نوشته‌ها

طراحی جدید برای پمپ های حرارتی ترموالکتریک به خروجی بالاتر و ضریب عملکرد بهتر انجامید

 

به گزارش آرا نیرو دانشمندان در بریتانیا ترکیب پمپ های حرارتی ترموالکتریک مسکونی را با مخازن ذخیره گرما پیشنهاد کرده اند و دریافته اند که این راه حل، خروجی حرارت بالاتر، ضریب کارایی بالاتر و زمان گرمایش کوتاه‌تر را ارائه می دهد. آنها تاکید کردند که پمپ های حرارتی ترموالکتریک به راحتی با نیروگاه خورشیدی فتوولتائیک DC قابل ترکیب هستند.

 

محققان دانشگاه دورهام در بریتانیا طرح جدیدی را برای پمپ‌های حرارتی ترموالکتریک (TeHPs) پیشنهاد کرده‌اند که دارای تمامی مزایایی است که فناوری پمپ حرارتی ارائه می‌دهد، به‌ویژه زمانی که در ساختمان‌های مسکونی، بهره‌برداری می‌شود.

 

 آنها توضیح دادند که TeHP ها می توانند به طور مستقیم توسط پنل های خورشیدی فتوولتائیک تغذیه شوند، در حالی که عملکرد بی صدا و قابلیت اطمینان بالا را به دلیل عدم وجود قطعات متحرک ارائه می‌دهند.  با این حال، آنها همچنین اذعان کردند که ضریب عملکرد آنها در حال حاضر کمتر از پمپ های تراکم حرارتی بخار معمولی است.

 

 نوآوری رویکرد پیشنهادی شامل ادغام TeHP با ذخیره‌سازی انرژی خورشیدی فصلی (SSES) است که به گفته دانشمندان، عدم تطابق فصلی مربوط به توان حرارتی تولید شده، توسط هر دو سیستم فتوولتائیک و سیستم حرارتی خورشیدی (PVT) را جبران می‌کند.

 

 آنها توضیح دادند: “تا جایی که ما می دانیم، مطالعات کمی چنین راه حلی را در نظر گرفته اند.”  آنها با اشاره به امکان سنجی فنی-اقتصادی این سامانه و کمیت‌سازی، مزایایی که می تواند به همراه داشته باشد، گفتند: هدف گروه ما پر کردن این خلاء است و برای این کار باید دو موضوع مهم حل شود.

 

 به گزارش آرا نیرو در مقاله “مدل سازی و خصوصیات تجربی پمپ حرارتی ترموالکتریک آب به هوا با ذخیره انرژی حرارتی” که در مجله انرژی منتشر شده است، گروه تحقیقاتی بیان کرده که سیستم آزمایشی یک واحد TeHP با برق DC، یک مخزن ذخیره گرما و یک آزمایش را ادغام می کند، همراه با یک سیستم ثبت اطلاعات. واحد TeHP بر اساس یک ماژول ترموالکتریک (TeM)، یک هیت سینک با پره آلومینیومی در سمت گرم TeM و یک صفحه خنک کننده با آب در سمت سرد TeM است.

 

photo 2024 01 22 09 12 43 - طراحی جدید برای پمپ های حرارتی ترموالکتریک به خروجی بالاتر و ضریب عملکرد بهتر انجامید

The experimental setting
Image: Durham University, energies, Creative Commons License CC BY 4.0

 

دانشگاهیان توضیح دادند: “ظرفیت گرمایش کل واحد TeHP را می توان با افزایش تعداد کل TeMها افزایش داد.” برای افزایش انتقال حرارت بین TeM و هیت سینک و همچنین انتقال حرارت بین TeM و صفحه خنک‌شده با آب، یک خمیر با رسانایی حرارتی بالا در دو طرف TeM قرار داده شد تا مقاومت‌های حرارتی تماس را کاهش دهد. ”

 

آنها همچنین یک فن با جریان متقاطع را در سمت هیت سینک قرار دادند تا تبادل حرارت بین جریان هوا و هیت سینک افزایش یابد. آنها با اشاره به اینکه از آب به عنوان سیال انتقال حرارت و ذخیره گرما استفاده می شود، افزودند: مخزن ذخیره حرارت ساخته شده از فولاد ضد زنگ دارای قطر داخلی 25 میلی متر، ارتفاع 250 میلی متر و ضخامت 2 میلی متر است. علاوه بر این، یک حلقه گردش آب پمپ شده، مخزن ذخیره گرما را به صفحه خنک‌شده با آب متصل می‌کند.

 

در یک سری شبیه‌سازی که از طریق ابزار شبیه‌سازی TRNSYS اجرا شد، تیم تحقیقاتی گرمای بالقوه تولید شده از سیستم‌های PVT یا کلکتورهای حرارتی خورشیدی و عملکرد خروجی واحد TeHP را در مقایسه با یک سیستم مرجع بدون ذخیره‌سازی گرما محاسبه کردند. این نشان داد که ادغام TeHP ها با مخازن ذخیره گرما سه مزیت اصلی دارد.

ابتدا، دانشگاهیان متوجه شدند که مخزن ذخیره سازی خروجی حرارت TeHP را در مقایسه با TeHP بدون مخزن 3 درجه سانتیگراد افزایش می دهد.  سپس، آنها دریافتند که COP TeHP با ذخیره گرما 1.97 و TeHP بدون مخزن 1.5 بود. علاوه بر این، شبیه سازی نشان داد که زمان مورد نیاز برای گرم کردن جعبه آزمایش به میزان 18 متر کاهش یافته است، که طبق گزارش ها دستیابی سریع به دمای مورد نظر را تضمین می کند.

 

 دانشمندان گفتند، اگرچه این نتایج امیدوارکننده است، اما امکان‌سنجی فنی-اقتصادی این سیستم هنوز نامشخص است. آنها با اشاره به دوره بازپرداخت فعلی سیستم تاکید کردند: “این به این دلیل است که اگرچه استفاده از ذخیره سازی حرارتی عملکرد خروجی TeHP را افزایش می دهد، اما برای تاسیسات ذخیره سازی گرما در مقایسه با TeHP مستقل هزینه‌های اضافی ایجاد می کند.” فلذا 8.5 سال تخمین زده می‌شود.

 

 با نگاه به آینده، گروه تحقیقاتی قصد دارد پیکربندی سیستم را بر روی یک ساختمان واقعی در بریتانیا آزمایش کند.

 

نویسنده: Emiliano Bellini

نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

 

به گزارش آرا نیرو همه می خواهند کاری در مورد انتشار کربن انجام دهند اما تعداد کمی از آنها می دانند چگونه؟ ما می‌خواهیم بهتر عمل کنیم، اما ادامه دادن به انجام کاری که همیشه انجام داده‌ایم آسان‌تر از صرف زمان، تلاش و پول برای ایجاد تغییرات است. شرکت‌های تاسیساتی که گاز فسیلی عرضه می‌کنند _که به اشتباه به عنوان “گاز طبیعی” شناخته می‌شود_ تحت فشار گروه‌های زیست‌محیطی هستند، زیرا محصول آنها _که عمدتا متان است_ هنگام سوزاندن دی اکسید کربن در اتمسفر آزاد می‌شود.

 

حتی بدتر از آن، مقدار زیادی از مواد به اتمسفر نشت می کند، جایی که برای 20 سال یا بیشتر باقی می‌ماند. متان 80 برابر قویتر از دی اکسید کربن، عامل گرمایش سیاره است، به این معنی که لغزش به سمت دمای گرمتر جهانی را تسریع داده است. اما شرکت‌های گاز فسیلی علاقه خاصی به ادامه مدل کسب و کار خود دارند که سود قابل توجهی را برای آنها به ارمغان می‌آورد. حتی با فرض اینکه مدیرانی که این شرکت ها را اداره می کنند متعهد به رسیدگی به تغییرات آب و هوایی به روشی معنادار باشند، نمی توانند به خوبی در جلسه هیئت مدیره شرکت کنند و پیشنهاد تعطیلی کسب و کار را بدهند.

 

حرکت از گاز فسیلی

ایالت نیویورک فکر می کند راه حلی برای این معضل دارد. تمام تجربیاتی که شرکت‌های گاز فسیلی در ساخت خطوط لوله و شبکه‌های توزیع ساختمان دارند را در نظر بگیرید و در عوض آن را برای انتقال گرما برای پمپ‌های حرارتی منبع زمینی به کار ببرید. در سال 2022، قانونگذار نیویورک، قانونی را تصویب کرد که تعدادی از سیاست های طراحی شده برای کاهش انتشار گازهای گلخانه ای را ترویج می کند. از جمله آنها طرحی برای کاهش انتشار کربن و متان از تاسیسات گاز فسیلی است و در عین حال نقشی را برای این شرکت ها در دهه های آینده ایجاد می کند.

 

آنها به حفر سنگرها، احداث خطوط لوله و نصب تجهیزات ادامه می دهند _همان نوع سرمایه گذاری که امروزه سود طولانی و پایداری را برای شرکت های گاز به ارمغان می آورد._ اما به جای گاز قابل اشتعال و گرم کننده سیاره، این لوله ها آب یا مایعات دیگری را حمل می کنند که گرما را از زیر زمین یا از ساختمان ها و منابع دیگر در شبکه منتقل می کنند که می توانند توسط پمپ های حرارتی برای گرم نگه داشتن ساختمان ها استفاده شوند.

 

چرا این مهم است؟ ما می دانیم که پمپ های حرارتی با منبع هوا – نوعی که روی دیوارهای بیرونی آویزان می شوند – نسبت به دیگهای بخار و کوره های معمولی که از سوخت های فسیلی استفاده می کنند کارآمدتر هستند. _اگر در اطراف بوستون امریکا زندگی می‌کنید، تصدیق میکنید که آن‌ها کارآمد هستند_ اما چیزی که بسیاری نمی‌دانند این است که وقتی می‌توانند گرما و سرما را با سیال در دمای پایدار مبادله کنند و نه از طریق هوای سرد بیرون، این امر حتی میتواند کارآمدتر باشد. در واقع، وزارت انرژی امریکا تخمین می زند که چنین پمپ های حرارتی منبع زمینی مصرف انرژی و انتشار گازهای گلخانه ای را تا 44 درصد در مقایسه با پمپ های حرارتی منبع هوا و 72 درصد در مقایسه با تجهیزات استاندارد تهویه مطبوع کاهش می دهند. حالا با این تفاسیر آیا ما توجه شما را جلب کردیم؟

در حالی که این خبر هیجان‌انگیزی است، اکثر مالکان ساختمان‌ها برای پرداخت هزینه حفاری گمانه‌ها و نصب لوله‌ها برای سیستم‌های پمپ حرارتی زمین گرمایی خود یا بستن قراردادهایی با همسایگان خود برای ساخت و اشتراک شبکه‌های زیرزمینی با مشکل مواجه هستند.  به همین دلیل است که رویکرد نیویورک برای انطباق زیرساخت های خدمات گازی بسیار نویدبخش است.  لیزا دیکس، مدیر ائتلاف غیر انتفاعی کربن زدایی ساختمان در نیویورک به Canary Media می گوید که انجام این کار به صاحبان خانه و مشاغل کمک می کند تا در هزینه ها سهیم شوند و از مزایای آن بهره ببرند.

 

توانمندسازی قانونگذاری

 گروه او از قانون شبکه انرژی حرارتی شهری و مشاغل حمایت کرد که توسط قانونگذار نیویورک در سال 2022 تصویب شد. در پاسخ به این قانون، شرکت های آب و برق در ایالت نیویورک، ماه گذشته برنامه هایی را برای 13 پروژه آزمایشی ارائه کردند که برای تبدیل خطوط لوله گاز فسیلی به زیرساخت طراحی شده بودند که می تواند پمپ های حرارتی تمیز و بدون کربن را تامین کند.

به گزارش آرا نیرو این شبکه‌های حرارتی زیرزمینی از مراکز تجاری متراکم منهتن تا مسکن‌های کم درآمد، و از محله‌های دره هادسون تا شهر شمالی ایتاکا، محل دانشگاه کرنل، را دربرمی‌گیرد.  نتایج این پروژه‌های آزمایشی می‌تواند به جوامع دیگر از جمله ایران کمک کند تا درک کنند که چگونه این فناوری را برای خود به کار ببرند.

شرکت Con Edison، شرکتی که به شهر نیویورک و شهرستان وستچستر خدمات می‌دهد، سه پروژه را پیشنهاد کرده است که برخی از چالش‌برانگیزترین تنظیمات شهری از جمله مرکز برجسته راکفلر را در بر می‌گیرد. Con Ed قصد دارد سه ساختمان تجاری بزرگ را از شبکه گرمایش بخار منطقه ای به پمپ های حرارتی تبدیل کند. این پمپ های حرارتی از آبی استفاده می کنند که توسط گرمای هدر رفته از منابعی مانند فاضلاب، مراکز داده و سیستم های خنک کننده ساختمان های مجاور گرم می شود.

 

«برخی تصورات غلط وجود دارد. مردم فکر می کنند که برای گرفتن گرمای زیرزمینی باید یک میلیون چاه حفر کنید. ​اما شما می توانید گرمای خود را از منابع مختلف دریافت کنید. می توانید آن را از مترو دریافت کنید، می توانید آن را از فاضلاب تهیه کنید و اگر این کار را درست انجام دهیم، به کربن زدایی سیستم بخار Con Ed کمک خواهد کرد.

