ساعت برق به ۰.۲ یوان چین (معادل ۰.۰۲۷۶ دلار آمریکا) برسد. این فناوری جهتی مهم برای ترویج کاربرد سیستم های ذخیره سازی انرژی جدید به شمار می رود.

بیانیه همچنین اشاره می کند که این نیروگاه ذخیره سازی انرژی ۱۰ مگاوات ساعتی از سلول های باتری سدیمی ۲۱۰ آمپر ساعت استفاده می کند که قابلیت شارژ تا ۹۰ درصد در مدت ۱۲ دقیقه را دارا هستند.

بر اساس این بیانیه، تیم تحقیق و توسعه پروژه، یک سیستم مدیریت حرارتی ایجاد کرده است که اختلاف دما بین بیش از ۲۲۰۰۰ سلول باتری سدیمی را در محدوده ۳ درجه سانتیگراد نگه می دارد و زمان انتشار فرار حرارتی (thermal runaway) از سلول ها را از ۳۰ دقیقه به ۲ ساعت افزایش می دهد.

منبع:cnevpost/2024/05/13/china

نقش فیوزها در نیروگاه خورشیدی فتوولتائیک
فیوزها در نیروگاه‌های خورشیدی فتوولتائیک (PV) نقشی حیاتی برای حفاظت از تجهیزات و ایمنی افراد ایفا می‌کنند. وظایف اصلی فیوزها در این سامانه‌ها عبارتند از:

1. حفاظت از پنل‌های خورشیدی:
در صورت اتصال کوتاه یا اضافه بار در پنل‌های خورشیدی، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن پنل‌ها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد پنل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

2. حفاظت از کابل‌ها:
در صورت اتصال کوتاه یا اضافه بار در کابل‌های رابط بین پنل‌ها و سایر تجهیزات، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن کابل‌ها جلوگیری شود.
فیوزها با قطع جریان، از ذوب شدن کابل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

3. حفاظت از اینورترها:
در صورت اتصال کوتاه یا اضافه بار در اینورترها، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن اینورترها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد اینورترها و بروز آتش‌سوزی جلوگیری می‌کنند.

4. حفاظت از جان افراد:
در صورت بروز نقص الکتریکی در سامانه PV، فیوزها جریان را قطع می‌کنند تا از برق گرفتگی افراد جلوگیری شود.

انواع فیوزهای مورد استفاده در نیروگاه‌های خورشیدی:
فیوزهای DC: این نوع فیوزها برای حفاظت از مدارهای DC در سامانه‌های PV استفاده می‌شوند.
فیوزهای AC: این نوع فیوزها برای حفاظت از مدارهای AC در سامانه‌های PV استفاده می‌شوند.
نکات مهم در انتخاب فیوز برای نیروگاه‌های خورشیدی:
جریان نامی: فیوز باید با توجه به جریان نامی مدار انتخاب شود.
ولتاژ نامی: فیوز باید با توجه به ولتاژ نامی مدار انتخاب شود.
ظرفیت قطع: فیوز باید با توجه به ظرفیت قطع مورد نیاز سامانه PV انتخاب شود.

نتیجه:
فیوزها جزئی ضروری از سامانه‌های PV هستند و نقش مهمی در حفاظت از تجهیزات و افراد ایفا می‌کنند. انتخاب و نصب صحیح فیوزها می‌تواند از بروز مشکلات و خطرات احتمالی جلوگیری کند.
کمیسیون بین‌المللی الکتروتکنیک (IEC) نیز الزامات و روش‌های تست فیوزهای مخصوص نیروگاه‌های خورشیدی را به تفصیل ارائه داده که خلاصه آن را به شرح زیر ارائه می‌دهیم.
استاندارد IEC 60269: فیوزها – فیوزهای مخصوص سامانه‌های فتوولتائیک
این بخش از IEC 60269 الزامات و روش‌های تست فیوزهای مخصوص سامانه‌های فتوولتائیک (PV) را ارائه می‌دهد. هدف از این استاندارد، تضمین عملکرد ایمن و قابل اعتماد فیوزها در سامانه‌های PV است.

دامنه کاربرد
این استاندارد برای فیوزهای مورد استفاده در سامانه‌های PV با ولتاژ نامی DC تا 1500 ولت و جریان نامی تا 1250 آمپر قابل استفاده است. این استاندارد شامل فیوزهای مورد استفاده در هر دو نوع سامانه PV متصل به شبکه و مستقل از شبکه است.

تعاریف
در این استاندارد، اصطلاحات زیر به کار رفته است:
سامانه فتوولتائیک: سامانه‌ای که از سلول‌های فتوولتائیک برای تبدیل انرژی تابشی خورشید به انرژی الکتریکی استفاده می‌کند.
سامانه فتوولتائیک متصل به شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل است.
سامانه فتوولتائیک مستقل از شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل نیست.
فیوز: وسیله‌ای که برای قطع جریان الکتریکی در صورت عبور جریان بیش از حد از آن طراحی شده است.

الزامات
فیوزهای مورد استفاده در سامانه‌های PV باید الزامات زیر را برآورده کنند:
ظرفیت قطع: فیوز باید قادر به قطع جریان اتصال کوتاه در سامانه PV باشد.
توانایی قطع جریان معکوس: فیوز باید قادر به قطع جریان معکوس در سامانه PV باشد.
ویژگی‌های ولتاژ-جریان: فیوز باید دارای مشخصات ولتاژ-جریان مناسب برای استفاده در سامانه PV باشد.
عایق بندی: فیوز باید دارای عایق بندی مناسب برای استفاده در سامانه PV باشد.
مقاومت در برابر محیط: فیوز باید در برابر شرایط محیطی مختلف مقاوم باشد.
روش‌های تست
این استاندارد روش‌های تستی را برای ارزیابی انطباق فیوزها با الزامات ذکر شده در بالا ارائه می‌دهد.

پیوست‌ها
این استاندارد شامل پیوست‌های زیر است:
پیوست A: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV متصل به شبکه
پیوست B: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV مستقل از شبکه
پیوست C: روش‌های تست برای ارزیابی توانایی قطع جریان معکوس
پیوست D: روش‌های تست برای ارزیابی ویژگی‌های ولتاژ-جریان

فهرست مراجع
• IEC 60269-1:2000, Low-voltage fuses – Part 1: General requirements
• IEC 60269-2:2007, Low-voltage fuses – Part 2: Supplementary requirements for a.c. fuse-links for rated voltages up to 1 000 V
• IEC 60947-1:2007, Low-voltage switchgear and controlgear – Part 1: General rules
تاریخ انتشار
2015
نسخه
1.0
نویسنده: دپارتمان خبری آرا نیرو
منبع:
کمیسیون بین‌المللی الکتروتکنیک (IEC)

ناترازی برق همسایگان ایران

قسمت اول؛ عراق

 

ناترازی برق به عدم تعادل بین تولید و مصرف برق اشاره دارد. به عبارت دیگر، زمانی که تقاضا برای برق از عرضه آن بیشتر باشد.

شرکت ره آورد آرا نیرو تصمیم دارد در یک رشته مقاله به واکاوی ناترازی برق در ایران و همسایگان خود بپردازد و درنهایت راهکاری مهندسی شده برای گذر از ناترازی در برق ارائه دهد. با ما همراه باشید.

 

وضعیت ناترازی در عراق:

عراق با ناترازی قابل توجهی در برق روبرو است. تقاضا برای برق در این کشور به طور فزاینده ای در حال افزایش است، در حالی که ظرفیت تولید برق به اندازه کافی برای پاسخگویی به این تقاضا افزایش نیافته است.

 

چالش های صنعت برق عراق کمبود تولید، فرسودگی و کمبود تجهیزات در نیروگاه های برق، وابستگی به واردات گاز از ایران، ناتوانی در تامین کامل نیازهای داخلی، قطعی برق به خصوص در فصل های گرم سال که در مناطق مختلف شدت های متفاوتی دارد و اثرات منفی بر زندگی روزمره و فعالیت های اقتصادی گذاشته است.

Direct Cost of Electricity Shortage on Iraqs GDP 2007 2020 Authors analysis - ناترازی برق همسایگان ایران

source:https://www.researchgate.net/

دلایل ناترازی:

 

کمبود سرمایه گذاری:

کمبود سرمایه گذاری در بخش برق، منجر به فرسودگی تجهیزات و ناکارآمدی شبکه برق شده است.

 

البته فساد در بخش برق، که مانع استفاده بهینه از منابع و سرمایه گذاری ها شده است و حملات تروریستی به تاسیسات برق، نیز از چالش های مهم در عراق است.

 

رشد جمعیت عراق نیز از عوامل دیگر این ناترازی است که گرمای هوا، منجر به افزایش استفاده از کولرهای گازی در بخش مسکونی و به تبع آن افزایش تقاضا برای برق در فصل های گرم سال می‌شود.

 

عواقب ناترازی برق، قطعی برق و آسیب به اقتصاد و به تبع آن نارضایتی عمومی است.

 

راه حل های ناترازی:

افزایش سرمایه گذاری: 

دولت عراق باید در بخش برق سرمایه گذاری بیشتری کند تا ظرفیت تولید برق را افزایش دهد.

 

توسعه خطوط انتقال برق: 

دولت عراق باید خطوط انتقال برق را توسعه دهد تا پایداری شبکه برق را افزایش دهد.

افزایش استفاده از منابع انرژی تجدیدپذیر: 

دولت عراق باید از منابع انرژی تجدیدپذیر، مانند نیروگاه خورشیدی و نیروگاه بادی، بیشتر استفاده کند.

Lincoln AggregationGraphic1 TownEversource - ناترازی برق همسایگان ایران

source:https://www.masspowerchoice.com/

بهینه سازی مصرف: 

دولت عراق باید با برنامه های آموزشی و تشویقی، مردم را به مصرف بهینه برق تشویق کند.

 

چشم انداز:

حل کامل مشکل ناترازی برق در عراق به زمان و سرمایه گذاری قابل توجهی نیاز دارد. انتظار می رود که با اجرای راه حل های ذکر شده، ناترازی برق در سالهای آینده به تدریج کاهش یابد.

 

جزئیات تقاضای برق در عراق:

 

عوامل موثر:

 

جمعیت عراق حدود 40 میلیون نفر است و به طور فزاینده ای در حال افزایش است. افزایش جمعیت، منجر به افزایش تقاضا برای برق در عراق شده است.