 

photo 2024 01 21 10 05 28 - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

Source: cleantechnica.com

شرکت املاک و مستغلات Tishman Speyer، مالک 30 Rockefeller Center، شریک اصلی این پروژه است. این شرکت انگیزه قوی برای مشارکت دارد زیرا این پروژه می تواند هزینه های مربوط به رعایت قانون محلی شهر نیویورک 97 را کاهش دهد که تمام ساختمان های بزرگ را ملزم می کند تا انتشار کربن خود را تا سال 2030 تا 40 درصد نسبت به سال 2019 کاهش دهند. رسیدن به این اهداف مستلزم 18.2 میلیارد دلار سرمایه گذاری در جایگزینی برای دیگهای بخار و کوره های گاز فسیلی تخمین زده شده است.

 

دیکس گفت: شبکه های مشترک می توانند به طور قابل توجهی هزینه ساختمان های فردی را کاهش دهند، اما صاحبان املاک ​”نمی خواهند به طور خصوصی با تمام این مجوزها برخورد کنند – آنها می خواهند که شرکت ابزار با همه این موارد مقابله کند.” هنگامی که به دنبال تبدیل کل محله‌ها در مقیاس بزرگ به جایگزین‌های کم کربن هستید، ​”توسعه‌های آب و برق بیشترین منطق را برای انجام این کار دارند. آنها دارای حق راه هستند، دارای مجوز هستند، به سرمایه دسترسی دارند، و نیروی کار دارند که قبلاً اتحادیه شده است.»

 

به گزارش آرا نیرو یکی دیگر از پروژه های Con Ed در محله چلسی منهتن قصد دارد 100 درصد نیازهای گرمایشی، سرمایشی و آب گرم یک ساختمان مسکونی چند خانواری کم درآمد را از یک مرکز داده در نزدیکی آن، تامین کند. دیکس گفت: «ما می‌توانیم یک مرکز داده داشته باشیم که به معنای واقعی کلمه یک ساختمان چند خانواری یا یک آسمان‌خراش بزرگ را گرم می‌کند.

 

سه ایالت دیگر – کلرادو، ماساچوست و مینه‌سوتا – قوانینی را تصویب کرده‌اند که به شرکت‌های گاز اجازه می‌دهد تا پروژه‌های آزمایشی شبکه انرژی حرارتی را انجام دهند. ایلینوی، مین، ورمونت و واشنگتن در حال بررسی قوانین مشابه هستند و 13 شرکت گاز یک شرکت مشترک زمین گرمایی شبکه‌ای Utility را برای بررسی گزینه‌های بیشتر ایجاد کرده‌اند.

1690297311708 - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

https://www.sciencefocus.com/

تاسیسات گاز فسیلی ایده آل هستند

آدری شولمن، مدیر اجرایی تیم بهره وری انرژی خانگی در کمبریج ماساچوست، گفت که شرکت های گاز فسیلی برای نصب شبکه های انرژی حرارتی در مقیاس بزرگ، ایده آل هستند. آنها نیروی کار، تخصص و دسترسی به سرمایه مورد نیاز برای ساخت شبکه های زیرزمینی متصل به هم را دارند. او می گوید که آنها در حال حاضر میلیاردها دلار در سال برای توسعه و تعمیرات خط لوله گاز فسیلی خرج می کنند که به ناچار مدت ها قبل از اینکه هزینه های آنها توسط مشتریان بازپرداخت شود به “دارایی های سرگردان” تبدیل می شوند. “کل کار در مورد ایجاد ساختار نظارتی است که به وسیله آن از گاز خارج می شویم و به چیز دیگری می رویم.”

در پست آینده پیج اینستاگرام آرا نیرو ویدئوی مختصری وجود دارد که توسط HEET گردآوری شده است که به خوبی توضیح می دهد که چگونه این فرآیند کار می کند. با ما همراه باشید.

 

علی‌رغم قانون نیویورک، شرکت‌های گاز فسیلی در این ایالت 5 میلیارد دلار برای سرمایه‌گذاری زیرساختی هزینه کرده‌اند و از زمان تصویب این قانون، 28 میلیارد دلار در طرح‌های جایگزینی خط لوله، شناسایی کرده‌اند. این قطع ارتباط بین الزامات آب و هوایی به نیویورک محدود نمی شود. گروه براتل در گزارشی در سال 2021 دریافت که شرکت های گاز فسیلی در ایالات متحده ممکن است در دهه آینده با سرمایه گذاری 180 میلیارد دلاری در خط لوله مواجه شوند که ممکن است قابل بازیابی نباشد.

تعهد خدمت

مانند بسیاری از ایالت‌های دیگر با دستور کربن‌زدایی، نیویورک صدها میلیون دلار مشوق برای پمپ‌های حرارتی و برق‌رسانی ساختمان‌ها ارائه کرده است و مقرراتی را وضع کرده است که گسترش گاز فسیلی را به ساختمان‌های جدید محدود می‌کند.

اما بر اساس گزارش سال 2023 از ائتلاف کربن زدایی ساختمان، این رویکرد “خانه به خانه” می تواند منجر به ایجاد محدودیت در تاسیسات گاز و تنظیم کننده ها شود که جهت حفظ شبکه های توزیع مجبور به فروش گاز گران قیمت برای تامین سوخت به تعداد روبه کاهش مشتریان شوند.

در همین حال، مشتریانی که باقی می‌مانند، بخش بیشتری از هزینه پرداخت این سرمایه‌گذاری‌های گاز را متحمل خواهند شد، که منجر به ایجاد یک چرخه معیوب از افزایش هزینه‌ها بر افرادی می‌شود که خود توانایی تغییر پمپ‌های حرارتی را ندارند. آن دسته از مشتریان عقب مانده به احتمال زیاد افرادی با درآمد کمتر هستند که در حال حاضر برای پرداخت قبوض گران قیمت آب و برق تلاش می کنند.

 

یکی از موانع، قوانینی است که در بسیاری از ایالت‌ها وجود دارد. در ازای انحصار شرکت های خدمات شهری، آنها ملزم به ارائه خدمات به هر کسی در قلمرو خود هستند که آن را درخواست می کند. این تعهد بخش اصلی ماموریت یک شرکت است، اما کاربرد دقیق آن می‌تواند به یک مشتری در محله‌ای که برای شبکه انرژی حرارتی در نظر گرفته شده است اجازه دهد کل پروژه را متوقف کند. تغییر قوانین در حال حاضر در نیویورک، ماساچوست و سایر ایالت ها برای اینکه به شرکت های آب و برق اجازه دهد مشتریان را از خدمات شبکه گاز به انرژی حرارتی تغییر دهند، بدون اینکه اعتراضات ​”اجبار به خدمت” را ایجاد کنند، بخش مهمی از روند انتقال خواهد بود.

 

دیکس گفت، در نیویورک، قانون شبکه انرژی حرارتی برق شهری و مشاغل، این قانون را برای پروژه های آزمایشی که اکنون در حال بررسی هستند، به حالت تعلیق در می آورد، اما برای گسترش این تغییر به کل ایالت، قوانین بیشتری لازم است. در ماساچوست، تیم بهره وری انرژی خانه و سایر گروه های محیطی و اجتماعی لایحه “آینده گرمای پاک” را تأیید می کنند که تغییرات مشابهی را ایجاد می کند.

 

به گزارش آرا نیرو مزایای کارآیی این شبکه‌ها همچنین می‌تواند کمک قابل توجهی به شبکه‌های برق بدهد که رشد گسترده‌ای در تقاضای ساختمان‌های گرمایشی و وسایل نقلیه الکتریکی را تجربه خواهند کرد. تحقیقات وزارت انرژی نشان داده است که نصب پمپ های حرارتی زمین گرمایی در تقریبا 80 درصد خانه های ایالات متحده می تواند هزینه های کربن زدایی شبکه را تا 30 درصد کاهش دهد و تا سال 2050 از نیاز به 24,500 مایل خطوط انتقال جدید جلوگیری کند.

EGS.Infographic - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

This diagram shows how electricity is produced using enhanced geothermal systems.

غذای آماده

تبدیل سیستم های توزیع گاز فسیلی برای پشتیبانی از سیستم های پمپ حرارتی منبع زمینی، یک ایده جسورانه است. برای شرکت های آب و برق، این راهی است که آنها به خدمت به جامعه ادامه دهند و با انجام این کار سود ببرند و در عین حال فعالیت های خود را کربن زدایی کنند. این روشی را برای به حداکثر رساندن بهره وری ارائه می دهد که از طریق پمپ های حرارتی ممکن می‌شوند، در حالی که انتشار گازهای گلخانه ای را مختل می کند.

 

چنین تفکر جسورانه ای قابل تحسین است. آیا منطقی‌تر نیست که راه‌حل‌های خلاقانه‌ای مانند این را دنبال کنیم تا اینکه امید به طرح‌های ژئومهندسی خطرناک برای زمین پاک ببندیم؟ صنعت آب و برق میتواند این را به عنوان یک موقعیت برد/برد ببیند، اما بسیاری از این شرکت ها به شدت با این تغییر مخالف هستند. آنها به دلایل خودخواهانه خود از آینده می‌ترسند و به جای ساختن یک جامعه انسانی پایدار نگران سود خود هستند.

 

شاید وقتی یاد بگیرند که انتقال از گازهای فسیلی بدون تخریب مدل کسب و کارشان قابل انجام باشد، بر ترس های خود غلبه کنند و مانع چنین برنامه هایی نشوند. اگر همه برنده شوند، _شرکت ها، جوامع و زمین_ بهترین جهان، ممکن خواهد بود.

 

منبع: CleanTechnica

 

وستاس از توربین بادی جدید ساخته شده از فولاد کم انتشار رونمایی کرد

این شرکت با سازنده فولاد ArcelorMittal برای بالا بردن چرخه فولاد و کاهش انتشار آلاینده های مادام‌العمر برای محصولات آینده خود شریک شده است.
در تلاش برای کاهش انتشار کربن در طول عمر تولید توربین‌های بادی، سازنده توربین دانمارکی Vestas از جدیدترین پیشنهاد خود، توربین‌های ساخته شده از فولاد کم انتشار، رونمایی کرده است. این توربین فولادی کم انتشار در سال 2025 در پروژه باد فراساحلی بالتیک در سواحل لهستان به نمایش درخواهد آمد.

با توجه به کاهش انتشار کربن تا اواسط قرن، کشورها ابتکار عمل ساخت پروژه های انرژی بادی در مقیاس بزرگ را به عهده گرفته اند که می توانند شبانه روزی کار کنند. مناطق نزدیک به ساحل در حال بررسی گزینه‌هایی برای ساخت توربین های بادی بزرگتر در دریا برای بهره برداری از بادهای سریعتر هستند.
در حالی که این ابتکارات قابل ستایش است، کارشناسان همچنین خاطرنشان کرده اند که افزایش انرژی های تجدیدپذیر در سال های اخیر بدون تأثیرات زیست محیطی نیست. برای مثال، توربین‌های بادی با استفاده از فولاد، آهن، فایبرگلاس و پلاستیک ساخته می‌شوند که هر کدام فرآیندهای تولید انرژی بر و اثرات زیست محیطی قابل توجهی دارند.

برای کاهش تأثیر پذیرش در مقیاس بزرگ از این فناوری، سازندگان تجهیزات اصلی مانند Vestas به دنبال کاهش انتشار گازهای گلخانه ای در تولید خود هستند. توربین فولادی کم آلاینده نتیجه این تلاش‌هاست.

فولاد کم آلاینده چگونه ساخته می شود؟
وستاس با سازنده فولاد چندملیتی ArcelorMittal مستقر در لوکزامبورگ سیتی برای تهیه فولاد کم آلاینده همکاری کرد. فولاد کم انتشار با استفاده از ضایعات فولادی 100 درصد تولید می شود. در Industeel Charleroi در بلژیک، این سازنده فولاد می تواند ضایعات را در یک کوره الکتریکی که تنها با انرژی باد کار می کند ذوب کند.

سپس به فولاد مذاب اجازه داده می شود تا به صفحات فولادی خنک و سپس به صفحات سنگین برای ساخت برج های توربین تبدیل شوند. طبق بیانیه مطبوعاتی این شرکت، فولاد کم آلاینده در حال حاضر برای ساخت یک توربین بادی کامل در خشکی و البته تنها برای بخش بالایی برج های توربین بادی دریایی مناسب است.

photo 2024 01 20 16 45 14 - وستاس از توربین بادی جدید ساخته شده از فولاد کم انتشار رونمایی کرد

Source: Vestas

کاهش انتشار کربن حاصل شده است
فولاد و آهن تا 90 درصد از جرم مواد توربین را تشکیل می‌دهند که در حدود 50 درصد از کل انتشار چرخه حیات توربین را شامل می‌شوند. وستاس با استفاده از فولاد کم آلاینده قصد دارد این عدد را به میزان قابل توجهی کاهش دهد. طبق بیانیه مطبوعاتی، وستاس در نظر دارد با فولاد کم آلاینده در مقایسه با فولاد معمولی، به کاهش 66 درصدی شدت انتشار در هر کیلوگرم دست یابد.

به طور خاص، در برج‌های توربین دریایی، که تنها دو بخش بالای آن با فولاد کم آلاینده ساخته می‌شود، انتظار می‌رود کاهش انتشار 25 درصد باشد. برای توربین های خشکی، که در آن کل برج از فولاد upcycled ساخته شده است، کاهش CO2 به میزان 52 درصد خواهد بود.

دیتر دهورن، رئیس تدارکات جهانی در Vestas گفت: «پیدا کردن راه‌هایی برای کربن‌زدایی انتشار گازهای گلخانه‌ای تولید شده در طول استخراج مواد خام و پالایش فولاد برای ما و صنعت به طور کلی حیاتی است. وستاس مشارکت با ArcelorMittal و پذیرش فولاد کم آلاینده را به عنوان یک اهرم مهم در کاهش انتشار CO2 در صنعت بادی می بیند.

این محصول پس از مدتی در دسترس مشتریان وستاس قرار خواهد گرفت. در عوض، انتظار می‌رود این شرکت اولین دسته از توربین‌های فولادی کم انتشار خود را در سال آینده و زمانی که وستاس شروع به ساخت پروژه بادی فراساحلی بالتیک 1.2 گیگاواتی در سواحل لهستان می‌کند، راه‌اندازی کند.

سازنده تجهیزات، 76 توربین بادی V236 با ظرفیت 15 مگاواتی را برای این پروژه تامین و نصب خواهد کرد. از این برج های بالا، 52 توربین با استفاده از فولاد کم آلاینده ساخته خواهند شد.
منبع: interestingengineering

یک باتری دائمی به اندازه یک سکه

یک استارت‌آپ می‌گوید باتری هسته‌ای آن به‌اندازه سکه می‌تواند پهپادها را «به‌طور مستمر» به پرواز درآورد.

این با مهار انرژی از شکافت هسته ای کار می کند.

تصور کنید دیگر هرگز مجبور نباشید باتری دستگاه را عوض کنید یا در واقع باتری که می تواند بیشتر از شما عمر کند.

به گزارش آرا نیرو این همان چیزی است که Betavolt، یک شرکت فناور چینی، ادعا می‌کند باتری هسته‌ای مینیاتوری تازه رونمایی شده خود، می‌تواند تا 50 سال به کار خود ادامه دهد.

 این شرکت مستقر در پکن مدعی است که وارد “مرحله آزمایشی” باتری شده است که کوچکتر از یک سکه است و به زودی آن را به تولید انبوه خواهد رساند.

 این شرکت پیش‌بینی می‌کند که باتری در صنایع مختلف از هوافضا گرفته تا روباتیک و تلفن‌های هوشمند استفاده شود.

 این شرکت ادعا می‌کند: «اگر سیاست‌ها اجازه دهند، باتری‌های انرژی اتمی می‌توانند به تلفن همراه اجازه دهند هرگز شارژ نشود و پهپادهایی که فقط ۱۵ دقیقه پرواز کنند می‌توانند به طور مداوم پرواز کنند».

Source httpsslguardian.org  - یک باتری دائمی به اندازه یک سکه

Source httpsslguardian.org

 ادعاهای این شرکت کاملاً غیرقابل تصور نیست.  باتری‌های تجاری موجود که به طور مشابه کار می‌کنند، در حال حاضر عمری بیش از ۲۰ سال دارند.

 

آرا نیرو گزارش می‌دهد ابعاد این باتری 15×15×5 میلی‌متر است و از لایه‌های نازک مانند ایزوتوپ‌های هسته‌ای و نیمه‌هادی‌های الماسی ساخته شده است.  این یک نوع دستگاه بتاولتائیک است، به این معنی که با مهار انرژی آزاد شده از ایزوتوپ‌های رادیواکتیو، _در این مورد، ایزوتوپ نیکل_، با برداشتن و تبدیل الکترون‌ها در حین تجزیه مواد، کار می‌کند.

 

شرکت Betavolt می گوید که این تشعشعات هیچ خطری برای بدن انسان ندارد و آن را در دستگاه های پزشکی مانند ضربان سازها قابل استفاده می کند.  ایزوتوپ نیکل به یک ایزوتوپ مس پایدار تبدیل می‌شود و به راحتی قابل بازیافت است.

 اما قبل از اینکه بیش از حد در مورد چشم انداز این منبع شگفت انگیز انرژی هیجان زده شوید، باید گفت ادعاهای باورنکردنی نیاز به شواهد خارق العاده‌ای دارند. به عنوان مثال، استارتاپ دیگری به نام NBD بیش از 1.2 میلیون دلار سرمایه گذاری برای باتری مشابهی جمع آوری کرد که گفته بود هزاران سال دوام خواهد آورد – اما این دستگاه هنوز محقق نشده است و کمیسیون بورس و اوراق بهادار ایالات متحده اکنون به دنبال این شرکت به عنوان متقلب است.

منبع: futurism

افزایش قابلیت اطمینان ادغام انرژی های تجدیدپذیر در شبکه برق سراسری با فناوری حفاظتی جدید ABB

به گزارش آرا نیرو شرکت ABB یک فناوری حفاظتی جدید به نام رله تطبیقی ​​برای انرژی های تجدیدپذیر (ARR) توسعه داده است که می تواند به افزایش قابلیت اطمینان ادغام انرژی های تجدیدپذیر در شبکه کمک کند.  منابع انرژی تجدید پذیر، مانند توربین های بادی و پنل های خورشیدی، می توانند چالش های منحصر به فردی را برای سیستم های حفاظتی سنتی ایجاد کنند. ARR   این ویژگی های منحصر به فرد را در نظر می گیرد تا حفاظت دقیق و قابل اعتمادتری برای خطوط انتقال و سایر دارایی های شبکه ارائه دهد.

 

 در اینجا برخی از ویژگی های کلیدی ARR آورده شده است:

  • تشخیص خطا تطبیقی: ARR می‌تواند خطاهایی را در سیستم‌های انرژی تجدیدپذیر شناسایی کند که ممکن است توسط سیستم‌های حفاظت سنتی شناسایی نشوند.
  • حفاظت هماهنگ: ARR می تواند عملکرد رله های متعدد را برای اطمینان از رفع سریع و کارآمد خطاها هماهنگ کند.
  • کاهش خطای کاذب : ARR می تواند تعداد خطاهای (تریپ های) کاذب را که در سیستم های انرژی تجدیدپذیر رخ میدهد کاهش دهد.
  • قابلیت اطمینان بهبود یافته: ARR می تواند با اطمینان از اینکه منابع انرژی تجدیدپذیر می توانند به طور ایمن و کارآمد یکپارچه شوند، به بهبود قابلیت اطمینان کلی شبکه کمک کند.

 

 ABB قبلاً ARR را در تعدادی از پروژه های شبکه در سراسر جهان پیاده سازی کرده است.  این شرکت انتظار دارد که ARR نقش کلیدی در امکان رشد مداوم استفاده از انرژی های تجدید پذیر ایفا کند.

 

در اینجا برخی از مزایای استفاده از ARR آورده شده است:

  • افزایش نفوذ انرژی تجدیدپذیر: ARR به افزایش مقدار انرژی تجدیدپذیر که می تواند به طور ایمن در شبکه ادغام شود کمک می کند.
  • کاهش قطعی شبکه: ARR می تواند به کاهش فرکانس و مدت زمان قطع شدن شبکه کمک کند.
  • هزینه های عملیاتی کمتر: ARR می تواند با کاهش نیاز به تعمیر و نگهداری، به کاهش هزینه های عملیاتی شبکه کمک کند.
  • بهبود پایداری شبکه: ARR می تواند با کاهش خطر خاموشی به بهبود پایداری شبکه کمک کند.

 

 به طور کلی، ARR  یک فناوری جدید امیدوارکننده است که می تواند به افزایش قابلیت اطمینان و ایمنی ادغام انرژی های تجدیدپذیر در شبکه کمک کند.  از آنجایی که انرژی های تجدیدپذیر به بخش مهمی از سبد انرژی تبدیل شده است، نیاز به سیستم های حفاظتی قابل اعتماد و موثر همچنان افزایش می یابد.  فناوری ARR شرکت ABB  برای پاسخگویی به این نیاز و کمک به تسریع انتقال به آینده انرژی پاک، موقعیت خوبی دارد.

مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی تجدیدپذیر به یک بازیگر محوری در تامین نیازهای انرژی و در عین حال کاهش اثرات زیست محیطی در جهان تبدیل شده است. این مقاله به بررسی عملکرد منابع انرژی تجدیدپذیر در مناطق مختلف می‌پردازد و کارایی، پیامدهای اقتصادی و مزایای زیست‌محیطی آن‌ها را روشن می‌کند.

 

معرفی

در چشم انداز همیشه در حال تکامل تولید انرژی، تغییر به سمت منابع تجدیدپذیر شتاب بیشتری به دست آورده است. درک عملکرد انرژی های تجدیدپذیر در مناطق مختلف برای بهینه سازی استفاده از آن بسیار مهم است.

انواع انرژی های تجدیدپذیر شامل انرژی خورشیدی، انرژی باد، برق آبی، زمین گرمایی و زیست توده هریک دارای خواص منحصربه فرد خود هستند. عوامل متعددی بر عملکرد منابع انرژی تجدیدپذیر تأثیر می گذارد. شرایط آب و هوایی، موقعیت جغرافیایی و پیشرفت های تکنولوژیک نقش اساسی در تعیین کارایی دارند.

در این مقاله از درک کارایی نیروگاه خورشیدی صحبت خواهیم کرد و اینکه کارایی پنل های خورشیدی متناسب با منطقه و با شدت نور خورشید، ارتفاع از سطح دریا و شرایط آب و هوایی سایت نیروگاه متفاوت خواهد بود و این فاکتورهای محیطی روی تولید نیروگاه خورشیدی انرژی اثرگذار است.

همچنین این مقاله به بررسی این موضوع می‌پردازد که چگونه الگوهای باد بر تولید انرژی تأثیر می‌گذارد و چگونه پیشرفت‌ها در فن‌آوری توربین باعث افزایش کارایی نیروگاه های بادی می‌شود. ما تلاش میکنیم شرایط ایده آل برای احداث نیروگاه برق آبی را با مطالعه موردی تشریح نموده حال آنکه مناطق غنی از آب مناسب برای بهره برداری از نیروی برق آبی میباشند.

 Aranuelo 746x419 - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی خورشیدی

ارزیابی کارایی انرژی خورشیدی

انرژی خورشیدی به‌عنوان یک منبع تجدیدپذیر بسیار مورد توجه قرار گرفته است. مناطقی با آب و هوای متفاوت بازده انرژی خورشیدی متفاوتی را تجربه می کنند. از بیابان ها تا آب و هوای سردتر، درک سازگاری پنل های خورشیدی حیاتی است.

 

عوامل موثر بر کارایی انرژی خورشیدی

  1. شدت نور خورشید:

   – افزایش شدت نور خورشید منجر به افزایش تولید برق از پنل‌های خورشیدی می‌شود.

شدت نور خورشید در ایران به‌عنوان یکی از کشورهای با تابش نور خورشید بسیار بالا شناخته می‌شود. در اغلب مناطق ایران، شدت نور خورشید در طول سال بسیار قوی و پراکنده است. این موقعیت جغرافیایی مثبت، ایران را به یکی از مناطق مناسب برای استفاده از انرژی خورشیدی تبدیل کرده است. به‌طور کلی، شدت نور خورشید در ایران متغیر است و بستگی به منطقه و فصل سال دارد. در فلات مرکزی کشور، به خصوص در استان‌های همچون همدان، سمنان، فارس، کرمان، و یزد، شدت نور خورشید بسیار زیاد است. میانگین ساعات روزانه نور خورشید در شهرهای ایران بین 1650 تا 2200 ساعت در طول سال است.

  1. زاویه مواجهه با تابش خورشید:

   – تنظیم زاویه پنل‌های خورشیدی به سمت خورشید باعث بهبود کارایی آنها می‌شود.

زاویه بهینه مواجهه با تابش خورشید در ایران بستگی به مکان و همچنین فصل سال دارد. اما به‌طور کلی، زاویه بهینه تنظیم پنل‌های خورشیدی بر اساس منطقه جغرافیایی به شرح زیر است:

مناطق جنوبی:

   – برای مناطقی مانند فارس، هرمزگان، و کرمان، زاویه مواجهه با تابش خورشید بین ۲۰ تا ۳۵ درجه از عمود خط استوا (زاویه انحراف) معمولاً بهینه است. این زاویه انحراف بهترین تعادل بین دریافت ماکزیمم نور خورشید و کاهش سایه‌زنی را ایجاد می‌کند.

مناطق مرکزی و شمالی:

   – در مناطقی مانند تهران و شهرهای میانی کشور، زاویه مواجهه معمولاً بین ۳۵ تا ۴۵ درجه است. این زاویه مناسب است تا در فصول گرم، سایه‌زنی کاهش یابد و در فصول سرد، نور خورشید به‌طور بهینه استفاده شود.

مناطق شمالی:

   – در مناطق شمالی که دارای کمترین نور خورشید در طول روز هستند، زاویه مواجهه معمولاً بین ۴۵ تا ۶۰ درجه است. این زاویه بهترین کارایی را در شرایط نور کمتر فراهم می‌کند.

با توجه به این تفاوت‌ها، تنظیم زاویه بهینه بر اساس نقاط جغرافیایی ایران از اهمیت زیادی برخوردار است تا از بهترین بهره‌وری انرژی خورشیدی در هر منطقه استفاده شود.