رشد اقتصادی عراق در سال های اخیر به طور متوسط ​​4% بوده است. رشد اقتصادی، منجر به افزایش تقاضا برای برق در بخش های مختلف اقتصادی شده است.

عراق در منطقه ای گرم و خشک واقع شده است. استفاده از کولرهای گازی در فصل های گرم سال، منجر به افزایش تقاضا برای برق می شود.

 

میزان تقاضا:

تقاضا برای برق در عراق در حال حاضر حدود 25 گیگاوات است. پیش بینی می شود که تقاضا برای برق در عراق در سال های آینده به طور متوسط ​​5% در سال افزایش یابد.

ظرفیت تولید برق در عراق در حال حاضر حدود 15 گیگاوات است. کمبود تولید برق، منجر به قطعی برق در عراق، به خصوص در فصل های گرم سال، می شود.

 

عراق برای جبران کمبود برق، مجبور به واردات برق از ایران است. وابستگی به واردات برق، عراق را در معرض آسیب پذیری های اقتصادی قرار میدهد.

اقدامات در حال انجام:

دولت عراق در حال سرمایه گذاری در ساخت نیروگاه های جدید، به خصوص نیروگاه های گازی و سیکل ترکیبی، است.

تعدادی از شرکت های ایرانی در حال ساخت نیروگاه های جدید در عراق هستند.

 

توسعه خطوط انتقال برق: 

دولت عراق در حال توسعه خطوط انتقال برق برای افزایش پایداری شبکه برق و کاهش هدررفت برق است.

 

افزایش استفاده از منابع انرژی تجدیدپذیر

دولت عراق برنامه هایی برای افزایش استفاده از منابع انرژی تجدیدپذیر، مانند انرژی خورشیدی و بادی، در سال های آینده دارد.

 

چشم انداز:

تقاضا برای برق در عراق در سال های آینده به طور فزاینده ای در حال افزایش خواهد بود. انتظار می رود که با اجرای برنامه های در حال انجام، وضعیت برق در سال های آینده به تدریج بهبود یابد.

 

 

جزئیات نیروگاه های عراق:

 

کل ظرفیت تولید برق نصب شده در عراق حدود 15 گیگاوات است. از این مقدار، حدود 11 گیگاوات از طریق نیروگاه های حرارتی (گازی و فسیلی) و 4 گیگاوات از طریق نیروگاه های برق آبی تامین می شود.

حدود 80% از برق عراق توسط نیروگاه های حرارتی تولید می شود. این نیروگاه ها عمدتاً از گاز طبیعی به عنوان سوخت استفاده می کنند. تعدادی از نیروگاه های حرارتی عراق نیز از مازوت و گازوئیل استفاده می کنند.
حدود 20% از برق عراق توسط نیروگاه های برق آبی تولید می شود.
سد دوکان در شمال عراق بزرگترین منبع تولید برق آبی در این کشور است.

سهم نیروگاه های تجدیدپذیر در تولید برق عراق:

سهم نیروگاه های تجدیدپذیر در عراق هنوز بسیار ناچیز است، با این حال، دولت عراق برنامه هایی برای توسعه این نوع نیروگاه ها در سال های آینده دارد.

با ما در مقالات بعدی همراه باشید. 

نویسنده : مهدی پارساوند

منابع:

• The World Bank
• The International Energy Agency (IEA)

• BP Statistical Review of World Energy

• The Organization of the Petroleum Exporting Countries (OPEC)

• The Arab Electric Power Generation Company (AEPGC)

• Enerdata

• Iraq Ministry of Electricity

آیا آینده ای برای باتری های زیستی وجود دارد؟

به گزارش آرا نیرو تقاضا برای لیتیوم در سال‌های اخیر افزایش یافته است و انتظار می‌رود که با استقبال از انتقال انرژی و نیاز به باتری‌های بیشتر، به طور تصاعدی افزایش یابد.
متأسفانه استخراج لیتیوم و سایر فلزات باتری تأثیر زیست محیطی قابل توجهی دارد و محققان را به دنبال ایجاد باتری های زیستی سوق می دهد.
باتری‌های زیستی از مولکول‌های بیولوژیکی برای شکستن سایر مولکول‌ها استفاده می‌کنند و در این فرآیند الکترون‌ها آزاد می‌شوند.

با نزدیک شدن به سال جدید، تمرکز دوباره بر روی فناوری‌های نوآورانه و کم کربن که ممکن است از گذار به سبز در سال‌های آینده حمایت کند، افزایش یافته است. علاوه بر ادرار انسان به عنوان کود و گیاهان دستکاری شده ژنتیکی و جاذب نیتروژن، یکی از محصولات با پتانسیل اصلی باتری زیستی است. شرکت‌های انرژی و دولت‌ها در سرتاسر جهان میلیاردها دلار را برای عملیات‌های جدید لیتیوم پمپاژ می‌کنند تا بتوانند مقدار کافی از این ماده معدنی را برای تامین انرژی باتری‌های الکتریکی مورد نیاز دستگاه‌های الکترونیکی و وسایل نقلیه الکتریکی (EVs) در سراسر جهان استخراج کنند و تقاضا در دهه آینده به‌شدت افزایش می یابد.

به گزارش آرا نیرو تقاضای جهانی برای لیتیوم در سال‌های اخیر با افزایش تولید باتری‌های لیتیوم یونی برای دستگاه‌های الکترونیکی مانند تلفن‌های همراه و لپ‌تاپ و خودروهای الکتریکی افزایش یافته است. و این به طور کلی به عنوان یک چیز خوب در نظر گرفته می‌شود، زیرا نشان دهنده یک حرکت تدریجی از خودروهای با سوخت فسیلی به نفع خودروهای الکتریکی کم آلاینده است. با این حال، حذف یک منبع انرژی و تغییر اتکا به منبع دیگر، نگران کننده است. در این مورد، ما در حال حرکت به سمت تکیه بر فلزات و مواد معدنی هستیم که انرژی سبز و فناوری مرتبط را تامین می کنند.
معادن لیتیوم بیشتری هر ساله در چندین مکان در سراسر جهان در حال توسعه هستند. از آنجایی که به اصطلاح مثلث لیتیوم، شامل عملیات استخراج معادن در سراسر آرژانتین، شیلی و بولیوی، به رشد خود ادامه می دهد و بیشتر لیتیوم جهان را تامین می کند، پروژه‌های جدیدی نیز در مکان های غیرمنتظره در حال توسعه هستند. اما تمام این فعالیت‌های معدنی جدید، محیط‌بانان را در مورد تأثیر بالقوه آن بر محیط‌زیست نگران کرده است. در حالی که نشان دهنده یک حرکت مثبت از حفاری برای سوخت های فسیلی و سوزاندن نفت، گاز و زغال سنگ کربن سنگین است، ولی احتمالاً این رویکرد نیز تأثیر زیادی بر محیط زیست و اکوسیستم مناطق معدنی خواهد داشت.

همانطور که کارشناسان انرژی سعی می کنند قبل از تخریب بیشتر محیط زیست یا اتکای بیش از حد به یک منبع طبیعی دیگر نوآوری کنند، باتری های زیستی توجه بیشتری را به خود جلب می کنند. این باتری‌ها از مولکول‌های بیولوژیکی برای شکستن سایر مولکول‌ها استفاده می‌کنند، در این فرآیند الکترون‌ها آزاد می‌شوند و اجازه می‌دهند انرژی در باتری‌های ساخته شده از ترکیبات آلی ذخیره شود. این می تواند سطوح بیشتری از انرژی را در یک فضای کوچک نسبت به باتری های الکتریکی سنتی ذخیره کند. همچنین می‌تواند به کاهش سطح فلزات سمی مورد استفاده در باتری ها کمک کند.

به گزارش آرا نیرو یک ایده استفاده از مواد شیمیایی موجود در پوسته خرچنگ برای تولید باتری است. کیتین موجود در پوسته‌ها و همچنین قارچ‌ها و حشرات، اغلب به عنوان زباله‌های غذایی در خانه‌ها و رستوران‌ها دور ریخته می‌شود. با این حال، ممکن است کلید توسعه باتری پاک‌تر، کاهش وابستگی به لیتیوم و سایر فلزات استخراج شده باشد. مرکز نوآوری مواد دانشگاه مریلند اخیراً مقاله‌ای را برای استفاده بالقوه از این پوسته‌ها در باتری‌ها منتشر کرده است، با مدیر این مرکز، لیانگ‌بینگ هو، که می‌گوید: “ما فکر می‌کنیم که هم زیست تخریب‌پذیری مواد یا اثرات زیست‌محیطی و هم عملکرد باتری ها برای یک محصول مهم هستند که پتانسیل تجاری شدن را دارد.”

برای امکان پذیر ساختن این نوآوری، کیتین باید فرآوری شود و محلول آبی اسید استیک به آن اضافه شود تا یک غشای ژله‌ای محکم برای استفاده به عنوان الکترولیت در باتری ایجاد شود. این به یون ها کمک می کند تا در داخل باتری ها حرکت کنند و انرژی را ذخیره کنند. الکترولیت کیتوزان را می توان با روی طبیعی (zinc) ترکیب کرد تا باتری های تجدیدپذیر را ایمن تر و ارزان تر کند. علاوه بر این، باتری ها قابل اشتعال نیستند و کیتوزان می تواند در حدود پنج ماه در خاک تجزیه شود و فقط روی تجدیدپذیر باقی بماند.

مریلند تنها دانشگاهی نیست که به دنبال توسعه باتری‌های زیستی است، دانشگاه LUT در فنلاند نیز در حال انجام تحقیقات در مورد این فناوری است. در سال 2023، LUT قصد دارد در توسعه یک آزمایشگاه مواد باتری برای توسعه سلول های باتری سرمایه گذاری کند. پرتی کاورانن، استاد ذخیره انرژی در دانشگاه LUT، توضیح می‌دهد: «در کنار باتری‌های لیتیومی، ما باید راه‌حل‌های جایگزین مبتنی بر مواد خام رایج‌تر و احتمالاً حتی مبتنی بر زیستی را توسعه دهیم.»