  1. شرایط جوی:

   – شرایط هواشناسی مانند ابرپوشی و باران، رطوبت هوا و زیرگردها می‌توانند بر کارایی پنل‌های خورشیدی تأثیرگذار باشند.

شرایط جوی در ایران به‌دلیل جغرافیای گسترده و متنوع کشور، بسیار متغیر و متنوع هستند. از مناطق خشک جنوبی تا مناطق سرد شمالی، هر منطقه با ویژگی‌های هواشناسی منحصر به فردی مواجه است. این تنوع زیست‌محیطی و شرایط جوی در ایران باعث ارائه یک تجربه هواشناسی چندگانه برای ساکنان مختلف در سراسر کشور می‌شود.

  – مناطق شمالی و شمال‌غربی دارای بارندگی بیشتر و منظر زمین‌های سبز هستند.

  – جنوب و مرکز کشور به شدت خشک و نیازمند به مدیریت آب هستند.

  – در برخی نقاط خشک جنوبی به خصوص در تابستان‌ها، گرد و غبار زیادی وجود دارد.

  – تغییرات دما از شمال به جنوب و از مناطق کوهستانی به مناطق کم ارتفاع متفاوت است.

کاور عکس copy - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

در شمال ایران مانند استان های گیلان و مازندران:

  – آب و هوای اقیانوسی با تأثیرات حاصل از دریای خزر.

  – تابستان‌های معتدل و زمستان‌های مرطوب و سرد.

 

در مرکز ایران مثل استان های تهران، قم، اصفهان:

  – تابستان‌های گرم و زمستان‌های سرد.

  – کمبود بارندگی با نقص آب در برخی نقاط.

 

در جنوب ایران مثل استان های فارس، هرمزگان، کرمان:

  – آب و هوای خشک و گرم.

  – تابستان‌های بسیار گرم با دمای بالا.

 

درغرب و شمال‌غرب ایران مثل استان های کردستان، آذربایجان غربی:

  – آب و هوای کوهستانی با زمستان‌های سرد و تابستان‌های معتدل.

 

مطالعه موردی نصب پنل‌های خورشیدی در منطقه خشک کویر مرکزی

در یک منطقه خشک واقع در نیر یزد با شدت نور خورشید بالا، ارتفاع مناسب از سطح دریا، تمیز بودن هوا و عدم وجود ریزگزد به دلیل وجود مرتع های سبز و دمای مناسب هوا برخلاف دمای بالا در دیگر مناطق استان یزد، نصب پنل‌های خورشیدی به عنوان یک پروژه نیروگاه خورشیدی 10 مگاوات صورت گرفت. این پروژه شامل نصب پنل‌های خورشیدی با زاویه تنظیم بهینه و استفاده از تکنولوژی‌های جدید برای افزایش بهره‌وری نیروگاه خورشیدی بود. نتایج نشان دادند که در این شرایط، پنل‌های خورشیدی با تنظیم زاویه مناسب تولید برق بیشتری داشتند. همچنین، استفاده از تکنولوژی‌های پیشرفته مانند پنل‌های خورشیدی با بازده بالا، بهبود قابل توجهی در کارایی نیروگاه خورشیدی ایجاد کرد.

ارزیابی کارایی انرژی خورشیدی نشان داد که با استفاده از تنظیمات بهینه و استفاده از تکنولوژی‌های جدید، می‌توان به بهبود قابل توجهی در تولید برق از این نوع انرژی دست یافت. این نتایج نشان می‌دهد که انرژی خورشیدی می‌تواند به‌عنوان یک منبع پایدار و کارآمد برای تأمین نیازهای انرژی مناطق خشک و با شدت نور خورشید بالا مورد استفاده قرار گیرد.

نیروگاه بادی آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی بادی

مناطق بادخیز راندمان بالاتری را در تولید انرژی بادی نشان می دهند. الگوهای باد به تولید انرژی بادی کمک می‌کنند و با ایجاد حرکت در هوا، انرژی حاصل از حرکت باد به انرژی قابل استفاده تبدیل می‌شود. این فرایند به وسیله توربین‌های بادی انجام می‌شود. در ادامه چگونگی این فرآیند توضیح داده شده است.

حرکت هوا و الگوهای باد:

  – الگوهای باد از تفاوت‌های دما و فشار در جهان به وجود می‌آیند. گرمای خورشید باعث گرم شدن هوا در برخی مناطق و سرد شدن در دیگر مناطق می‌شود. این تفاوت‌ها باعث جابجایی هوا و ایجاد الگوهای باد می‌شوند.

ساختار توربین‌های بادی:

  – توربین‌های بادی شامل پره‌های بلند و نازک هستند که سرعت باد وارد شده را به گشتاور تبدیل می‌کنند.

  – برخی از توربین‌ها در ارتفاعات بلند نصب شده‌اند تا از مسیرهای باد در ارتفاعات بالا بهره‌مند شوند، زیرا باد در این ارتفاعات معمولاً سریعتر جریان پیدا می‌کند.

  – باد وارد پره‌های توربین می‌شود و آنها را به گردش تحریک می‌کند. تبدیل انرژی این حرکت گرداننده از حرکت باد به انرژی مکانیکی صورت میگیرد.

  – انرژی مکانیکی حاصل از گردش پره‌ها، توسط یک ژنراتور به انرژی برق تبدیل می‌شود. ژنراتور با چرخش پره‌ها دیسک‌های مغناطیسی را حرکت می‌دهد و این حرکت مغناطیسی تولید جریان الکتریکی را به دنبال دارد.

  – برق تولید شده توسط توربین به وسیله سیم‌های انتقال به شبکه برق منطقه انتقال داده می‌شود و سپس به مصارف مختلف توزیع میرسد.

با این روش، الگوهای باد به تولید انرژی پاک و تجدیدپذیر کمک کرده و به عنوان یک منبع انرژی پایدار و محیط‌زیستی مهم در جهان شناخته می‌شوند.

با تجزیه و تحلیل الگوهای باد شامل استفاده از داده‌های سالانه الگوهای باد در سراسر ایران و انتخاب نقاط استراتژیک ازمناطقی با الگوهای باد مناسب و ثبات بالا و بررسی امکانات انرژی بادی شامل ارزیابی زیرساخت‌های فنی و امکانات تولید انرژی بادی در هر منطقه میتوانیم ارزیابی درستی از موقعیت نیروگاه بادی با حداکثر پتانسیل تولید داشته باشیم.

729366 copy - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

بر اساس تحقیقات انجام‌شده، استان سیستان و بلوچستان به‌عنوان بهترین مناطق باد خیز در ایران معرفی شده‌ است. این مناطق با الگوهای بادی قوی و پتانسیل تولید بالا، به عنوان مناطق استراتژیک برای پروژه‌های انرژی بادی در نظر گرفته می‌شوند.

برخی از بزرگ‌ترین و مهم‌ترین نیروگاه‌های بادی کشور عبارتند از:

نیروگاه بادی منجیل در استان گیلان با ظرفیت 171 مگاوات، بزرگ‌ترین نیروگاه بادی ایران است. این نیروگاه در سال ۱۳۷۸ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور دانمارک استفاده می‌کند.

نیروگاه بادی بینالود در استان خراسان رضوی با ظرفیت 28.2 مگاوات، دومین نیروگاه بادی بزرگ ایران است. این نیروگاه در سال ۱۳۸۱ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور آلمان استفاده می‌کند.

نیروگاه بادی کهک در استان قزوین با ظرفیت 20 مگاوات، سومین نیروگاه بادی بزرگ ایران است. این نیروگاه در سال ۱۳۹۲ به بهره‌برداری رسید و از توربین‌های بادی ساخت کشور ایران استفاده می‌کند.

سایر نیروگاه‌های بادی مهم ایران عبارتند از:

نیروگاه بادی گنبدکاووس با ظرفیت 10 مگاوات

نیروگاه بادی رامسر با ظرفیت 10 مگاوات

نیروگاه بادی چابهار با ظرفیت 5 مگاوات

نیروگاه بادی کویر مرکزی با ظرفیت 5 مگاوات

همچنین، توسعه زیرساخت‌های فنی و حمایت از سرمایه‌گذاری در این مناطق می‌تواند به بهره‌وری بیشتر از این منابع و کاهش وابستگی به منابع سوخت فسیلی کمک کند.

برق آبی آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

انرژی برق آبی

تولید انرژی برق از آب به‌عنوان یک منبع تجدیدپذیر و پاک، نقش بسیار مهمی در سبد انرژی کشورها دارد. در اینجا، نقش دسترسی به آب در تولید انرژی برق آبی و اهمیت آن بررسی می‌شود.

  – دسترسی به منابع آب از اهمیت بسزایی برخوردار است. رودخانه‌ها، دریاچه‌ها و سدها از منابع اصلی تولید انرژی برق آبی هستند.

  – مناطق با دسترسی به منابع آب پایدارتر می‌توانند از تولید پایدارتری انرژی برق آبی بهره‌مند شوند.

  – دسترسی به منابع آب نیازمند مدیریت مستمر و پایدار است. این امر از اهمیت زیادی برخوردار است تا آب مناسب برای تولید انرژی برق آبی تأمین شود.

  – مدیریت منابع آب، جدا از نقش مهم در تولید پایدار انرژی به کنترل سیلاب و جلوگیری از خشکسالی کمک میکند.

  – به دلیل استفاده از انرژی برق آبی به‌عنوان یک منبع پاک، دسترسی به آب باعث کاهش اثرات منفی بر محیط زیست می‌شود و به حفظ تنوع زیستی در مناطق آبی کمک میکند.

دسترسی به منابع آب برای راه‌اندازی نیروگاه برق آبی در ایران شامل استان هایی از ایران میشود که پتانسیل آبی بالایی داشته باشند که در ادامه به برخی از آن ها اشاره میکنم:

استان فارس:

  – دارای رودخانه‌های فراوان مانند زاینده‌رود و کارون.

  – سدها و تأمین آب از دریاچه‌های بزرگ همچون دریاچه نیمور و دریاچه بختگان.

– پروژه‌ها : سد سیاه‌خل، سد دز و سد کارون ۳.

استان گیلان:

  – دارای آبشارها و رودخانه‌های فراوان از جمله سفیدرود و سیاهرود.

  – دسترسی به منابع آب از دریاچه‌های انزلی و طبریا.

– پروژه‌ها : نیروگاه برق آبی چیتگر.

استان آذربایجان شرقی:

  – رودخانه‌های زیاد از جمله آرسند و قره‌چای.

  – دسترسی به دریاچه ارومیه.

– پروژه‌ها : نیروگاه برق آبی سهند.

استان کردستان:

  – رودخانه‌های زیاد از جمله سراب‌آباد و زاب.

  – پتانسیل بالای تولید انرژی در این استان.

– پروژه‌ها : سد دزلخانه و سد دره‌زرین.

استان خوزستان:

  – رودخانه کارون و شط العرب به عنوان منابع اصلی.

  – دسترسی به سدها و دریاچه‌ها.

– پروژه‌ها : نیروگاه برق آبی کارون ۴.

نیروگاه برق آبی ایران آرانیرو - مقایسه عملکرد انرژی های تجدیدپذیر در مناطق مختلف : با اشاره به انرژی خورشیدی، بادی و برق آبی

با توجه به اینکه ایران دارای تنوع زیادی از نظر منابع آب است، دسترسی به منابع آب برای راه‌اندازی نیروگاه‌های برق آبی در اکثر مناطق کشور وجود دارد. مناطق با رودخانه‌ها و سدهای فراوان معمولاً برای ایجاد نیروگاه‌های برق آبی انتخاب می‌شوند. این پروژه‌ها نه‌تنها به تأمین انرژی بلکه به مدیریت منابع آب و کنترل سیلاب و خشکسالی نیز کمک می‌کنند. در ادامه به تأثیرات منفی نیروگاه‌های برق آبی بر محیط زیست و تغییر اقلیم ناشی از سومدیریت و عدم تطبیق دانش و تجربه میپردازم و تیتروار به آسیب های ناشی از این مسئله اشاره میکنم تا درک بهتری از تاثیر منطقه در احداث نیروگاه برق آبی بدست بیاورید:

  – ساخت سدها و تغییرات جریان آب در رودخانه‌ها می‌تواند منجر به کاهش تنوع زیستی در این مناطق شود.

  – زیستگاه‌های طبیعی مانند دلتاها و مرجان‌ها به‌دلیل تغییرات در جریان آب و تغییر در سطح آب ممکن است تحت تأثیر قرار گیرند.

  – نیروگاه‌های برق آبی با تخلیه آب گرم به رودخانه‌ها می‌توانند دمای آب را افزایش دهند که این تغییر می‌تواند به اختلال در فرآیندهای طبیعی زیست‌محیطی منطقه منجر شود.

  – سدسازی و تغییر در جریان آب ممکن است به قطع مسیرهای مهاجرت ماهیان و تخریب محل‌های تخم‌گذاری آنها منجر شود.

  – سدسازی و تخلیه زیاد آب برای نیروگاه‌های برق آبی ممکن است به کاهش سطح آب زیرزمینی منطقه منجر شود که این موضوع بر کشاورزی و زندگی حاشیه‌نشینان تأثیر منفی خواهد داشت.