اما در حالی که امیدهای زیادی به آینده باتری های زیستی وجود دارد، در حال حاضر، این فناوری محدود است. با وضعیت فعلی باتری‌های زیستی، تلفن‌های هوشمند به هزاران عدد از آن‌ها نیاز دارند تا به طور موثر برق مصرف کنند. با این حال، با افزایش سرعت تحقیق و توسعه در انواع جدید باتری‌های زیستی و ترکیب باکتری‌های مختلف برای کمک به بهبود عملکرد باتری، خوش‌بینی در مورد توسعه باتری‌های زیستی موثر در دهه آینده وجود دارد.

با افزایش نگرانی‌ها در مورد نیاز به افزایش فعالیت‌های معدنی در سراسر جهان برای استخراج فلزات و مواد معدنی برای استفاده در صنعت انرژی‌های تجدیدپذیر – یک بار دیگر با تکیه بر منابع طبیعی محدود – متخصصان و محققان محیط‌زیست برای توسعه فناوری‌های کم کربن و سازگار با محیط‌زیست رقابت می‌کنند. سرمایه‌گذاری بیشتر در تحقیق و توسعه در گزینه‌های جدید انرژی‌های تجدیدپذیر و فناوری مرتبط می‌تواند به ما کمک کند تا از یک فاجعه بالقوه زیست‌محیطی اجتناب کنیم، همانطور که در گذشته با توسعه صنعت سوخت‌های فسیلی و اتکای بیش از حد به نفت، گاز و زغال‌سنگ دیده شد و باتری‌های زیستی می‌توانند گزینه پایداری را که برای تأمین انرژی آینده دستگاه‌های الکتریکی و حمل‌ونقل به آن نیاز داریم، ارائه دهند.

نويسنده: Felicity Bradstock 

زنجیره تولید پنل خورشیدی:

از فراوری سیلیس تا تولید ماژول فتوولتائیک

 

معرفی

زنجیره تولید پنل خورشیدی عبارت است از مراحل مختلفی که در فرآیند تولید پنل‌های خورشیدی از ابتدا تا انتها به کار گرفته میشوند. در این مقاله به اختصار به این مراحل که شامل فرآوری سیلیس، تولید سلول‌های خورشیدی، تولید ماژول‌های خورشیدی، تست و کنترل کیفیت های پس از تولید سل و ماژول و در نهایت بسته‌بندی و حمل و نقل پنل خورشیدی اشاره میکنیم.

photo 2024 01 27 21 58 12 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

زنجیره تولید پنل خورشیدی – آرا نیرو

  1. فرآوری سیلیس:

   ابتدای زنجیره تولید پنل خورشیدی، با فرآوری سیلیس آغاز می‌شود. سیلیس یکی از مواد اصلی برای تولید سلول‌های خورشیدی سلیکونی است. در این مرحله، سیلیس استخراج شده از منابع معدنی تصفیه و پالایش می‌شود. این فرایند جهت تصفیه و آماده‌سازی سیلیس (سلیسیوم) از چند مرحله مهم تشکیل شده است:

استخراج سیلیس

   ابتدا، سیلیس از منابع معدنی مختلف استخراج می‌شود. معادن سنگ‌های کوارتز اغلب به عنوان منابع اصلی برای سیلیس استفاده می‌شوند.

خردایش و سایش

   سیلیس استخراج شده به اندازه مناسب خرد می‌شود و سپس در دستگاه‌های سایش، طی فرآیند آسیاب‌کاری تحت فشار قرار می‌گیرد تا به اندازه دقیقتر و به شکل مشخصی تبدیل شود.

پالایش سیلیس

   سپس، سیلیس خرد شده به فرآیند پالایش می‌رود. در این مرحله، از روش‌های مختلفی نظیر شستشو با آب یا اسیدهای قوی برای حذف آلودگی‌ها و ناخالصی‌ها استفاده می‌شود.

تصفیه سیلیس

   در این مرحله، سیلیس تصفیه می‌شود تا ناخالصی‌ها و مواد غیرمطلوب حذف شوند. این ممکن است شامل فرآیندهای فیلتراسیون، تقطیر یا فرآیندهای شیمیایی باشد.

تولید اسلایس (سلیسیوم)

   سیلیس پاک‌شده به اسلایس (سلیسیوم) تبدیل می‌شود. در این مرحله، سیلیس از آلاینده‌های معدنی و مواد غیرضروری دیگر پاک‌سازی می‌شود تا به خلوص مطلوب برای تولید سلول‌های خورشیدی برسد.

آماده‌سازی برای استفاده

   اسلایس حاصل از مراحل قبلی در این مرحله آماده‌سازی می‌شود. این شامل پردازش‌هایی نظیر خشکاندن ، ذوب، و یا دیگر فرآیندهایی است که سلیس به شکل مناسبی جهت استفاده در تولید سلول‌های خورشیدی آماده می‌شود.

  1. تولید سلول‌های خورشیدی:

   پس از فرآوری سیلیس، سلیس تبدیل به اسلایس (سلیسیوم) می‌شود که به سلول‌های خورشیدی تبدیل می‌شود. سلول‌های خورشیدی عملکرد اصلی تبدیل نور خورشید به انرژی الکتریکی را دارند. فرآیند تولید سلول‌های خورشیدی از چند مرحله اصلی تشکیل شده است. در ادامه به این مراحل با جزئیات بیشتر اشاره می‌شود:

تهیه و پالایش اسلایس

   ابتدا، اسلایس (سلیسیوم) که از مراحل فرآوری سیلیس به دست آمده است، تمیز شده و پالایش می‌شود تا از هر گونه ناخالصی و آلاینده حذف شود.

تولید اکسید سیلیسیم (SiO2)

   اسلایس پالایش شده به صورت پودر درآمده و با حرارت بالا تحت فشار به مخلوطی از گازهای هیدروژن و سیلان (SiH4) تبدیل می‌شود. این فرآیند منجر به تولید اکسید سیلیسیم (SiO2) می‌شود.

تهیه پلی سیلیکون (Poly-Silicon)

   اکسید سیلیسیم حاصل از مرحله قبل به واکنش با فرایند کاربوراسیون (Carburization) تحت دماهای بالا قرار می‌گیرد و پلی سیلیکون تولید می‌شود. پلی سیلیکون ماده اصلی سلول‌های خورشیدی است.

تولید اسلاب پلی سیلیکون

   پلی سیلیکون به شکل اسلاب درآمده و به سپتون‌هایی به ضخامت خاص برش داده می‌شود. این اسلاب‌ها به عنوان مواد اولیه برای ساخت سلول‌های خورشیدی استفاده می‌شوند.

تولید و پالایش ورقه سیلیکونی

   اسلاب‌های پلی سیلیکون به ورقه‌هایی با ضخامت معین برش داده و سپس این ورقه‌ها تحت فرآیندهای پالایشی قرار می‌گیرند تا به خلوص و کیفیت مطلوب برسند.

پوشش دهی با لایه های ناقل (N-Type و P-Type)

   سپس به ورقه‌های سیلیکونی لایه‌های ناقل مثبت (P-Type) و لایه‌های ناقل منفی (N-Type) اعمال می‌شود. این لایه‌ها با استفاده از فرآیندهای تفکیکی تحت دماهای خاص و از طریق تزریق موادی مثل فسفر و کلر به سطح سلول افزوده می‌شوند.

تولید الکترودها و اتصالات

   در این مرحله، الکترودها و اتصالات لازم جهت جمع‌آوری جریان الکتریکی تولید شده در لایه‌های ناقل به سلول افزوده می‌شوند.

تست و کنترل کیفیت

   سلول‌های خورشیدی تولید شده در مراحل قبل تحت تست‌های دقیق و کنترل کیفیت قرار می‌گیرند تا اطمینان حاصل شود که عملکرد آنها در شرایط مختلف به درستی انجام می‌شود. کمی پایین تر از جزئیات تست ها و استاندارد های سل های خورشیدی بیشتر خواهم گفت.

  1. تولید ماژول‌های خورشیدی:

   سلول‌های خورشیدی به ماژول‌های خورشیدی تبدیل می‌شوند. این ماژول‌ها علاوه بر سلول‌های خورشیدی، دارای لایه‌های محافظ و سیستم‌های مدیریت حرارت هستند. این لایه‌ها نقش مهمی در محافظت و بهینه کردن عملکرد ماژول دارند. پس از تولید سلول‌های خورشیدی، مراحل تولید ماژول فتوولتائیک (پنل خورشیدی) شامل چند مرحله اصلی است. در ادامه به جزئیات این مراحل اشاره می‌شود:

تهیه ماژول‌های سلولی

   ابتدا، سلول‌های خورشیدی که در مراحل قبلی تولید شده‌اند، به شکل‌های مختلف ماژول‌های سلولی گروه‌بندی می‌شوند. این مراحل شامل قرار دادن سلول‌ها در قالب‌ها و اتصالات مورد نیاز است.

پیوندگذاری (Interconnection)

   سلول‌های خورشیدی درون ماژول به وسیله سیم‌های فلزی به یکدیگر متصل می‌شوند. این پیوندگذاری باعث ایجاد یک مدار الکتریکی مناسب برای جمع‌آوری جریان تولیدی توسط سلول‌ها می‌شود که آن را باسبار هم میگویند.

لایه‌گذاری محافظ

   یک لایه محافظ معمولاً از شیشه یا مواد پلاستیکی نشری بر روی سلول‌های خورشیدی قرار می‌گیرد. این لایه محافظ سلول‌ها را در برابر شرایط جوی، گرد و غبار، و نفوذ آب محافظت می‌کند.

photo 2024 01 27 21 58 47 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

Source: https://swarajyamag.com

تهیه فریم (Frame) و مونتاژ

   یک فریم (قاب) از مواد مقاوم به هوا و محیط زیست، معمولاً آلومینیوم یا فلزهای دیگر، ساخته می‌شود و ماژول‌های سلولی درون آن مونتاژ می‌شوند و در نهایت پس از نصب جانکشن باکس و فریم و گلس روی سطح سل های باسبار شده، ماژول وکیوم شده به مرحله تست میرود.

قبل از اینکه در مورد تست ها و استانداردهای سل و ماژول خورشیدی صحبت کنم، اجازه بدید خیلی خلاصه از انواع ماژول های کریستاله شرحی ارائه دهم. ماژول های کریستاله به انواع مونو، پلی، و لایه نازک تقسیم بندی می شوند.

ماژول های مونو کریستال که از یک کریستال سیلیکون واحد ساخته می شوند. این ماژول ها دارای راندمان بالا و عمر طولانی هستند.  با این حال، آنها گران تر از سایر انواع ماژول های کریستاله هستند.

ماژول های پلی کریستال از چندین کریستال سیلیکون کوچکتر ساخته می شوند. این ماژول ها ارزان تر از ماژول های تک کریستالی هستند، اما راندمان کمتری دارند.

ماژول های کریستاله فیلم نازک از یک فیلم نازک از ماده نیمه هادی مانند سیلیکون، کادمیوم تلوراید یا دی سلنید ایندیوم مس ساخته می شوند. این ماژول ها سبک تر و ارزان تر از ماژول های کریستالی هستند، اما راندمان کمتری نیز دارند.

و اما در مورد پنل های مونوکریستال که امروزه سهم بیشتری از بازار را در نیروگاه های خورشیدی متصل به شبکه به خود اختصاص داده میتوان بیشتر صحبت کرد. تکنولوژی های مختلفی در ساخت پنل های مونو کریستال خورشیدی مورد استفاده قرار می گیرند. این تکنولوژی ها باعث افزایش راندمان، کاهش هزینه و بهبود عملکرد ماژول های مونو کریستال فتوولتاییک می شوند.

photo 2024 01 27 21 58 28 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

Source: https://www.linkedin.com/Engineerincvia

برخی از مهم ترین تکنولوژی های به کار رفته در ماژول های مونو کریستال عبارتند از:

  • تکنولوژی PERC (Passivated Emitter Rear Cell)

تکنولوژی PERC یک تکنولوژی پیشرفته است که باعث افزایش راندمان سلول های خورشیدی می شود. در این تکنولوژی، یک لایه اکسید روی (ZnO) در پشت سلول خورشیدی قرار می گیرد. این لایه باعث جذب نور بیشتری و کاهش تلفات انرژی می شود. راندمان سلول های خورشیدی PERC معمولاً بین 18 تا 22 درصد است. این تکنولوژی همچنین باعث بهبود مقاومت سلول های خورشیدی در برابر شرایط آب و هوایی می شود.

  • تکنولوژی Half-cell

تکنولوژی Half-cell یک ایده مثبت جهت افزایش راندمان سلول های خورشیدی بود. در این تکنولوژی، هر سلول خورشیدی به دو سلول کوچکتر تقسیم می شود. این کار باعث کاهش تلفات مقاومت در سلول های خورشیدی می شود. راندمان سلول های خورشیدی Half-cell معمولاً بین 1 تا 2 درصد بیشتر از سلول های خورشیدی معمولی است. این تکنولوژی همچنین باعث کاهش هزینه تولید سلول های خورشیدی می شود.

 

  • تکنولوژی Bifacial

تکنولوژی Bifacial تکنولوژی پنل های دو رو است که باعث افزایش تولید انرژی سلول های خورشیدی می شود. در این تکنولوژی، پشت سلول خورشیدی نیز قادر به جذب نور خورشید می باشد. راندمان سلول های خورشیدی Bifacial معمولاً بین 10 تا 20 درصد بیشتر از سلولهای خورشیدی معمولی است که البته وابسته به میزان بازتاب نور از سطح زمین دارد. تکنولوژی Bifacial همچنین باعث بهبود عملکرد سلول های خورشیدی در شرایط کم نور می شود. با این رویکرد استفاده از پنل های بایفشیال یا دورو در نیروگاه های خورشیدی بزرگ مقیاس می تواند نظر به اصلاح زمین نیروگاه و افزایش بازتاب نوری از کف، درآمد قابل توجهی را با سرمایه کم تر برای مالک نیروگاه ایجاد نماید، کمااینکه تاثیر این تکنولوژی بر افزایش نرخ تولید و درآمد در نیروگاه خورشیدی پشت بامی با وجود ایزوگام تثبیت شده است . 

 

  • تکنولوژی HIT (Heterojunction with Intrinsic Thin-layer)

تکنولوژی HIT یک تکنولوژی پیشرفته است که باعث افزایش راندمان سلول های خورشیدی می شود. در این تکنولوژی، از یک لایه نازک از ماده نیمه هادی آلی (ITO) برای بهبود عملکرد سلول خورشیدی استفاده می شود. راندمان پنل های خورشیدی با تکنولوژی HIT معمولاً بین 22 تا 24 درصد است و مقاومت سلول های خورشیدی در برابر شرایط آب و هوایی با وجود این تکنولوژی بهبودیافته تر است.

 

  • تکنولوژی TOPCon (Tunnel Oxide Passivated Contact)

در این تکنولوژی، یک لایه اکسید روی (ZnO) با ضخامت کم در پشت سلول خورشیدی قرار می گیرد. این لایه باعث جذب نور بیشتری و کاهش تلفات انرژی می شود و البته راندمان سلول های خورشیدی با وجود TOPCon معمولاً بین 22 تا 24 درصد است.

انتخاب تکنولوژی مناسب

انتخاب تکنولوژی مناسب برای ساخت ماژول های مونو کریستال به عوامل مختلفی بستگی دارد، از جمله:

  • میزان راندمان مورد نیاز
  • هزینه تولید
  • شرایط آب و هوایی محل نصب

اگر به دنبال ماژول هایی با راندمان بالا هستید، تکنولوژی PERC، Half-cell، HIT یا TOPCon گزینه های خوبی هستند. اگر به دنبال ماژول هایی با هزینه تولید پایین هستید، تکنولوژی Half-cell گزینه خوبی است. اگر به دنبال ماژول هایی هستید که در شرایط کم نور عملکرد خوبی دارند، تکنولوژی Bifacial گزینه خوبی است.

  1. تست و کنترل کیفیت

   پس از مونتاژ، ماژول‌های خورشیدی تحت تست‌های دقیق و کنترل کیفیت قرار می‌گیرند. این تست‌ها شامل بررسی عملکرد الکتریکی، تحت شرایط نوری و حرارتی مختلف است.

در ادامه به برخی از تست‌ها و استانداردهای مهم برای سل ها و ماژول های خورشیدی اشاره می‌شود:

تست‌ها برای سلول‌های خورشیدی:

  1. تست I-V (تست جریان-ولتاژ):

هدف آن اندازه‌گیری خطوط جریان-ولتاژ سلول‌های خورشیدی است تا عملکرد این سلول‌ها در شرایط نوری مختلف مشخص گردد. سلول خورشیدی تحت نور مصنوعی قرار گرفته و جریان و ولتاژ آن در شرایط مختلف نوری ثبت می‌شود.

 

  1. تست زمانی (Temporal Stability Test):

هدف این تست ارزیابی پایداری عملکرد سلول در طول زمان است. سلول به مدت زمان مشخصی تحت شرایط نوری و حرارتی نگهداری می‌شود و تغییرات عملکرد آن طی زمان بررسی می‌شود.

 

  1. تست حرارتی (Thermal Cycling Test)

در این تست به بررسی تحمل سلول در برابر تغییرات دما می پردازیم.

سلول از چرخه‌های مشخصی از تغییرات دما عبور می‌کند، و سپس عملکرد و کیفیت آن ارزیابی می‌شود.

 

استانداردها برای سلول‌های خورشیدی:

  1. استاندارد IEC 61215:

موضوع: مشخصات عملکردی برای ماژول‌های فتوولتائیک.

اهمیت: این استاندارد به ویژه برای ارزیابی کیفیت و عملکرد ماژول‌های خورشیدی در شرایط مختلف نوری و حرارتی طراحی شده است.

 

  1. استاندارد IEC 61646:

موضوع: مشخصات ماژول‌های فتوولتائیک سلفون.

اهمیت: این استاندارد برای سلفون‌ها، که نوع خاصی از ماژول‌های فتوولتائیک هستند، ارائه شده است.

 

photo 2024 01 27 21 58 52 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

Source: https://www.solarreviews.com

تست‌ها برای ماژول‌های خورشیدی:

  1. تست (PID) Potential-Induced Degradation

هدف این تست بررسی توانایی ماژول در مقاومت در برابر فرآیند آلودگی ناشی از تغییرات ولتاژ است. ماژول تحت شرایط مشخصی از تغییرات ولتاژ و دما قرار گرفته و عملکرد آن بررسی می‌شود.

 

  1. تست فرآیند نما (Damp Heat Test)

جهت ارزیابی عملکرد ماژول تحت تأثیر رطوبت و گرما از این تست استفاده میشود. ماژول به شرایط حرارت و رطوبت بالا قرار گرفته و عملکرد آن در طول زمان بررسی می‌شود.

 

  1. تست (UV) Ultraviolet Light Test

هدف این تست بررسی تأثیر تابش ماوراء بنفش نور بر مواد سازنده ماژول خورشیدی است. ماژول به تابش نور UV تحت شرایط خاصی قرار گرفته و تغییرات جزئیات ساختاری آن بررسی می‌شود.

 

  1. تست عدم ایزولاسیون (Insulation Test)

بررسی عدم ایزولاسیون بخش‌های مختلف ماژول به یکدیگر طی این آزمایش مورد ارزیابی قرار می گیرد. این تست با اعمال ولتاژ بر روی ماژول انجام می‌شود و عملکرد عدم ایزولاسیون بررسی می‌شود.

 

استانداردها برای ماژول‌های خورشیدی:

 

  1. استاندارد IEC 61215:

موضوع: مشخصات عملکردی برای ماژول‌های فتوولتائیک.

اهمیت: این استاندارد به ویژه برای ارزیابی کیفیت و عملکرد ماژول‌های خورشیدی در شرایط مختلف نوری و حرارتی طراحی شده است.

 

  1. استاندارد IEC 61730:

موضوع: الزامات ایمنی برای ماژول‌های فتوولتائیک.

اهمیت: این استاندارد به ایمنی الکتریکی ماژول‌های خورشیدی توجه دارد و نیازمندی‌ها برای اطمینان از عدم وقوع حوادث الکتریکی را مشخص می‌کند.

 

  1. استاندارد IEC 62716:

موضوع: تست نمایشگرهای تقویت‌شده تحت تأثیر اشعه مستقیم خورشید.

اهمیت: این استاندارد به ارزیابی نمایشگرهای تقویت‌شده در شرایط نوری خورشید مستقیم می‌پردازد.