  – سدسازی ممکن است با ایجاد مانع در مسیر جریان آب، خطر سیلاب‌های ناگهانی را افزایش دهد.

  – تغییرات در جریان آب ناشی از نیروگاه‌های برق آبی می‌تواند به تغییرات در ترکیب شیمیایی آب و کاهش کیفیت آب منطقه منجر شود.

توجه به مدیریت دقیق و پایداری از منابع آب، استفاده از فناوری‌های مدرن و اجرای طرح‌های حفاظت از محیط زیست می‌تواند کمک کند تا اثرات منفی این نیروگاه‌ها به حداقل رسیده و همزمان از مزایای انرژی برق آبی بهره‌مند شویم.

نویسنده: مهدی پارساوند

اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

امسال شاهد رکوردشکنی تولید خورشیدی و «تغییر چشمگیر» در تولید باتری بودیم.
رهبر جدید انرژی خورشیدی جهان، در سال 2023 انرژی های تجدیدپذیر را با سرعت سرسام آوری اضافه کرد.
اگر این روند تقویت شود، به زمین کمک می کند تا از سوخت های فسیلی دور شود و از گرم شدن شدید زمین و اثرات آن جلوگیری کند.

انرژی پاک اغلب کم هزینه ترین گزینه است. بر اساس گزارش آژانس بین‌المللی انرژی، کشورها سیاست‌هایی را اتخاذ کردند که از انرژی‌های تجدیدپذیر حمایت می‌کنند، برخی از آنها به نگرانی‌های امنیت انرژی اشاره می‌کنند. این عوامل با نرخ‌های بهره بالا و چالش‌های مداوم در تهیه مواد و قطعات در بسیاری از مکان‌ها مقابله کردند.
آژانس بین المللی انرژی پیش بینی کرد که بیش از 440 گیگاوات انرژی تجدیدپذیر در سال 2023 اضافه شد که بیشتر از کل ظرفیت برق نصب شده آلمان و اسپانیا با هم است.
در اینجا نگاهی به سال در انرژی خورشیدی، باد و باتری داریم.

یک سال رکورد برای انرژی خورشیدی
طبق گزارش آژانس بین‌المللی انرژی‌های تجدیدپذیر (IEA)، چین، اروپا و ایالات متحده هر کدام رکوردهای نصب را برای یک سال ثبت می‌کنند.

افزوده‌های چین، بسته به اینکه پروژه‌های پایان سال چگونه پیش می‌روند، ظرفیت‌های سایر کشورها را بین 180 تا 230 گیگاوات کاهش داد. اروپا 58 گیگاوات اضافه کرد که رشدی 40 درصدی نسبت به سال 2022 داشت.
خورشیدی اکنون ارزان‌ترین شکل برق در اکثر کشورهاست.
مایکل تیلور، تحلیلگر ارشد آژانس بین‌المللی انرژی‌های تجدیدپذیر (IRENA) می‌گوید: «به‌ویژه در اروپا، گسترش استقرار با سرعت سرسام‌آوری انجام شده است.»
زمانی که اعداد نهایی برای سال 2023 مشخص شد، انتظار می‌رود که انرژی خورشیدی از نظر ظرفیت کل انرژی از انرژی آبی در سطح جهان پیشی بگیرد، اما برای برق واقعی تولید شده، انرژی آبی همچنان برای مدتی پیشتاز خواهد بود زیرا می‌تواند در تمام ساعات شبانه روز تولید کند.

در ایالات متحده، کالیفرنیا همچنان بیشترین انرژی خورشیدی را دارد و پس از آن تگزاس، فلوریدا، کارولینای شمالی و آریزونا قرار دارند.

دانیل برست، رئیس موسسه مطالعات محیطی و انرژی، یک سازمان غیرانتفاعی آموزش و سیاست، می‌گوید که مشوق‌های ایالتی و فدرال هر دو تأثیر زیادی بر رشد خورشیدی ایالات متحده داشتند.

با وجود موفقیت خورشیدی در سال 2023، موانعی وجود دارد. برست می گوید که کمبود ترانسفورماتور وجود داشته است، در حالی که نرخ بهره افزایش یافته است.

در ایالات متحده، تولید خورشیدی نیز رشد کرد. ابیگیل راس هاپر، رئیس و مدیر عامل انجمن صنایع انرژی خورشیدی، می‌گوید: «ما تأثیر قانون کاهش تورم را از لحاظ تأمین سوخت سرمایه‌گذاری‌ها دیده‌ایم… بیش از 60 تأسیسات تولید خورشیدی در سال گذشته اعلام شد.

131003788 gettyimages 1614630351 - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

چالش های انرژی باد

تا پایان سال 2023، جهان به اندازه کافی نیروگاه بادی برای تامین برق نزدیک به 80 میلیون خانه اضافه کرد و این یک سال رکورد محسوب می شود.

طبق تحقیقات Wood Mackenzie، مانند خورشیدی، بیشترین رشد با بیش از 58 گیگاوات در چین اضافه شد. به گفته Global Energy Monitor، چین در مسیر رسیدن به هدف بلندپروازانه 2030 خود یعنی 1200 گیگاوات ظرفیت انرژی خورشیدی و بادی پنج سال زودتر از برنامه زمان بندی شده، در صورتی که همه پروژه های برنامه ریزی شده ساخته شوند، پیشی می گیرد.

به گفته شورای جهانی انرژی بادی، چین یکی از معدود بازارهای رو به رشد امسال برای انرژی بادی بود. صدور مجوز سریعتر و سایر بهبودها در بازارهای کلیدی مانند آلمان و هند نیز به افزایش انرژی بادی کمک کرد. وود مکنزی گفت، اما تاسیسات در اروپا نسبت به سال گذشته 6 درصد کاهش یافته است.

چالش‌های کوتاه‌مدت مانند تورم بالا، افزایش نرخ‌های بهره و افزایش هزینه‌های مصالح ساختمانی، برخی از توسعه‌دهندگان نیروگاه بادی اقیانوسی را مجبور به مذاکره مجدد یا حتی لغو قراردادهای پروژه و برخی از توسعه‌دهندگان انرژی بادی مستقر در زمین را مجبور کرد تا پروژه‌ها را تا سال ۲۰۲۴ یا ۲۰۲۵ به تعویق بیندازند.
بادهای معکوس اقتصادی در زمان دشواری برای صنعت نوپای بادی فراساحلی ایالات متحده رخ داد، زیرا تلاش می کند اولین مزارع بادی فراساحلی در مقیاس تجاری را راه اندازی کند. ساخت و ساز در دو در سال جاری آغاز شد. هر دو قصد دارند در اوایل سال 2024 افتتاح شوند و یکی از سایت ها در حال تحویل برق به شبکه ایالات متحده است. مزارع بادی بزرگ فراساحلی برای سه دهه در اروپا و اخیراً در آسیا برق تولید می کنند.

پس از سال‌ها رشد بی‌سابقه، گروه صنعتی امریکن کلین پاور پیش‌بینی می‌کند تا پایان سال تعدادی نیروگاه بادی زمینی در ایالات متحده اضافه شود که تقریباً برای تامین برق 2.7 تا 3 میلیون خانه کافی است. این گروه می گوید توسعه دهندگان از اعتبارات مالیاتی جدیدی که سال گذشته در قانون کاهش تورم تصویب شد، استفاده می کنند، اما سال ها طول میکشد تا پروژه ها به شبکه متصل شوند. از زمان تصویب IRA تاکنون 383 میلیارد دلار (344 میلیارد یورو) سرمایه گذاری در انرژی پاک اعلام شده است.

ما در مورد سال 2023 اساساً به عنوان یک سال عملکرد پایین تر صحبت می کنیم، اما در طرح بزرگ همه چیز، 8 تا 9 گیگاوات هنوز عددی است که باید در مورد آن هیجان زده شد. جان هنسلی، معاون تحقیقات و تجزیه و تحلیل ACP می‌گوید: «نیروگاه های پاک بسیار زیادی به شبکه اضافه خواهد شد.

در سطح جهانی نیز باد امسال کندتر بود. سه بازار برتر امسال همچنان چین، ایالات متحده و آلمان برای انرژی بادی تولید شده در خشکی و چین، بریتانیا و آلمان برای فراساحل هستند.

تحلیلگران پیش‌بینی می‌کنند که صنعت جهانی در سال 2024 رونق گرفته و نزدیک به 12 درصد انرژی بادی بیشتری در سراسر جهان در دسترس خواهد بود.

3d137278 c18d 4865 ba6f 7e4bf697fa0f - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

سالی بزرگ برای باتری ها

به گفته آژانس بین‌المللی انرژی، در میان تلاش‌های مداوم برای کاهش آسیب‌های حمل‌ونقل به اقلیم، روند خودروهای الکتریکی در سال 2023 در سطح جهانی شتاب گرفت و طبق گزارش آژانس بین‌المللی انرژی، از هر پنج خودروی فروخته شده در سال جاری، یک خودرو الکتریکی بوده است. این بدان معنی بود که سال ۲۰۲۳ پرچمدار دیگری برای باتری ها بود.

طبق سیاست عمومی اطلس، بیش از 43.4 میلیارد دلار (39 میلیارد یورو) فقط در ایالات متحده در سال جاری صرف ساخت باتری و بازیافت باتری شده است که عمدتاً به لطف قانون کاهش تورم است. این امر ایالات متحده را در زمین بازی مساوی با اروپا قرار می‌دهد، اما همچنان پشت سر چین یعنی ابرقدرت باتری قرار دارد.

طبق گزارش Benchmark Mineral Intelligence، در مورد کارخانه‌های باتری‌سازی بزرگ که گیگافکتوری نامیده می‌شوند، ایالات متحده و اروپا هر کدام تا اواخر نوامبر 38 کارخانه داشتند. اما در چین 295 کارخانه در حال کار است.

به گفته کارشناسان، این صنعت همچنان به کشف راه‌های مختلف ساخت باتری‌ها بدون وابستگی زیاد به مواد مضر و همچنین راه‌هایی برای پایدارتر کردن قطعات ادامه داده، و به گفته کارشناسان، صنعت بازیافت باتری پیشرفت کرده است.
ایوان هارتلی، تحلیلگر ارشد بنچمارک، می گوید که هزینه مواد خام کلیدی باتری، از جمله لیتیوم نیز به میزان قابل توجهی کاهش یافته است.
پل براون، استاد علم و مهندسی مواد دانشگاه ایلینویز می‌گوید: «هزینه باتری اکنون در مسیری قرار دارد که اکثر آمریکایی‌ها می‌توانند یک خودروی الکتریکی بخرند».

2023 سفر آسانی نبود. صنعت در ایالات متحده، چندین باد مخالف را پشت سر گذاشت. تاسیسات عظیم باتری پاناسونیک در کانزاس با چالش های انرژی مواجه بود. تویوتا باید سایت خود در کارولینای شمالی را تقویت کند. نقض ایمنی و بهداشت در یک کارخانه سرمایه گذاری مشترک بین شرکت جنرال موتورز و LG Energy Solution در اوهایو مشاهده شد و این لیست ادامه دارد.

صرف نظر از منطقه، موانع موجود در مواد معدنی، زنجیره تأمین، مسئول ایجاد زیرساخت های شارژ خواهد ماند. جان آیشبرگر، مدیر اجرایی مؤسسه انرژی حمل‌ونقل، می‌گوید: «این موضوع دستور کار بعدی خواهد بود. اما کارشناسان خوش بین هستند که رشد باتری در سراسر جهان ادامه خواهد داشت.

منبع خبر : Isabella O’Malley, Jennifer McDermott, Alexa St. John with AP
Published on 29/12/2023

استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی به تبادل و خرید و فروش انرژی بین کشورها یا انجمن‌های اقتصادی مختلف اشاره دارد. انرژی ممکن است از منابع مختلفی مانند نفت، گاز، زغال‌سنگ، انرژی هسته‌ای، انرژی خورشیدی و باد به دست آید. در تجارت انرژی، کشورها سعی می‌کنند نیازهای انرژی خود را برطرف کنند، همزمان با بهره‌مندی از منابع داخلی و یا از طریق واردات انرژی از منابع خارجی.

تجارت انرژی می‌تواند بر اساس قراردادهای ثابت (مثل قراردادهای بلندمدت) یا معاملات کوتاه‌مدت (مثل خرید و فروش روزانه) انجام شود. در بسیاری از موارد، قراردادهای تجارت انرژی به صورت طولانی‌مدت منعقد می‌شوند تا اطمینان از تأمین پایدار انرژی برای طرفین باشد.

کشورهای صادرکننده انرژی می‌توانند منابع طبیعی خود را به دیگر کشورها صادر کرده و درآمد حاصل از این تجارت را به دست آورند. در عین حال، کشورهای وابسته به واردات انرژی ممکن است به دنبال تنوع منابع و کاهش وابستگی به یک منبع خاص باشند.

تاثیرات سیاسی، اقتصادی، و محیطی تجارت انرژی بسیار گسترده است و می‌تواند به تعیین نقشه قدرت و روابط بین‌المللی نیز تأثیر بگذارد. همچنین، مسائلی مانند تغییرات اقلیمی، امنیت انرژی، و توسعه پایدار نیز به طور مستقیم در این زمینه تأثیرگذارند.