 

تست‌ها و استانداردها اهمیت زیادی در صنعت خورشیدی دارند و اطمینان از تطابق تجهیزات با این استانداردها بهبود کیفیت و عملکرد سلول‌ها و ماژول‌ها را فراهم می‌کند.

با اجتماع این مراحل، ماژول فتوولتائیک (پنل خورشیدی) آماده به تولید انرژی خورشیدی می‌شود و می‌تواند به تأمین انرژی الکتریکی در سیستم‌های مختلف مورد استفاده قرار گیرد.

  1. بسته‌بندی و حمل و نقل:

   پس از گذر از تمام مراحل تولید و تست، پنل‌های خورشیدی بسته‌بندی می‌شوند و برای حمل و نقل به مقصد نهایی ارسال می‌شوند.

 

نتیجه:

داشتن یک زنجیره تولید کامل برای پنل‌های خورشیدی میتواند ما را در تحقق اهداف وتوسعه نیروگاه های خورشیدی یاری رساند در حالیکه با وجود در اختیار داشتن صفرتا صد خط تولید پنل های خورشیدی میتوانیم به برد استراتژیک در راستای پدافند غیرعامل دست یابیم. در پایان به تعدادی از این مزیت های حیاتی وجود خط کامل تولید پنل خورشیدی اشاره میکنم:

  1. کنترل کیفیت بیشتر:

   امکان کنترل کامل بر تمام مراحل تولید، از فرآوری سیلیس تا تولید ماژول، به بهبود کیفیت و دقت در هر مرحله از زنجیره تولید کمک می‌کند. این امر باعث افزایش کیفیت نهایی پنل‌های خورشیدی و افزایش عملکرد آنها می‌شود.

 

  1. کاهش هزینه‌ها:

   داشتن زنجیره تولید کامل از مراحل مختلف، از جمله فرآوری سیلیس، تولید سلول‌های خورشیدی و تجمیع، می‌تواند به کاهش هزینه‌ها کمک کند. کاهش وابستگی به تامین‌کنندگان خارجی و افزایش کارایی در تمام فرآیند تولید می‌تواند به بهینه‌سازی هزینه‌ها منجر شود.

 

  1. تضمین تأمین مواد اولیه:

   داشتن زنجیره تولید کامل به شرکت تضمین می‌دهد که مواد اولیه مورد نیاز برای تولید پنل‌های خورشیدی، مانند سیلیس، به صورت پایدار و در مقدار کافی در دسترس باشند.

 

  1. تعامل یکپارچه بین مراحل:

   هماهنگی بیشتر و تعامل یکپارچه بین مراحل مختلف زنجیره تولید، از جمله فرآوری سیلیس، تولید سلول‌های خورشیدی، و تجمیع، می‌تواند به بهبود کارایی و کاهش زمان تولید منجر شود.

 

  1. استقلال از تحریم‌ها و مشکلات تامین:

   اگر دارای زنجیره تولید کامل باشیم، از تحریم‌ها و مشکلات ممکن در تأمین مواد اولیه تحت تأثیر کمتری قرار می‌گیریم. این امر می‌تواند برای استقلال از عوامل خارجی و حفظ پایداری تولید مفید باشد.

 

  1. فلزات گرانبها و استراتژیک:

   اگر زنجیره تولید شامل استخراج فلزات گرانبها (مانند سیلیس) باشد، کشور می‌تواند از استراتژی‌های متنوعی برای بهره‌وری از این فلزات استراتژیک بهره‌مند شود.

داشتن زنجیره تولید کامل برای پنل‌های خورشیدی به یک شرکت این امکان را می‌دهد که به طور کلی به عنوان یک واحد یکپارچه عمل کند و مزایای مختلفی را در زمینه کیفیت، هزینه، و کنترل تأمین به دست آورد. شرکت ره آورد آرا نیرو آمادگی خود جهت مشاوره، تجهیز و تامین زنجیره کامل تولید پنل های خورشیدی برای شرکت های سرمایه گذار را اعلام میدارد.

نویسنده: مهدی پارساوند

 

 

تحلیل ساختار و اجزای اصلی خودروهای برقی در حضور فناوری خورشیدی

کلیدواژه ها:

خودروهای برقی l  انرژی ذخیره‌سازی l سیستم موتور  l ترمز بازیابی انرژی  l سیستم تعلیق I مدیریت انرژی

سیستم خنک‌کننده l  سیستم الکتریکی l پنل خورشیدی l خودرو برقی خورشیدی l ایستگاه شارژ خورشیدی

 

ساختار و مکانیزم خودروهای برقی را می توان به سه بخش اصلی منبع انرژی و نیرو محرکه الکتریکی و بخش کمک دهنده تقسیم کرد.

منبع انرژی

منبع انرژی در خودروهای برقی، بانک باتری است. باتری ها انرژی الکتریکی را ذخیره می کنند که توسط موتور الکتریکی برای حرکت خودرو استفاده می شود. باتری های خودروهای برقی معمولاً از نوع لیتیوم یون هستند که دارای چگالی انرژی بالایی هستند.

photo 2024 01 15 20 50 36 - تحلیل ساختار و اجزای اصلی خودروهای برقی در حضور فناوری خورشیدی

نیرو محرکه الکتریکی

نیرو محرکه الکتریکی در خودروهای برقی، موتور الکتریکی است. موتور الکتریکی از انرژی الکتریکی برای تولید حرکت استفاده می کند. موتورهای الکتریکی خودروهای برقی معمولاً از نوع موتورهای سنکرون هستند که دارای راندمان بالایی هستند.

 

بخش کمک دهنده

بخش کمک دهنده در خودروهای برقی، شامل اجزای دیگری است که به عملکرد خودرو کمک می کنند. این اجزا عبارتند از:

  • کنترلر خودرو
  • مبدل الکترونیکی قدرت
  • ترمزهای الکتریکی

کنترلر خودرو وظیفه کنترل عملکرد موتور الکتریکی و سایر اجزای خودرو را بر عهده دارد. مبدل الکترونیکی قدرت وظیفه تبدیل جریان مستقیم از باتری به جریان متناوب برای موتور الکتریکی را بر عهده دارد (البته اگر موتور خودرو از تایپ DC نباشد). ترمزهای الکتریکی وظیفه کاهش سرعت و توقف خودرو را بر عهده دارند.

طرز کار خودروی برقی

در خودروهای برقی، انرژی الکتریکی از باتری به موتور الکتریکی منتقل می شود. موتور الکتریکی این انرژی را به انرژی مکانیکی تبدیل می کند و چرخ های خودرو را به حرکت در می آورد. رانندگان می توانند با استفاده از پدال گاز سرعت خودرو را کنترل کنند.

هنگامی که پدال گاز فشرده می شود، جریان بیشتری از باتری به موتور الکتریکی منتقل می شود و موتور الکتریکی با سرعت بیشتری حرکت می کند. این امر باعث افزایش سرعت خودرو می شود.

هنگامی که پدال گاز رها می شود، جریان از باتری به موتور الکتریکی قطع می شود و موتور الکتریکی متوقف می شود. این امر باعث کاهش سرعت خودرو می شود.

ترمزهای الکتریکی نیز می توانند برای کاهش سرعت و توقف خودرو استفاده شوند. ترمزهای الکتریکی با استفاده از انرژی الکتریکی برای کاهش سرعت چرخ ها کار می کنند.

poster 1705337549551 - تحلیل ساختار و اجزای اصلی خودروهای برقی در حضور فناوری خورشیدی

مزایای خودروهای برقی

خودروهای برقی مزایای زیادی نسبت به خودروهای بنزینی دارند. از جمله این مزایا می توان به موارد زیر اشاره کرد:

  • آلایندگی کمتر
  • هزینه نگهداری کمتر
  • عملکرد بهتر

خودروهای برقی آلودگی کمتری نسبت به خودروهای بنزینی تولید می کنند. این امر به کاهش آلودگی هوا و بهبود کیفیت هوا کمک می کند.

خودروهای برقی هزینه نگهداری کمتری نسبت به خودروهای بنزینی دارند. این امر به دلیل ساده تر بودن موتور الکتریکی نسبت به موتور احتراق داخلی است.

خودروهای برقی عملکرد بهتری نسبت به خودروهای بنزینی دارند. این امر به دلیل گشتاور بالای موتور الکتریکی است. گشتاور بالا باعث می شود که خودروهای برقی شتاب بیشتری داشته باشند و در هنگام بالا رفتن از سربالایی عملکرد بهتری داشته باشند.

معایب خودروهای برقی

خودروهای برقی نیز معایبی دارند. از جمله این معایب می توان به موارد زیر اشاره کرد:

  • محدودیت مسافت قابل پیمایش

خودروهای برقی مسافت قابل پیمایش کمتری نسبت به خودروهای بنزینی دارند. این امر به دلیل ظرفیت محدود باتری ها است.

  • زمان شارژ طولانی
  • خودروهای برقی زمان شارژ طولانی تری نسبت به خودروهای بنزینی دارند. این امر به دلیل ظرفیت پایین شارژرهای موجود است.
  • هزینه اولیه بیشتر

خودروهای برقی هزینه اولیه بیشتری نسبت به خودروهای بنزینی دارند. این امر به دلیل قیمت بالاتر باتری ها است.

با پیشرفت فناوری، معایب خودروهای برقی به تدریج برطرف شده و این خودروها به گزینه ای جذاب تر برای مصرف کنندگان تبدیل شده است، کمااینکه با تکنولوژی جدید باتری ها و موتورهای جدید هیبرید مسافت قابل پیمایش برای خودروهای برقی به 700 کیلومتر با یک بار شارژ رسیده، در حالیکه با تکنولوژی جدید شارژر های سریع (Fast charger) از 10 تا 80 درصد باتری ها در 30 دقیقه یا کمتر شارژ میشود.

poster 1705338135102 - تحلیل ساختار و اجزای اصلی خودروهای برقی در حضور فناوری خورشیدی

خودروهای الکتریکی با پنل خورشیدی

خودروهای الکتریکی با پنل خورشیدی، خودروهایی هستند که علاوه بر باتری، از انرژی خورشیدی نیز برای تامین انرژی خود استفاده می کنند. این خودروها معمولاً دارای پنل های خورشیدی در سقف، کاپوت یا سایر قسمت های بدنه خودرو هستند.