تجارت انرژی مبتنی بر نیروگاه‌های تجدیدپذیر به تبادل و خرید و فروش انرژی، که از منابع تجدیدپذیر مانند انرژی خورشیدی، باد، هیدروپاور، گرمای زمین، و سایر منابع پاک تولید می‌شود، اشاره دارد که از منابعی مانند نور خورشید ( نیروگاه خورشیدی فتوولتائیک ) ، باد ( نیروگاه بادی متشکل از توربین های مگاواتی )، آب‌های سطحی و زیرزمینی ( نیروگاه های برق آبی )، و سایر منابع تجدیدپذیر بهره می‌برد. این منابع به دلیل اینکه قابلیت تجدید خود را دارند، تامین انرژی پایدار و دوستدار محیط زیست را فراهم می‌کنند.

توسعه نیروگاه‌های تجدیدپذیر می‌تواند اشتغال، توسعه فناوری، و رشد اقتصادی را تحت تأثیر قرار دهد. همچنین، این تجارت می‌تواند به کاهش وابستگی به منابع انرژی سنتی و کاهش هزینه‌های انرژی کمک کند.

استفاده از نیروگاه‌های تجدیدپذیر به معنای کاهش انتشار گازهای گلخانه‌ای و دیگر آلودگی‌های زیست محیطی است. این تجارت می‌تواند به حفاظت از محیط زیست و کاهش تأثیرات منفی تغییرات اقلیمی کمک کند.

 

تجارت انرژی می‌تواند منافع اقتصادی زیادی برای کشورها فراهم کند. در زیر به برخی از این منافع اشاره شده است:

  1. افزایش درآمد ناخالص داخلی (GDI): صادرات انرژی، می‌تواند منبع اصلی درآمد برای کشورها باشد. درآمدهای حاصل از تجارت انرژی می‌تواند به افزایش GDI و توسعه اقتصادی کشورها کمک کند.

 

  1. ایجاد فرصت‌های اشتغال: صنایع انرژی، از جمله نیروگاه‌ها و زیرساخت‌های مرتبط، ایجاد فرصت‌های شغلی زیادی را برای جمعیت فراهم می‌کنند. این شغل‌ها اغلب در زمینه‌های مهندسی، تکنولوژی، حمل و نقل، و خدمات پشتیبانی فراهم می‌شوند.

 

  1. توسعه زیرساخت‌ها: برای تولید، انتقال، و صادرات انرژی، زیرساخت‌های حمل و نقل و انتقال انرژی نیاز است. سرمایه‌گذاری در این زیرساخت‌ها می‌تواند به توسعه زیرساخت‌های کلان و تقویت اقتصاد منطقه انرژی‌زا کمک کند.

 

  1. تحقق استقلال انرژی: بسیاری از کشورها سعی دارند با داشتن منابع انرژی داخلی قوی، استقلال بیشتری در تأمین نیازهای انرژی خود داشته باشند. این استقلال انرژی می‌تواند زیرساخت‌های اقتصادی و امنیت ملی را تقویت کند.

 

  1. تبادل تخصص و فناوری: تجارت انرژی ممکن است باعث تبادل تخصص و فناوری در زمینه‌های نوین انرژی شود. این تبادل می‌تواند به توسعه فناوری‌های پایدار و بهبود بهره‌وری در زمینه انرژی منجر شود.

 

  1. تأمین امنیت انرژی: کشورهای وابسته به واردات انرژی ممکن است از تجارت انرژی برای تأمین امنیت انرژی استفاده کنند. تنوع منابع انرژی و دسترسی به منابع انرژی پایدار از طریق تجارت می‌تواند به کاهش ریسک وابستگی به یک منبع خاص کمک کند.
    تصویر تابلو سبز بورس 1402 araniroo 1 آرانیرو copy - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی، اگر به درستی مدیریت شود، می‌تواند به توسعه اقتصادی، اشتغالزایی، و امنیت انرژی یک کشور کمک کند. همچنین، این تجارت می‌تواند بستری برای همکاری بین المللی و تبادل تجاری فراهم کند.

برای توسعه تجارت انرژی از منابع تجدیدپذیر، لازم است زیرساخت‌های مناسبی در نظر گرفته شوند از جمله احداث نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، بادی، هیدروپاور، و گاهی حتی نیروگاه‌های انرژی دریاها (مانند نیروگاه‌های موج و جاری). این نیروگاه‌ها به تولید برق از منابع تجدیدپذیر کمک می‌کنند. به منظور مدیریت موثر تولید انرژی از منابع تجدیدپذیر، زیرساخت‌های ذخیره‌سازی انرژی نیز حائز اهمیت هستند. این زیرساخت‌ها شامل سیستم‌های باتری، انرژی ذخیره‌شده در شکل گاز، یا حتی ساختارهای ذخیره‌سازی گرما می‌شوند و از تعادل سیستم انرژی استفاده می‌کنند و در مدیریت نیاز به انرژی در ساعات اوج و کم‌بار تاثیرگذار هستند.

انرژی، به عنوان رگ حیات صنایع، خانه‌ها و اقتصادها، ارتباط زیادی با فرصت‌های فراوانی برای کارآفرینان دارد. درک جزئیات بازار انرژی و مقابله با چالش‌ها گام‌های اساسی برای یک ورود موفق به این حوزه می‌باشد.

ایران، با منابع غنی و تقاضای رو به رشد برای انرژی، زمینهٔ خوبی را برای تجارت انرژی فراهم می‌کند. دینامیک بازار، تحت تأثیر عوامل داخلی و بین‌المللی، نقش مهمی در شکل‌گیری فرصت‌ها دارد. شناخت بازیگران اصلی و آگاهی از روندهای بازار برای تصمیم‌گیری مطلوب بسیار حائز اهمیت است.

تأمین مجوزها و پروانه‌های لازم و اطمینان از رعایت مقررات زیست‌محیطی، جنبه حیاتی یک تجارت انرژی است. درک چارچوب حقوقی و گنجاندن آن در استراتژی کسب و کار گام مهمی است.

کسب و کارهای انرژی به سرمایه‌گذاری قابل توجهی نیاز دارند. کارآفرینان باید با دقت مناسب به بررسی منابع سرمایه‌ای بپردازند، گزینه‌های تأمین مالی را بررسی کنند و مدل مالی قوی ایجاد کنند تا بتوانند از نوسانات بازار جلوگیری کنند.

تکنولوژی نقش تحول‌آفرینی در حوزه انرژی دارد. کارآفرینان باید از پیشرفت‌های فناورانه بهره‌مند شوند تا به بهبود کارایی عملیاتی و ادغام فناوری‌های هوشمند برای تداوم شیوه‌های پایدار بپردازند.

شناسایی و کاهش ریسک‌ها جزء مؤلفه‌های اصلی یک تجارت انرژی موفق است. از ناپایداری‌های جغرافیایی تا نوسانات بازار، داشتن استراتژی‌های مدیریت ریسک قوی و برنامه‌های آمادگی ضروری است. شناخت و بهره‌مندی از سیاست‌های حمایتی دولت و انگیزه‌ها برای کارآفرینان انرژی، گام استراتژیکی است. کارآفرینان باید از این ایمنی‌ها، مانند معافیت مالیاتی و حمایت‌ها، بازدید کنند و بررسی کنند چگونه می‌توانند از آنها بهره‌مند شوند.

 

نتیجه‌گیری

در نتیجه، ورود به تجارت انرژی در ایران نیازمند یک رویکرد چندجانبه است. از فهم دینامیک بازار تا بهره‌گیری از نوآوری‌های فناورانه و ایجاد شراکت‌های استراتژیک، کارآفرینان باید در منظومه پیچیده‌ای حرکت کنند.

حضور در تجارت انرژی‌های تجدیدپذیر، به ویژه در زمینه نیروگاه خورشیدی در ایران، می‌تواند یک فرصت عالی برای سرمایه‌گذاری و توسعه کسب و کار باشد. قبل از ورود به این صنعت، تحقیقات دقیقی در مورد بازار انرژی تجدیدپذیر و نیروگاه‌ خورشیدی در ایران انجام دهید. ارزیابی نیازهای بازار، میزان تقاضا، قوانین و مقررات مرتبط با تجارت انرژی و دیگر عوامل بازاریابی می‌تواند کمک شایانی به شناخت بازار کند. آگاهی از قوانین و مقررات مرتبط با تولید و تجارت انرژی تجدیدپذیر در ایران بسیار حائز اهمیت است. بررسی مجوزها، حقوق ارتعاشی، تسهیلات دولتی و دیگر الزامات قانونی از جمله مسائلی هستند که باید به آنها توجه کنید.

   انتخاب مکان مناسب برای نصب نیروگاه خورشیدی از اهمیت بسیاری برخوردار است. بررسی شدت تشعشعات خورشیدی، نقشه‌های باد، دمای محل، ارتفاع و سایر شرایط جوی می‌تواند تأثیر زیادی در عملکرد نیروگاه داشته باشد.

   برای شروع یک پروژه نیروگاه خورشیدی، تأمین منابع مالی ضروری است. می‌توانید از تسهیلات بانکی، سرمایه‌گذاری‌های خصوصی یا حتی برنامه‌های حمایتی دولتی بهره‌مند شوید.

   برقراری همکاری با شرکت‌ها و متخصصان معتبر در زمینه نیروگاه‌ خورشیدی، از جمله مهندسان، مشاوران حقوقی و مدیران پروژه، به شما کمک می‌کند تا با چالش‌ها بهتر کنار بیایید و بهترین نتیجه را بگیرید.

   استفاده از تکنولوژی‌های به‌روز در نیروگاه خورشیدی شما را قادر به بهره‌مندی از کارایی بالاتر و هزینه‌های کمتر می‌کند.

   در تجارت انرژی، مسئولیت اجتماعی بازیگر کلیدی است. توجه به اثرات زیست‌محیطی، ایمنی کارگران، اشتغال محلی و سایر ابعاد مسئولیت اجتماعی می‌تواند تصمیم‌گیری‌های شما را بهبود بخشد.

   برنامه‌ریزی مناسب برای بازاریابی و فروش انرژی تولیدی از نیروگاه خورشیدی را انجام دهید. ایجاد روابط با خریداران محتمل، شرکت‌های انرژی، گروه‌های صنعتی و دیگر بازارهای هدف از این قسمت حائز اهمیت است.

   برنامه‌ریزی برای پایش و نگهداری نیروگاه خورشیدی به منظور حفظ عملکرد بهینه و کاهش هزینه‌ها بسیار ضروری است.

با رعایت این نکات و برنامه‌ریزی دقیق، حضور در تجارت انرژی تجدیدپذیر، به ویژه در زمینه نیروگاه‌ خورشیدی، می‌تواند فرصتی موفق‌ برای سرمایه‌گذاری و توسعه کسب و کار شما باشد.

ضمن اینکه با ورود به الگوی تجارت انرژی منطقه‌ای در قالب صادرات انرژی به کشورها یا مناطق همسایه میتوانید تجارت خود را بین المللی کنید. هچنین ما به عنوان شرکت آرا نیرو آمادگی داریم در این الگو، ارتباط شما را به طور گسترده در زمینه تجارت انرژی برقرار کنیم. این شامل صادرات و واردات انرژی به وسیله سیستم‌های انتقال برق بین‌المللی است. در دهه‌های اخیر، با توسعه انرژی‌های تجدیدپذیر، الگوهای تجارت انرژی نیز تغییر کرده است. کشورها و شرکت‌ها اکنون می‌توانند انرژی تولید شده از منابع تجدیدپذیر را تجارت کنند و به اشتراک بگذارند.

البته در دنیا اشکال دیگری از تجارت انرژی نیز مرسوم میباشد که نمونه آن تجارت انرژی همتا به همتا است و نیازمند شبکه هوشمند انرژی است که متاسفانه در ایران از ساختار شبکه هوشمند برق بی بهره هستیم.

Renewable Energy Business - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی همتا به همتا، یک مفهوم در زمینه انرژی است که به معنای تبادل مستقیم انرژی بین افراد یا واحدهای تولید انرژی می‌باشد، بدون واسطه‌های مرسوم چون شرکت‌های توزیع و انتقال انرژی. در این مدل، افراد یا واحدهای تولید انرژی مستقیماً با سایر افراد یا واحدها تبادل انرژی می‌کنند، بدون نیاز به شبکه‌های مرکزی یا شرکت‌های متعلق به دولت.

 

این رویکرد به منظور افزایش کارآیی، کاهش هزینه‌ها، و حمایت از تولید انرژی پایدار مطرح شده است. این سیستم می‌تواند باعث ایجاد یک بازار محلی برای انرژی شود که در آن تولید کنندگان و مصرف‌کنندگان می‌توانند به طور مستقیم با یکدیگر معامله کنند.

به عنوان مثال، یک فرد یا شرکتی که انرژی را از منابع تجدیدپذیر تولید می‌کند، می‌تواند این انرژی را به صورت مستقیم به همسایگان یا دیگر افراد در یک منطقه فرستاده و با آنها تبادل کند، بدون اینکه نیاز به انتقال انرژی از طریق شبکه‌های مرکزی باشد.

تجارت انرژی همتا به همتا به توسعه انرژی‌های تجدیدپذیر، افزایش بهره‌وری و کاهش اثرات منفی بر محیط زیست کمک می‌کند. این مدل همچنین می‌تواند اقتصاد محلی را تقویت کرده و به ایجاد یک سیستم انرژی مستقل و پایدار کمک کند.