پنل های خورشیدی انرژی خورشید را به انرژی الکتریکی تبدیل می کنند. این انرژی الکتریکی می تواند برای شارژ باتری خودرو استفاده شود. در نتیجه، خودروهای الکتریکی با پنل خورشیدی می توانند مسافت بیشتری را بدون نیاز به شارژ باتری طی کنند.

خودروهای الکتریکی با پنل خورشیدی می توانند مسافت بیشتری را بدون نیاز به شارژ باتری طی کنند.

و نظر به اینکه می توانند از انرژی خورشید برای شارژ باتری خود استفاده کنند، هزینه های شارژ خودرو کاهش میابد.

خودروهای الکتریکی با پنل خورشیدی نسبت به خودروهای الکتریکی معمولی هزینه اولیه بیشتری دارند. این امر به دلیل هزینه پنل های خورشیدی است. این خودروها با کاهش عملکرد در شب و هوای ابری مواجه هستند، چراکه پنل خورشیدی در شب و هوای ابری نمی توانند باتری را شارژ کند.

با پیشرفت فناوری، خودروهای الکتریکی با پنل خورشیدی به تدریج به گزینه ای جذاب تر برای مصرف کنندگان تبدیل خواهند شد. این خودروها می توانند مسافت بیشتری را طی کنند، هزینه های شارژ کمتری داشته باشند و آلودگی هوا را کاهش دهند.

poster 1705338383010 - تحلیل ساختار و اجزای اصلی خودروهای برقی در حضور فناوری خورشیدی

ساختار شارژ خودروهای برقی

ساختار شارژ خودروهای برقی را می توان به دو بخش اصلی تقسیم کرد:

  • شارژر خودرو
  • ایستگاه شارژ

شارژر خودرو، دستگاهی است که انرژی الکتریکی را از شبکه برق به باتری خودرو منتقل می کند. شارژرهای خودرو معمولاً دارای دو نوع خروجی هستند:

  • AC :این نوع خروجی برای شارژ معمولی باتری خودرو استفاده می شود.
  • DC : این نوع خروجی برای شارژ سریع باتری خودرو استفاده می شود.

شارژرهای خودرو معمولاً دارای دو نوع کنترل هستند:

  • کنترل کننده ولتاژ و جریان (VCU) : این نوع کنترلر ولتاژ و جریان ورودی به شارژر را کنترل می کند.
  • کنترل کننده شارژ (CCU) : این نوع کنترلر ولتاژ و جریان خروجی از شارژر را کنترل می کند.

ایستگاه شارژ

ایستگاه شارژ، مکانی است که خودروهای برقی می توانند در آن باتری خود را شارژ کنند.

ایستگاه های شارژ معمولاً دارای شارژرهای AC و DC هستند.

ایستگاه های شارژ معمولاً دارای دو نوع اتصال هستند:

  • کابل اتصال مستقیم: در این نوع اتصال، کابل شارژ مستقیماً به خودرو متصل می شود.
  • کابل اتصال غیر مستقیم: در این نوع اتصال، کابل شارژ به یک سوکت متصل می شود و سپس از طریق یک آداپتور به خودرو متصل می شود.

انواع شارژ خودروهای برقی

شارژ خودروهای برقی را می توان به سه نوع اصلی تقسیم کرد:

  • شارژ معمولی
  • شارژ سریع
  • شارژ بی سیم

شارژ معمولی، فرآیند شارژ باتری خودرو با استفاده از شارژر AC است. شارژ معمولی معمولاً زمان زیادی طول می کشد و برای شارژ کامل باتری خودرو ممکن است چند ساعت یا حتی یک روز طول بکشد.

شارژ سریع، فرآیند شارژ باتری خودرو با استفاده از شارژر DC است. شارژ سریع زمان بسیار کمتری نسبت به شارژ معمولی طول می کشد و می تواند باتری خودرو را در مدت زمان کوتاهی شارژ کند.

شارژ بی سیم، فرآیند شارژ باتری خودرو بدون نیاز به اتصال کابل است. شارژ بی سیم هنوز در مراحل اولیه توسعه است و هنوز هم محدودیت های زیادی دارد.

آینده شارژ خودروهای برقی

با افزایش محبوبیت خودروهای برقی، انتظار می رود که زیرساخت های شارژ خودروهای برقی نیز توسعه یابد. ایستگاه های شارژ خودروهای برقی در مکان های بیشتری ساخته خواهند شد و شارژرهای سریع رایج تر خواهند شد. همچنین انتظار می رود که شارژ بی سیم نیز به تدریج توسعه یابد و به گزینه ای عملی برای شارژ خودروهای برقی تبدیل شود.

photo 2024 01 15 20 50 40 - تحلیل ساختار و اجزای اصلی خودروهای برقی در حضور فناوری خورشیدی

نیروگاه خورشیدی و ایستگاه شارژ خودرو های برقی

نیروگاه خورشیدی، تأسیساتی است که از انرژی خورشید برای تولید برق استفاده می کند. در یک نیروگاه خورشیدی، انرژی خورشید توسط پنل های خورشیدی به انرژی الکتریکی تبدیل می شود. این انرژی الکتریکی می تواند مستقیماً برای مصارف خانگی و صنعتی استفاده شود یا به شبکه برق سراسری منتقل شود.

ارتباط بین نیروگاه خورشیدی و ایستگاه شارژ خودروهای برقی

نیروگاه های خورشیدی می توانند به عنوان منبع تامین انرژی برای ایستگاه های شارژ خودروهای برقی استفاده شوند. در این حالت، انرژی الکتریکی تولید شده توسط نیروگاه خورشیدی برای شارژ خودروهای برقی استفاده میشود. این امر می تواند مزایای زیر را داشته باشد:

  • کاهش آلودگی هوا: استفاده از انرژی خورشید به جای سوخت های فسیلی می تواند آلودگی هوا را کاهش دهد ومانع تغییرات آب و هوایی و اقلیم ناشی از انتشار گاز های گلخانه ای شود.
  • صرفه جویی در هزینه ها: استفاده از انرژی خورشید می تواند هزینه های شارژ خودروهای برقی را کاهش دهد.
  • استقلال انرژی: استفاده از انرژی خورشید برای شارژ خودروهای برقی می تواند استقلال انرژی را افزایش دهد، به طوریکه نیازی به شبکه سراسری برق نیست و میتوان در هر مکانی ایستگاه های شارژ خودروهای برقی را احداث کرد.

مزایای استفاده از نیروگاه های خورشیدی برای شارژ خودروهای برقی

  • تولید برق پاک و پایدار: انرژی خورشید یک منبع انرژی پاک و پایدار است. استفاده از انرژی خورشید برای شارژ خودروهای برقی می تواند به کاهش آلودگی هوا و بهبود کیفیت هوا کمک کند.
  • کاهش وابستگی به سوخت های فسیلی: سوخت های فسیلی منابعی محدود هستند و استفاده از آنها می تواند منجر به آلودگی هوا و تغییرات آب و هوایی شود. استفاده از انرژی خورشید برای شارژ خودروهای برقی می تواند به کاهش وابستگی به سوخت های فسیلی کمک کند.
  • صرفه جویی در هزینه ها: هزینه تولید برق از انرژی خورشید به تدریج در حال کاهش است. استفاده از انرژی خورشید برای شارژ خودروهای برقی می تواند در دراز مدت به صرفه جویی در هزینه ها کمک کند.

چالش های استفاده از نیروگاه های خورشیدی برای شارژ خودروهای برقی

استفاده از نیروگاه های خورشیدی برای شارژ خودروهای برقی چالش های زیر را دارد:

  • تغییرات آب و هوایی: میزان انرژی خورشیدی که در یک روز دریافت می شود به شرایط آب و هوایی بستگی دارد. در روزهای ابری میزان انرژی خورشیدی کمتر است. این امر می تواند بر عملکرد ایستگاه های شارژ خودروهای برقی تأثیر بگذارد.
  • هزینه اولیه: هزینه ساخت نیروگاه های خورشیدی نسبت به نیروگاه های سوخت فسیلی بیشتر است.
  • تولید انرژی در طول شب: نیروگاه های خورشیدی در طول شب نمی توانند انرژی تولید کنند. این امر می تواند نیاز به استفاده از منابع دیگر انرژی برای شارژ خودروهای برقی در طول شب را افزایش دهد.

برای رفع چالش های استفاده از نیروگاه های خورشیدی برای شارژ خودروهای برقی، راهکارهای زیر می تواند مورد استفاده قرار گیرد:

  • استفاده از ذخیره انرژی: برای ذخیره انرژی تولید شده توسط نیروگاه های خورشیدی در طول روز، می توان از سیستم های ذخیره انرژی مانند باتری ها استفاده کرد. این امر می تواند امکان شارژ خودروهای برقی در طول شب را فراهم کند.
  • توسعه فناوری های جدید تولید انرژی خورشیدی: با توسعه فناوری های جدید تولید انرژی خورشیدی، می توان هزینه تولید برق از انرژی خورشیدی را کاهش داد.

با پیشرفت فناوری و افزایش قیمت سوخت های فسیلی، استفاده از نیروگاه های خورشیدی برای شارژ خودروهای برقی به گزینه ای جذاب تر تبدیل خواهد شد.

 

photo 2024 01 15 20 50 33 - تحلیل ساختار و اجزای اصلی خودروهای برقی در حضور فناوری خورشیدی

خودروهای برقی در ایران

ایران در زمینه تولید و واردات خودروهای برقی در حال توسعه است.

ایران در زمینه واردات خودروهای برقی، اقدام به واردات خودروهای برقی از کشورهایی مانند چین، کره جنوبی و اروپا نموده است.

همچنین در زمینه ساخت و توسعه ایستگاه های شارژ خودروهای برقی نیز در حال توسعه است. دولت تعدادی ایستگاه های شارژ خودروهای برقی را که متصل به شبکه سراسری برق است احداث کرده است که در صورت ایجاد فرصت برای بخش خصوصی میتواند سرعت احداث ایستگاه های شارژ بالاتر رود.

ایران هدف گذاری کرده است که تا سال 1404، تعداد خودروهای برقی در ایران به 100 هزار دستگاه و تعداد ایستگاه های شارژ خودروهای برقی به 10 هزار دستگاه برسد.

همچنین هدف گذاری کرده است که تا سال 1404، 50 درصد از خودروهای تولیدی و وارداتی در ایران را خودروهای برقی تشکیل دهند.