جلوتر ماندن از منحنی فناوری به معنای تقویت مزیت رقابتی شماست. به همین دلیل است که ما بینش های نوآوری مبتنی بر داده در صنعت انرژی را به شما ارائه می دهیم. در پایان با امید به شکل گیری زیرساخت های شبکه هوشمند برق در ایران، 5 راه حل دستچین شده برای تجارت انرژی همتا به همتا را با ذکر مثال از چند شرکت و استارت آپ موفق جهانی ارائه میدهیم:

 

  1. Hygge یک بازار انرژی مستقل ایجاد می کند

سال تاسیس: 2017

مکان: تورنتو، کانادا

شریک: تجارت انرژی های تجدیدپذیر

استارتاپ کانادایی Hygge Energy یک بازار تجارت انرژی های تجدیدپذیر را ارائه می دهد که در سراسر جهان قابل دسترسی است. پلت فرم استارت آپ خدمات تراکنشی را هم در جلو و هم در پشت کنتور فعال می کند. اولی به شرکت های خدمات شهری اجازه می دهد تا از دارایی های توزیع شده خود با افزایش معاملات انرژی استفاده کنند، در حالی که دومی از رویکرد تجارت همتا به همتا استفاده می کند که مبتنی بر جامعه، بازار، و توسعه دهنده است. Hygge از طریق باکس سفارشی خود که ترکیبی از هوش مصنوعی AI، بلاکچین خصوصی و قدرت محاسباتی بالا است، به این مهم دست می یابد. این استارت‌آپ همچنین یک برنامه کاربردی تلفن هوشمند ارائه می‌کند که به تولیدکنندگان انرژی خصوصی اجازه می‌دهد تا تولید مازاد خود را به شرکت‌های برق بفروشند و انرژی کم‌هزینه را با همسایگان معامله کنند. این امر بازده سرمایه گذاری را برای نیروگاه های خصوصی افزایش می دهد و درآمد شرکت های برق را از طریق بهبود توان عملیاتی انرژی افزایش می دهد.

 

  1. Exodus یک برنامه تجارت همتا به همتا را ارائه می دهد

سال تاسیس: 2018

مکان: لیدز، انگلستان

شریک برای: اشتراک انرژی خانه به خانه

Exodus یک استارت‌آپ مستقر در بریتانیا است که ExodusHOME را توسعه می‌دهد، برنامه‌ای برای گوشی‌های هوشمند برای فعال کردن تجارت همتا به همتا در جوامع محلی. ExodusHOME به صاحبان خانه با واحدهای تولید برق محلی اجازه می دهد تا بر تولید، مصرف و سطوح ذخیره انرژی نظارت کنند. با این بینش، مصرف کنندگان می توانند انرژی مازاد خود را با سایر خریداران و مصرف کنندگان مبادله کنند و همچنین آن را به شبکه برق انتقال دهند. این بازار انرژی به نفع جامعه است و راه اندازی واحدهای تولید انرژی تجدیدپذیر محلی را از طریق مشوق های مالی ترویج می کند. بنابراین، منجر به توسعه راه‌حل‌های سخت‌افزاری در دسترس برای تولید انرژی‌های تجدیدپذیر خارج از شبکه می‌شود و انتقال انرژی را تسریع می‌کند. این همچنین بار هزینه های سرمایه ای را بر اپراتورهای شبکه و واحدهای تولید برق کاهش می دهد.

 

  1. سوئیچ تجارت انرژی خورشیدی را فعال می کند

سال تاسیس: 2018

مکان: کیپ تاون، آفریقای جنوبی

شریک: بازرگانی انرژی خورشیدی

استارت‌آپ انرژی سوئیچ انرژی مستقر در آفریقای جنوبی راه‌حل‌های هوشمند اندازه‌گیری و مدیریت انرژی را ارائه می‌دهد. مودم استارت‌آپ برق را در زمان واقعی مشاهده و کنترل می‌کند، تعویض لوازم خانگی را زمان‌بندی می‌کند و تجارت برق خورشیدی را فعال می‌کند. Switch Energy همچنین یک پلت فرم نرم افزاری را توسعه می دهد که شامل یک برنامه تلفن همراه و یک کنسول مدیریت برای تسهیل نظارت بر تولید و مصرف انرژی در زمان واقعی است. علاوه بر این، به کاربران اجازه می دهد تا انرژی را بین ساختمان های دارای تولید خورشیدی در شبکه های زیر متری مبادله کنند، بنابراین وابستگی خانوارها به شبکه اصلی کاهش می یابد.

 

  1. TroonDx تبادل برق غیرمتمرکز را توسعه می دهد

سال تاسیس: 2019

مکان: چنای، هند

شریک: تجارت غیرمتمرکز انرژی، بازار انرژی مبتنی بر بلاک چین

TroonDx یک استارت آپ هندی است که یک پلتفرم نرم افزاری مبتنی بر بلاک چین را فراهم می کند که زیرساخت های حیاتی را در شبکه انرژی برای تبادل نیرو به هم متصل می کند. پلتفرم تبادل برق غیرمتمرکز این استارت آپ، تراکنش های دیجیتالی امن را بدون وابستگی به یک نقطه مرکزی قدرت امکان پذیر می کند. این پلتفرم قراردادهای هوشمندی را ارائه می‌کند که اجرای تراکنش‌ها را خودکار می‌کند و شفافیت در توافق‌نامه‌های خریدار و فروشنده را افزایش می‌دهد و امکان معاملات بی‌درنگ را فراهم می‌کند. این باعث ایجاد چندین بازار انرژی ابرمحلی خودکفا با حداقل وابستگی به شبکه اصلی می شود. علاوه بر این، بلاک چین یک مسیر حسابرسی تغییرناپذیر از هر تراکنش انرژی را حفظ می کند که به حسابداری، حل و فصل صورتحساب و فرآیندهای حل اختلاف خودکار کمک می کند.

 

  1. nyway یک بازار انرژی های تجدیدپذیر ایجاد می کند

سال تاسیس: 2017

مکان: هامبورگ، آلمان

شریک: بازار انرژی های تجدیدپذیر

استارت‌آپ آلمانی به هر حال بازار انرژی‌های تجدیدپذیر را برای معاملات انرژی همتا به همتا ایجاد می‌کند. پلت فرم این استارت آپ به مصرف کنندگان انرژی این امکان را می دهد که فروشنده های خصوصی برق را انتخاب و انتخاب کنند. این به مشتریان اجازه می دهد تا انرژی پاک را با قیمت های پایین در محل خود خریداری کنند. enyway همچنین از فناوری مبتنی بر بلاک چین برای ثبت و حسابرسی این تراکنش ها استفاده می کند. علاوه بر این، بازار استارت آپ نیازی به نصب دستگاه یا زیرساخت جدیدی برای تامین انرژی خریداری شده به مشتریان خود ندارد. راه حل enyway تضمین می کند که انرژی کاملاً پایدار، شفاف و ایمن است، بنابراین از هرگونه وقفه در عرضه جلوگیری می کند.

 

نویسنده: مهدی پارساوند

 

 

یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه با وجود بانک باتری

 

خلاصه

این مقاله روشی را، به ویژه برای مناطق با پتانسیل انرژی خورشیدی، برای طراحی و توسعه موثر نیروگاه های فتوولتائیک خورشیدی یکپارچه با بانک های باتری متصل به شبکه برق به عنوان یک پشتیبان اضافی برای حفظ پایداری و قابلیت اطمینان مورد بحث قرار می دهد. برای اثبات اثربخشی این روش در استفاده از آن برای طراحی و توسعه سیستم پیشنهادی، شهر کینشاسا در جمهوری دموکراتیک کنگو با کسری انرژی عظیم (5425 مگاوات ساعت) به عنوان مطالعه موردی در نظر گرفته شده است. در واقع روش به کار گرفته شده در این مطالعه داده های آب و هوا، انتخاب مکان، تحلیل توان بار ساعتی و تقاضای انرژی، مشخصات فناوری های PV و سایر اجزای سیستم را در نظر گرفته است. تحلیل اقتصادی نیز برای ارزیابی قابلیت حیات سیستم پیشنهادی انجام شده است. با LCOE رقابتی، SPP کمتر از 10 سال، NPV˃0، SIR˃1، و ROI ˃10 درصد، و خروجی انرژی PV سالانه بیشتر از کسری انرژی شهر، سیستم پیشنهادی عملی و قابل اجرا است. در جستجوی عملکرد بهتر، راندمان بالاتر و ارزش اقتصادی بهتر، روش پیشنهادی به شدت توصیه می‌شود و می‌تواند به عنوان یکی از مؤثرترین و ساده‌ترین روش‌ها برای راه اندازی سیستم‌های نیروگاه خورشیدی PV در مقیاس بزرگ در نظر گرفته شود.

 

معرفی

موضوع تغییر اقلیم، کاهش پیش بینی شده منابع انرژی متعارف در سال های آینده، نگرانی در مورد آلودگی هوا ناشی از استفاده از این سوخت های متعارف و ناامنی انرژی از عوامل اصلی افزایش سهم بسیاری از کشورها از انرژی های تجدیدپذیر در خود است. (مینگ و همکاران، 2018). در سال 2015، حدود 86 درصد از مصرف انرژی در سراسر جهان از سوخت‌های معمولی تولید می‌شد  (Musa et al., 2018)این سوخت ها جایگاه قابل توجهی در بخش انرژی برای بهبود رشد اقتصادی کشورها دارند، اما استفاده گسترده از آنها نگرانی های زیست محیطی را افزایش می دهد. به طور خاص، آلودگی هوا ناشی از استفاده گسترده از سوخت‌های فسیلی و تغییرات آب و هوایی مرتبط و گرمایش جهانی، مشارکت گسترده در سراسر جهان و پذیرش گسترده فناوری‌های انرژی‌های تجدیدپذیر را ضروری می‌کند. در نتیجه، ادغام نیروی الکتریکی مهار شده از باد، نور خورشید و انرژی آبی، به منظور پرداختن به این مسائل و پاسخگویی به تقاضای فزاینده انرژی در ساختمان‌ها، حمل‌ونقل و صنعت، یک الزام مطلق است (فاضل پور و همکاران، 2016; غنایی و همکاران، 2020). با این افزایش جهانی در مصرف انرژی، تحقیقات پیشرفته تری در زمینه انرژی های تجدیدپذیر بسیار مورد نیاز است و باید به طور مستمر توسط محققان در سراسر جهان انجام شود. این همچنین به مقابله با مشکلات زیست محیطی فزاینده در نتیجه سوخت های فسیلی کمک می کند. با توجه به این واقعیت که این منابع انرژی متعارف دیگر امیدی برای پوشش تقاضای روزافزون جهانی برای انرژی در دو دهه آینده که عمدتاً به دلیل تخلیه سریع منابع آنهاست، به نظر نمی رسد، افزایش نفوذ راه حل های انرژی پایدار ضروری است. به بخش برق نیروگاه‌های انرژی تجدیدپذیر که انرژی را به شیوه‌ای پاک از نظر زیست‌محیطی تولید می‌کنند، تعادل بین عرضه و تقاضای انرژی را حفظ می‌کنند، شبکه برق را با توجه به قابلیت اطمینان آن تثبیت می‌کنند و نیازهای بار را برای کاربردهای مسکونی، تجاری، حمل‌ونقل و صنعتی برآورده می‌کنند (Ghenai et al. ، 2020؛ ماهش و ساندو، 2015).

grec rawhide - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

منابع انرژی تجدیدپذیر مانند باد، آبی و خورشیدی را می توان در بسیاری از نقاط جهان یافت، اگرچه پتانسیل منابع بسته به مکان متفاوت است. با این وجود، به نظر می رسد در دسترس بودن آنها برای بشریت از نظر مسائل زیست محیطی و همچنین به عنوان جایگزینی برای اهداف هزاره در آینده امیدوارکننده باشد. این اهداف شامل، اما نه محدود به کاهش/حذف انتشار گازهای گلخانه ای ناشی از انرژی الکتریکی تولید شده از منابع انرژی متعارف و همچنین وابستگی انرژی کشورها به این سوخت ها است. با این حال، در میان منابع تجدیدپذیر ذکر شده در بالا، باد و خورشید توسط اکثر محققان برای برآوردن نیازهای روزافزون انرژی در بسیاری از جوامع در سراسر جهان انتخاب می‌شوند. همانطور که مشخص است، تولید برق از یک فناوری خورشیدی به شدت به شدت خورشید بستگی دارد و تولید مورد انتظار ممکن است تنها با توجه به دقت پیش‌بینی آب و هوا برنامه‌ریزی شود (گیلانزا و همکاران، 2018؛ ماهش و ساندو، 2015). یکی از راه‌های غلبه بر ماهیت متناوب انرژی خورشیدی، استفاده از یک واحد ذخیره‌سازی یا ترکیب آن با یک منبع انرژی تجدیدپذیر دیگر با استفاده از قدرت یکی برای تکمیل ضعف دیگری است (گیلانزا و همکاران، 2018). این مطالعه یک سیستم هیبریدی را با استفاده از ترکیبی از سیستم‌های ذخیره‌سازی باتری با نیروگاه خورشیدی فتوولتائیک PV در نظر می‌گیرد. سیستم‌های PV با ذخیره‌سازی، منبع تغذیه را قابل اطمینان‌تر می‌سازند و هر زمان که در طول تولید برق تغییری در تابش خورشیدی وجود داشته باشد، بانک‌های باتری سهم خود را برای متعادل کردن منبع افزایش می‌دهند. پایداری و قابلیت اطمینان «سیستم منبع تغذیه خورشیدی جدا از شبکه» به تأسیسات نیروگاه خورشیدی PV بزرگ و سیستم‌های ذخیره باتری بزرگ نیاز دارد. از سوی دیگر، در نظر گرفتن ذخیره سازی و باتری برای یک “سیستم نیروگاه خورشیدی متصل به شبکه” PV نیازهای ذخیره سازی را کاهش می دهد و امنیت و امکان سنجی تامین را بهبود می بخشد. چند مطالعه بر اساس مجموعه‌ای از ترکیبی از سیستم‌های برق متعارف و سیستم‌های انرژی تجدیدپذیر مانند نیروگاه خورشیدی PV، باد و آبی قبلاً برای جمهوری دموکراتیک کنگو(DRC)  انجام شده است. هدف اصلی این مطالعات برآوردن نیازهای تقاضای توان بارهای خاص متصل و/یا غیر متصل به شبکه برق و در نتیجه بهبود قابلیت اطمینان آن سیستم ها بود.