ایران در زمینه خودروهای برقی و ایستگاه های شارژ با چالش های مختلفی روبرو است. از جمله این چالش ها میتوان به موارد زیر اشاره کرد:

  • محدودیت گمرکی خودروهای برقی: تعرفه های گمرکی خودروهای برقی به نسبت قیمت های بالاتر از 20 هزار دلار افزایش میابد. این امر می تواند مانع از خرید خودروهای برقی با تکنولوژی روز توسط مردم شود.
  • کمبود زیرساخت های شارژ: تعداد ایستگاه های شارژ خودروهای برقی در ایران هنوز کافی نیست. این امر می تواند استفاده از خودروهای برقی را برای مردم دشوار کند.
  • عدم آگاهی مردم: مردم هنوز به اندازه کافی از مزایای خودروهای برقی آگاه نیستند. این امر می تواند مانع از استقبال مردم از خودروهای برقی شود.

برای رفع این چالش ها، دولت ایران باید اقداماتی را انجام دهد:

  • حمایت مالی از ساخت ایستگاه های شارژ: دولت ایران از ساخت ایستگاه های شارژ خودروهای برقی با ارائه تسهیلات مالی حمایت کند.
  • تعرفه ها و محدودیت های گمرکی را برای انواع خودروهای برقی حذف کند.

با انجام این اقدامات، انتظار می رود که ایران بتواند در زمینه خودروهای برقی و ایستگاه های شارژ پیشرفت کند.

 

نویسنده: مهدی پارساوند

 

 

 

 

 

 

مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی تجدیدپذیر به یک بازیگر محوری در تامین نیازهای انرژی و در عین حال کاهش اثرات زیست محیطی در جهان تبدیل شده است. این مقاله به بررسی عملکرد منابع انرژی تجدیدپذیر در مناطق مختلف می‌پردازد و کارایی، پیامدهای اقتصادی و مزایای زیست‌محیطی آن‌ها را روشن می‌کند.

 

معرفی

در چشم انداز همیشه در حال تکامل تولید انرژی، تغییر به سمت منابع تجدیدپذیر شتاب بیشتری به دست آورده است. درک عملکرد انرژی های تجدیدپذیر در مناطق مختلف برای بهینه سازی استفاده از آن بسیار مهم است.

انواع انرژی های تجدیدپذیر شامل انرژی خورشیدی، انرژی باد، برق آبی، زمین گرمایی و زیست توده هریک دارای خواص منحصربه فرد خود هستند. عوامل متعددی بر عملکرد منابع انرژی تجدیدپذیر تأثیر می گذارد. شرایط آب و هوایی، موقعیت جغرافیایی و پیشرفت های تکنولوژیک نقش اساسی در تعیین کارایی دارند.

در این مقاله از درک کارایی نیروگاه خورشیدی صحبت خواهیم کرد و اینکه کارایی پنل های خورشیدی متناسب با منطقه و با شدت نور خورشید، ارتفاع از سطح دریا و شرایط آب و هوایی سایت نیروگاه متفاوت خواهد بود و این فاکتورهای محیطی روی تولید نیروگاه خورشیدی انرژی اثرگذار است.

همچنین این مقاله به بررسی این موضوع می‌پردازد که چگونه الگوهای باد بر تولید انرژی تأثیر می‌گذارد و چگونه پیشرفت‌ها در فن‌آوری توربین باعث افزایش کارایی نیروگاه های بادی می‌شود. ما تلاش میکنیم شرایط ایده آل برای احداث نیروگاه برق آبی را با مطالعه موردی تشریح نموده حال آنکه مناطق غنی از آب مناسب برای بهره برداری از نیروی برق آبی میباشند.

 Aranuelo 746x419 - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی خورشیدی

ارزیابی کارایی انرژی خورشیدی

انرژی خورشیدی به‌عنوان یک منبع تجدیدپذیر بسیار مورد توجه قرار گرفته است. مناطقی با آب و هوای متفاوت بازده انرژی خورشیدی متفاوتی را تجربه می کنند. از بیابان ها تا آب و هوای سردتر، درک سازگاری پنل های خورشیدی حیاتی است.

 

عوامل موثر بر کارایی انرژی خورشیدی

  1. شدت نور خورشید:

   – افزایش شدت نور خورشید منجر به افزایش تولید برق از پنل‌های خورشیدی می‌شود.

شدت نور خورشید در ایران به‌عنوان یکی از کشورهای با تابش نور خورشید بسیار بالا شناخته می‌شود. در اغلب مناطق ایران، شدت نور خورشید در طول سال بسیار قوی و پراکنده است. این موقعیت جغرافیایی مثبت، ایران را به یکی از مناطق مناسب برای استفاده از انرژی خورشیدی تبدیل کرده است. به‌طور کلی، شدت نور خورشید در ایران متغیر است و بستگی به منطقه و فصل سال دارد. در فلات مرکزی کشور، به خصوص در استان‌های همچون همدان، سمنان، فارس، کرمان، و یزد، شدت نور خورشید بسیار زیاد است. میانگین ساعات روزانه نور خورشید در شهرهای ایران بین 1650 تا 2200 ساعت در طول سال است.

  1. زاویه مواجهه با تابش خورشید:

   – تنظیم زاویه پنل‌های خورشیدی به سمت خورشید باعث بهبود کارایی آنها می‌شود.

زاویه بهینه مواجهه با تابش خورشید در ایران بستگی به مکان و همچنین فصل سال دارد. اما به‌طور کلی، زاویه بهینه تنظیم پنل‌های خورشیدی بر اساس منطقه جغرافیایی به شرح زیر است:

مناطق جنوبی:

   – برای مناطقی مانند فارس، هرمزگان، و کرمان، زاویه مواجهه با تابش خورشید بین ۲۰ تا ۳۵ درجه از عمود خط استوا (زاویه انحراف) معمولاً بهینه است. این زاویه انحراف بهترین تعادل بین دریافت ماکزیمم نور خورشید و کاهش سایه‌زنی را ایجاد می‌کند.

مناطق مرکزی و شمالی:

   – در مناطقی مانند تهران و شهرهای میانی کشور، زاویه مواجهه معمولاً بین ۳۵ تا ۴۵ درجه است. این زاویه مناسب است تا در فصول گرم، سایه‌زنی کاهش یابد و در فصول سرد، نور خورشید به‌طور بهینه استفاده شود.

مناطق شمالی:

   – در مناطق شمالی که دارای کمترین نور خورشید در طول روز هستند، زاویه مواجهه معمولاً بین ۴۵ تا ۶۰ درجه است. این زاویه بهترین کارایی را در شرایط نور کمتر فراهم می‌کند.

با توجه به این تفاوت‌ها، تنظیم زاویه بهینه بر اساس نقاط جغرافیایی ایران از اهمیت زیادی برخوردار است تا از بهترین بهره‌وری انرژی خورشیدی در هر منطقه استفاده شود.

  1. شرایط جوی:

   – شرایط هواشناسی مانند ابرپوشی و باران، رطوبت هوا و زیرگردها می‌توانند بر کارایی پنل‌های خورشیدی تأثیرگذار باشند.

شرایط جوی در ایران به‌دلیل جغرافیای گسترده و متنوع کشور، بسیار متغیر و متنوع هستند. از مناطق خشک جنوبی تا مناطق سرد شمالی، هر منطقه با ویژگی‌های هواشناسی منحصر به فردی مواجه است. این تنوع زیست‌محیطی و شرایط جوی در ایران باعث ارائه یک تجربه هواشناسی چندگانه برای ساکنان مختلف در سراسر کشور می‌شود.

  – مناطق شمالی و شمال‌غربی دارای بارندگی بیشتر و منظر زمین‌های سبز هستند.

  – جنوب و مرکز کشور به شدت خشک و نیازمند به مدیریت آب هستند.

  – در برخی نقاط خشک جنوبی به خصوص در تابستان‌ها، گرد و غبار زیادی وجود دارد.

  – تغییرات دما از شمال به جنوب و از مناطق کوهستانی به مناطق کم ارتفاع متفاوت است.

کاور عکس copy - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

در شمال ایران مانند استان های گیلان و مازندران:

  – آب و هوای اقیانوسی با تأثیرات حاصل از دریای خزر.

  – تابستان‌های معتدل و زمستان‌های مرطوب و سرد.

 

در مرکز ایران مثل استان های تهران، قم، اصفهان:

  – تابستان‌های گرم و زمستان‌های سرد.

  – کمبود بارندگی با نقص آب در برخی نقاط.

 

در جنوب ایران مثل استان های فارس، هرمزگان، کرمان:

  – آب و هوای خشک و گرم.

  – تابستان‌های بسیار گرم با دمای بالا.

 

درغرب و شمال‌غرب ایران مثل استان های کردستان، آذربایجان غربی:

  – آب و هوای کوهستانی با زمستان‌های سرد و تابستان‌های معتدل.

 

مطالعه موردی نصب پنل‌های خورشیدی در منطقه خشک کویر مرکزی

در یک منطقه خشک واقع در نیر یزد با شدت نور خورشید بالا، ارتفاع مناسب از سطح دریا، تمیز بودن هوا و عدم وجود ریزگزد به دلیل وجود مرتع های سبز و دمای مناسب هوا برخلاف دمای بالا در دیگر مناطق استان یزد، نصب پنل‌های خورشیدی به عنوان یک پروژه نیروگاه خورشیدی 10 مگاوات صورت گرفت. این پروژه شامل نصب پنل‌های خورشیدی با زاویه تنظیم بهینه و استفاده از تکنولوژی‌های جدید برای افزایش بهره‌وری نیروگاه خورشیدی بود. نتایج نشان دادند که در این شرایط، پنل‌های خورشیدی با تنظیم زاویه مناسب تولید برق بیشتری داشتند. همچنین، استفاده از تکنولوژی‌های پیشرفته مانند پنل‌های خورشیدی با بازده بالا، بهبود قابل توجهی در کارایی نیروگاه خورشیدی ایجاد کرد.

ارزیابی کارایی انرژی خورشیدی نشان داد که با استفاده از تنظیمات بهینه و استفاده از تکنولوژی‌های جدید، می‌توان به بهبود قابل توجهی در تولید برق از این نوع انرژی دست یافت. این نتایج نشان می‌دهد که انرژی خورشیدی می‌تواند به‌عنوان یک منبع پایدار و کارآمد برای تأمین نیازهای انرژی مناطق خشک و با شدت نور خورشید بالا مورد استفاده قرار گیرد.

نیروگاه بادی آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی بادی

مناطق بادخیز راندمان بالاتری را در تولید انرژی بادی نشان می دهند. الگوهای باد به تولید انرژی بادی کمک می‌کنند و با ایجاد حرکت در هوا، انرژی حاصل از حرکت باد به انرژی قابل استفاده تبدیل می‌شود. این فرایند به وسیله توربین‌های بادی انجام می‌شود. در ادامه چگونگی این فرآیند توضیح داده شده است.

حرکت هوا و الگوهای باد:

  – الگوهای باد از تفاوت‌های دما و فشار در جهان به وجود می‌آیند. گرمای خورشید باعث گرم شدن هوا در برخی مناطق و سرد شدن در دیگر مناطق می‌شود. این تفاوت‌ها باعث جابجایی هوا و ایجاد الگوهای باد می‌شوند.

ساختار توربین‌های بادی:

  – توربین‌های بادی شامل پره‌های بلند و نازک هستند که سرعت باد وارد شده را به گشتاور تبدیل می‌کنند.

  – برخی از توربین‌ها در ارتفاعات بلند نصب شده‌اند تا از مسیرهای باد در ارتفاعات بالا بهره‌مند شوند، زیرا باد در این ارتفاعات معمولاً سریعتر جریان پیدا می‌کند.

  – باد وارد پره‌های توربین می‌شود و آنها را به گردش تحریک می‌کند. تبدیل انرژی این حرکت گرداننده از حرکت باد به انرژی مکانیکی صورت میگیرد.

  – انرژی مکانیکی حاصل از گردش پره‌ها، توسط یک ژنراتور به انرژی برق تبدیل می‌شود. ژنراتور با چرخش پره‌ها دیسک‌های مغناطیسی را حرکت می‌دهد و این حرکت مغناطیسی تولید جریان الکتریکی را به دنبال دارد.

  – برق تولید شده توسط توربین به وسیله سیم‌های انتقال به شبکه برق منطقه انتقال داده می‌شود و سپس به مصارف مختلف توزیع میرسد.

با این روش، الگوهای باد به تولید انرژی پاک و تجدیدپذیر کمک کرده و به عنوان یک منبع انرژی پایدار و محیط‌زیستی مهم در جهان شناخته می‌شوند.

با تجزیه و تحلیل الگوهای باد شامل استفاده از داده‌های سالانه الگوهای باد در سراسر ایران و انتخاب نقاط استراتژیک ازمناطقی با الگوهای باد مناسب و ثبات بالا و بررسی امکانات انرژی بادی شامل ارزیابی زیرساخت‌های فنی و امکانات تولید انرژی بادی در هر منطقه میتوانیم ارزیابی درستی از موقعیت نیروگاه بادی با حداکثر پتانسیل تولید داشته باشیم.

729366 copy - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

بر اساس تحقیقات انجام‌شده، استان سیستان و بلوچستان به‌عنوان بهترین مناطق باد خیز در ایران معرفی شده‌ است. این مناطق با الگوهای بادی قوی و پتانسیل تولید بالا، به عنوان مناطق استراتژیک برای پروژه‌های انرژی بادی در نظر گرفته می‌شوند.

برخی از بزرگ‌ترین و مهم‌ترین نیروگاه‌های بادی کشور عبارتند از:

نیروگاه بادی منجیل در استان گیلان با ظرفیت 171 مگاوات، بزرگ‌ترین نیروگاه بادی ایران است. این نیروگاه در سال ۱۳۷۸ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور دانمارک استفاده می‌کند.

نیروگاه بادی بینالود در استان خراسان رضوی با ظرفیت 28.2 مگاوات، دومین نیروگاه بادی بزرگ ایران است. این نیروگاه در سال ۱۳۸۱ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور آلمان استفاده می‌کند.

نیروگاه بادی کهک در استان قزوین با ظرفیت 20 مگاوات، سومین نیروگاه بادی بزرگ ایران است. این نیروگاه در سال ۱۳۹۲ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور ایران استفاده می‌کند.

سایر نیروگاه‌های بادی مهم ایران عبارتند از:

نیروگاه بادی گنبدکاووس با ظرفیت 10 مگاوات

نیروگاه بادی رامسر با ظرفیت 10 مگاوات

نیروگاه بادی چابهار با ظرفیت 5 مگاوات

نیروگاه بادی کویر مرکزی با ظرفیت 5 مگاوات

همچنین، توسعه زیرساخت‌های فنی و حمایت از سرمایه‌گذاری در این مناطق می‌تواند به بهره‌وری بیشتر از این منابع و کاهش وابستگی به منابع سوخت فسیلی کمک کند.

برق آبی آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی برق آبی

تولید انرژی برق از آب به‌عنوان یک منبع تجدیدپذیر و پاک، نقش بسیار مهمی در سبد انرژی کشورها دارد. در اینجا، نقش دسترسی به آب در تولید انرژی برق آبی و اهمیت آن بررسی می‌شود.

  – دسترسی به منابع آب از اهمیت بسزایی برخوردار است. رودخانه‌ها، دریاچه‌ها و سدها از منابع اصلی تولید انرژی برق آبی هستند.

  – مناطق با دسترسی به منابع آب پایدارتر می‌توانند از تولید پایدارتری انرژی برق آبی بهره‌مند شوند.

  – دسترسی به منابع آب نیازمند مدیریت مستمر و پایدار است. این امر از اهمیت زیادی برخوردار است تا آب مناسب برای تولید انرژی برق آبی تأمین شود.

  – مدیریت منابع آب، جدا از نقش مهم در تولید پایدار انرژی به کنترل سیلاب و جلوگیری از خشکسالی کمک میکند.

  – به دلیل استفاده از انرژی برق آبی به‌عنوان یک منبع پاک، دسترسی به آب باعث کاهش اثرات منفی بر محیط زیست می‌شود و به حفظ تنوع زیستی در مناطق آبی کمک میکند.

دسترسی به منابع آب برای راه‌اندازی نیروگاه برق آبی در ایران شامل استان هایی از ایران میشود که پتانسیل آبی بالایی داشته باشند که در ادامه به برخی از آن ها اشاره میکنم:

استان فارس:

  – دارای رودخانه‌های فراوان مانند زاینده‌رود و کارون.

  – سدها و تأمین آب از دریاچه‌های بزرگ همچون دریاچه نیمور و دریاچه بختگان.

– پروژه‌ها : سد سیاه‌خل، سد دز و سد کارون ۳.

استان گیلان:

  – دارای آبشارها و رودخانه‌های فراوان از جمله سفیدرود و سیاهرود.

  – دسترسی به منابع آب از دریاچه‌های انزلی و طبریا.

– پروژه‌ها : نیروگاه برق آبی چیتگر.

استان آذربایجان شرقی:

  – رودخانه‌های زیاد از جمله آرسند و قره‌چای.

  – دسترسی به دریاچه ارومیه.

– پروژه‌ها : نیروگاه برق آبی سهند.

استان کردستان:

  – رودخانه‌های زیاد از جمله سراب‌آباد و زاب.

  – پتانسیل بالای تولید انرژی در این استان.

– پروژه‌ها : سد دزلخانه و سد دره‌زرین.

استان خوزستان:

  – رودخانه کارون و شط العرب به عنوان منابع اصلی.

  – دسترسی به سدها و دریاچه‌ها.

– پروژه‌ها : نیروگاه برق آبی کارون ۴.

نیروگاه برق آبی ایران آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

با توجه به اینکه ایران دارای تنوع زیادی از نظر منابع آب است، دسترسی به منابع آب برای راه‌اندازی نیروگاه‌های برق آبی در اکثر مناطق کشور وجود دارد. مناطق با رودخانه‌ها و سدهای فراوان معمولاً برای ایجاد نیروگاه‌های برق آبی انتخاب می‌شوند. این پروژه‌ها نه‌تنها به تأمین انرژی بلکه به مدیریت منابع آب و کنترل سیلاب و خشکسالی نیز کمک می‌کنند. در ادامه به تأثیرات منفی نیروگاه‌های برق آبی بر محیط زیست و تغییر اقلیم ناشی از سومدیریت و عدم تطبیق دانش و تجربه میپردازم و تیتروار به آسیب های ناشی از این مسئله اشاره میکنم تا درک بهتری از تاثیر منطقه در احداث نیروگاه برق آبی بدست بیاورید:

  – ساخت سدها و تغییرات جریان آب در رودخانه‌ها می‌تواند منجر به کاهش تنوع زیستی در این مناطق شود.

  – زیستگاه‌های طبیعی مانند دلتاها و مرجان‌ها به‌دلیل تغییرات در جریان آب و تغییر در سطح آب ممکن است تحت تأثیر قرار گیرند.

  – نیروگاه‌های برق آبی با تخلیه آب گرم به رودخانه‌ها می‌توانند دمای آب را افزایش دهند که این تغییر می‌تواند به اختلال در فرآیندهای طبیعی زیست‌محیطی منطقه منجر شود.

  – سدسازی و تغییر در جریان آب ممکن است به قطع مسیرهای مهاجرت ماهیان و تخریب محل‌های تخم‌گذاری آنها منجر شود.

  – سدسازی و تخلیه زیاد آب برای نیروگاه‌های برق آبی ممکن است به کاهش سطح آب زیرزمینی منطقه منجر شود که این موضوع بر کشاورزی و زندگی حاشیه‌نشینان تأثیر منفی خواهد داشت.

  – سدسازی ممکن است با ایجاد مانع در مسیر جریان آب، خطر سیلاب‌های ناگهانی را افزایش دهد.

  – تغییرات در جریان آب ناشی از نیروگاه‌های برق آبی می‌تواند به تغییرات در ترکیب شیمیایی آب و کاهش کیفیت آب منطقه منجر شود.

توجه به مدیریت دقیق و پایداری از منابع آب، استفاده از فناوری‌های مدرن و اجرای طرح‌های حفاظت از محیط زیست می‌تواند کمک کند تا اثرات منفی این نیروگاه‌ها به حداقل رسیده و همزمان از مزایای انرژی برق آبی بهره‌مند شویم.

نویسنده: مهدی پارساوند