کوساکانا و ورماک (2011) امکان استفاده از سیستم های هیبریدی PV-Wind را در DRC به عنوان راه حلی برای تامین برق تاسیسات مخابراتی از راه دور، به ویژه برای Mbuji-Mayi که در آن ژنراتور دیزلی در حال استفاده است، بررسی کردند. آنها در بررسی های خود نشان دادند که وجود منابع خورشیدی و بادی در تمام نقاط کشور می تواند پاسخگوی نیاز انرژی اپراتورهای شبکه باشد. بر اساس نتایج شبیه‌سازی به‌دست‌آمده از نرم‌افزار HOMER، با استفاده از نامطلوب‌ترین ماه برای اندازه‌گیری سیستم، سیستم قدرت هیبریدی پیشنهادی نسبت به سیستم دیزل ژنراتور مقرون به صرفه‌تر و از نظر زیست‌محیطی بهتر است. با این حال، با LCOE 0.26 $/kWh همانطور که توسط نویسندگان گزارش شده است، سیستم قدرت هیبریدی پیشنهادی آنها بسیار کمتر از نیروگاه های برق آبی Inga و Zongo امکان پذیر است.

 

Vermaak و Kusakana (2014) امکان استفاده از منابع انرژی تجدیدپذیر، اعم از سیستم نیروگاه خورشیدی فتوولتائیک یا بادی، را برای توسعه و استقرار ایستگاه‌های شارژ برقی Tuk-tuk در مناطق روستایی و دورافتاده جمهوری کنگو بررسی کردند. نویسندگان در مطالعات خود از نامطلوب ترین ماه برای اندازه گیری اجزای سیستم استفاده کردند. در مطالعه آنها از نرم افزار HOMER برای انجام شبیه سازی ها با در نظر گرفتن متغیرهای ورودی اصلی استفاده شد. مانند منابع انرژی تجدیدپذیر، هزینه قطعات، مشخصات فنی و تقاضای بار.

download 1 - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

کوساکانا و ورماک (2013) تحقیقاتی را در مورد امکان استفاده از سیستم‌های قدرت هیبریدی تجدیدپذیر به عنوان منابع اولیه انرژی برای تامین برق تاسیسات تلفن همراه در مناطق روستایی جمهوری کنگو انجام دادند. این مطالعات سه منطقه را شامل می شود، یعنی Kabinda، Mbuji-Mayi و Kamina که هنوز به شبکه برق ملی متصل نیستند. مناطق فوق با توجه به پتانسیل خوب خورشیدی و بادی به عنوان سایت آزمایشی برای انجام این تحقیقات انتخاب شدند. چهار گزینه مختلف شامل «سیستم PV-Wind هیبریدی»، «سیستم دیزل ژنراتور»، «سیستم نیروگاه خورشیدی  PV و سیستم باد» پیشنهاد و مورد بررسی قرار گرفت. نتایج شبیه سازی سیستم هیبریدی PV-Wind پیشنهادی به دست آمده از نرم افزار HOMER با سایر گزینه های منبع تغذیه ذکر شده مقایسه شد. در طول عمر اقتصادی پروژه، سیستم هیبریدی PV-WIND پیشنهادی به‌عنوان اقتصادی و از نظر زیست‌محیطی بهترین در بین گزینه‌های در نظر گرفته شده بود. در این مطالعات، محققان همچنین سیستم‌هایی را پیشنهاد کرده‌اند که سیستم‌های انرژی مختلف را با یک سیستم دیزلی به عنوان یک پشتیبان قابل اعتماد ترکیب می‌کنند. اگرچه سیستم دیزل هزینه رقابتی انرژی را ارائه می دهد، اما دوستدار محیط زیست نیست زیرا انرژی را از سوخت های فسیلی تولید می کند. هنگامی که هزینه های دیگر در نظر گرفته شود، سیستم های تجدیدپذیر با باتری مقرون به صرفه تر می شوند. با این حال، پایداری و قابلیت اطمینان برای تامین برق تمیز و مقرون به صرفه به بار از طریق یک نیروگاه PV خورشیدی روی شبکه (با باتری) که از شبکه اصلی به عنوان پایه استفاده می‌کند، در ادبیات مربوط به مطالعات موردی انرژی در DRC یا جاهای دیگر مورد توجه قرار نگرفته است. آفریقا با این وجود، تعداد زیادی از مطالعات در سراسر جهان در مورد طراحی و توسعه سیستم های PV خورشیدی تاکنون توسط بسیاری از محققین انجام شده است (آدام و فاشینا، 2019؛ Ayodele و همکاران، 2019؛ Domínguez & Geyer، 2019؛ غفور و Munir، 2015؛ کمالی، 2016؛ Khatri، 2016؛ Kolhe و همکاران، 2015؛ Okoye & Oranekwu-Okoye، 2018؛ Owolabi و همکاران، 2019؛ Sharma و همکاران، 2019؛ Werulkar,20kar و Kul15.)

 

برخلاف روش‌های تحقیقاتی پیشنهاد شده در مطالعات قبلی برای نیروگاه‌های فتوولتاییک خورشیدی، روش پیشنهادی مصاحبه‌های نیمه ساختاریافته، داده‌های آب‌وهوای مکان، پارامترهای ضروری برای انتخاب مکان، عوامل تعیین‌کننده برای تخمین واقعی بار روزانه در یک مکان را در نظر می‌گیرد. بدون سوابق تقاضای انرژی، پروفیل های تقاضای برق و انرژی شهر (ساختمان های مسکونی، تجاری و صنعتی) به صورت ساعتی، روزانه و ماهانه. این روش همچنین مشخصات فناوری ها و سایر پارامترهای کلیدی تصمیم گیری را برای طراحی بهتر و تحلیل اقتصادی نیروگاه خورشیدی PV در نظر می گیرد. مقایسه‌های ماژول‌های PV انتخاب شده در رابطه با خروجی انرژی، PRنسبت عملکرد، CF ضریب ظرفیت، و LCOE  هزینه یکسان‌سازی شده برق نیز ارائه شده‌اند.

 

اهداف این مطالعه عبارتند از:

 

  • ارائه یک روش طراحی موثر برای توسعه نیروگاه‌های خورشیدی PV خورشیدی با باتری‌های ذخیره‌سازی که به‌عنوان واحد پشتیبان/پایه به موازات شبکه موجود کار می‌کنند تا پایداری تامین و قابلیت اطمینان شبکه حفظ شود.
  • پتانسیل انرژی خورشیدی را در یک مکان ارزیابی کنید و سپس سهم آن در تامین برق را بررسی کنید.
  • انجام مطالعه امکان سنجی نیروگاه خورشیدی PV پیشنهادی برای تامین برق کینشاسا.
  • نشان دهید که چگونه “کارایی ماژول خورشیدی PV و تعیین زاویه شیب بهینه” در محل انتخاب شده، امکان به دست آوردن انرژی خروجی بهینه، PR و CF بالاتر و LCOE رقابتی را فراهم می کند.
  • تامین برق تمیز و مقرون به صرفه برای کینشاسا و رفع قطعی برق، کاهش بار و خاموشی در حال حاضر اکثر ساکنان و صنعت کینشاسا با آن مواجه هستند.
  • یک سیستم پشتیبان قابل اعتماد برای منبع تغذیه بدون وقفه پیشنهاد کنید.

 

داده‌های جمع‌آوری‌شده از منابع معتبر مختلف و آن‌هایی که بازسازی شده‌اند، بر اساس مصاحبه‌های نیمه ساختاریافته انجام‌شده با سهامداران کلیدی بخش برق DRC، در طراحی و تحلیل اقتصادی برای این مطالعه موردی مورد بررسی و تحلیل قرار گرفته‌اند.

 

وضعیت برق در کینشاسا

کینشاسا، پایتخت جمهوری دموکراتیک کنگو، به شدت بر برق تولید شده در استان همسایه خود، کنگو مرکزی، برای تامین برق ساکنان و صنایع خود متکی است. منبع اصلی تامین برق در شهر انرژی آبی است که 98 درصد از کل مصرف برق را به خود اختصاص می دهد. تقاضای برق در شهر حدود 1000 مگاوات برآورد شد و تنها 45 درصد از این تقاضا توسط شرکت ملی تاسیسات (SNEL) تامین می شود. این باعث کسری برق برای برق می شود

 

روش شناسی

این مقاله یک رویکرد جدید از طریق یک روش طراحی موثر برای توسعه نیروگاه‌های PV خورشیدی با باتری‌های ذخیره‌سازی ارائه می‌دهد که به‌عنوان واحد پشتیبان/پایه به موازات ژنراتورهای برق موجود برای حفظ ثبات و قابلیت اطمینان عرضه می‌شوند. تازگی این مقاله بر روی یک روش مهندسی نهفته است که قادر به تعیین موثر خروجی انرژی PV و باتری “زمان واقعی”، نسبت عملکرد سیستم پیشنهادی، ضریب ظرفیت آن، NPV، LCOE و SPP با توجه به

wHandNews Image - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

نتایج و بحث

در این مطالعه، از ماژول‌های PV SunPower برای تامین برق شهر کینشاسا استفاده می‌شود تا کسری انرژی آن را پوشش دهد و وابستگی آن به منبع تغذیه نیروگاه‌های برق آبی Inga و Zongo را کاهش دهد. نیروگاه خورشیدی PV پیشنهادی برای تداوم تامین به باتری ها متکی است و از شبکه اصلی به عنوان نیروی پشتیبان دوم استفاده می کند. بر اساس محاسبات مهندسی، ظرفیت تولید مورد نیاز این نیروگاه فتوولتاییک 1560 مگاوات پیک برای تامین کسری انرژی 5425 مگاوات ساعت در روز مشخص شد.

 

نتیجه گیری و توصیه ها

این مقاله روشی مبتنی بر یک رویکرد ریاضی را مورد بحث قرار می‌دهد که می‌تواند در همه جای دنیا توسط نصاب‌های PV برای طراحی و توسعه نیروگاه‌های PV خورشیدی در مقیاس بزرگ، با تکیه بر باتری‌ها و شبکه اصلی برای تداوم و قابلیت اطمینان، استفاده شود. مطالعه انجام شده تاکیدی بر وضعیت برق شهر کینشاسا دارد که در آن تنها 45 درصد از مشتریان نهایی به برق دسترسی دارند. با وجود پتانسیل عظیم سیستم های برق آبی در کشور و کنگو

 

بیانیه مشارکت نویسنده CRediT

Arcell Lelo Konde داده‌ها را جمع‌آوری و تجزیه و تحلیل کرد، تجزیه و تحلیل شبیه‌سازی و یافته‌های تحقیقاتی گزارش‌شده در این دست‌نوشته را انجام داد و نتایج را تفسیر کرد، کل محتوای این دست‌نوشته را نوشت و بازبینی‌های عمده‌ای را در این مقاله انجام داد. مصطفی دغباسی و مهمت کوسف کار را بررسی کردند و بر یافته‌های پژوهشی به‌دست‌آمده نظارت کردند تا مطمئن شوند که داده‌های جمع‌آوری‌شده، محتوا و ساختار این نسخه از استانداردهای انتشار پیروی می‌کند.

 

اعلامیه منافع رقابتی

نویسندگان اعلام می‌کنند که هیچ منافع مالی یا روابط شخصی رقیب‌ای ندارند که به نظر می‌رسد بر کار گزارش‌شده در این مقاله تأثیر بگذارد.

Arcell Lelo Konde دارای مدرک کارشناسی ارشد در مهندسی سیستم های انرژی از دانشگاه بین المللی قبرس با تخصص در سیستم های برق هیبریدی تجدید پذیر است. حوزه‌های تخصص او شامل انرژی‌های تجدیدپذیر، طراحی، مدل‌سازی، توسعه، بهره‌برداری، برنامه‌ریزی و راه‌اندازی سیستم‌های PV خورشیدی از کاربردهای برق کوچک تا مقیاس بزرگ، مزارع بادی و نیروگاه‌های برق آبی است.

نویسندگان: Arcell LeloKonde, MehmetKusaf, MustafaDagbasi

مترجم: مهدی پارساوند