نوشته‌ها

تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

    انتقال انرژی نیاز به زیرساخت مناسب دارد و احداث شبکه‌های انتقال برق و زیرساخت‌های توزیع برق برای انتقال انرژی تولید شده از نیروگاه‌ها به مناطق مصرف انرژی ضروری است. این زیرساخت‌ها باید به روز رسانی شده و به توسعه برسند تا تأمین انرژی پایدار و بهینه را تضمین کنند. زیرساخت‌های لازم برای انتقال انرژی از محل تولید به محل مصرف شامل خطوط و تجهیزات انتقال برق، زیرساخت‌های نگهداری، کنترل و اندازه‌گیری میشود.

   خطوط انتقال برق شامل سیم‌ها، پایه ها، و سازه‌های حمایتی هستند که انرژی تولیدی از نیروگاه‌ها را از منطقه تولید به منطقه مصرف منتقل می‌کنند. این زیرساخت از انتقال بهینه انرژی به نقاط مختلف و حفظ پایداری شبکه برق کمک می‌کند. احداث و نگهداری خطوط انتقال برق هزینه‌های گسترده‌ای دارد که به عوامل مختلفی بستگی دارد و شامل هزینه‌های مرتبط با طراحی، تهیه مواد، نصب تجهیزات، و ساختارهای حمایتی خطوط انتقال برق است و طول خط انتقال، نوع تجهیزات استفاده شده، و پیچیدگی شرایط محیطی ازعوامل تاثیرگذار روی این هزینه هاست.

   تجهیزات انتقال برق شامل ترانسفورماتورها، سوئیچ‌ها، و تجهیزات کنترلی است که در سیستم انتقال برق به کنترل جریان و ولتاژ و مدیریت شبکه کمک می‌کنند. در ادامه به شرح کاملی از این تجهیزات می پردازیم.

articleFiles 45934648 3jlav 1647155329 copy - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

ترانسفورماتورها:

   ترانسفورماتورها به عنوان یکی از اجزای اصلی سیستم‌های انتقال و توزیع برق، جهت تغییر ولتاژ بین خطوط انتقال برق به کار می‌روند. انواع مختلفی دارند، در زیر به برخی انواع ترانسفورماتورها و ویژگی‌های آنها اشاره می‌شود:

 

  1. ترانسفورماتورهای توزیع:

ترانسفورماتورهای توزیع نقش مهمی در سیستم‌های انتقال و توزیع برق ایفا می‌کنند. این ترانسفورماتورها عمدتاً برای تنظیم ولتاژ برق از سطح انتقال به سطح توزیع به کار می‌روند. در زیر توضیحات بیشتری درباره ترانسفورماتورهای توزیع آورده شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای توزیع برای انتقال برق از سطح انتقال (که ولتاژ آن بالاتر است) به سطح توزیع (که ولتاژ آن پایین‌تر است) به کار می‌روند.

   – مهمترین وظیفه آنها تغییر ولتاژ برق به مقداری مناسب برای استفاده در صنعت، شهری، یا مناطق روستایی است.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای توزیع دارای دو سیم پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

مزایا:

   – تغییر ولتاژ به صورت ایمن و مؤثر.

   – عمر طولانی و نیاز به نگهداری کم.

   – افت ولتاژ و توان‌های فراوانی را به حداقل می‌رسانند.

 کاربردها:

   – در شبکه‌های توزیع برق شهری، صنعتی و روستایی مورد استفاده قرار می‌گیرند.

   – در ایستگاه‌های تقسیم بار برای تنظیم ولتاژ و توزیع به مصارف مختلف.

 

۳. انواع ترانسفورماتورهای توزیع:

   – ترانسفورماتورهای روغنی: از روغن به عنوان عایق استفاده می‌کنند و عمدتاً در محیط‌های صنعتی استفاده می‌شوند.

۱. مزایا:

   – عایق کاری خوب: روغن به عنوان یک عایق خوب در ترانسفورماتورهای روغنی عمل می‌کند.

   – خنک‌کنندگی: روغن به خوبی حرارت تولید شده در ترانسفورماتور را انتقال می‌دهد.

   – عملکرد پایدار در شرایط مختلف: توانایی کارکرد در شرایط محیطی مختلف از جمله دما و رطوبت را داراست.

۲. معایب:

   – احتمال نشت روغن: این ترانسفورماتورها با مشکل احتمال نشت روغن مواجه هستند.

   – اندازه و وزن بالا: نسبت به ترانسفورماتورهای خشک، این نوع ترانسفورماتورها اندازه و وزن بیشتری دارند.

   – نیاز به فضای اضافی برای جلوگیری از خطرات احتمالی نشت روغن.

 

   – ترانسفورماتورهای خشک: بدون استفاده از روغن یا گاز به عنوان عایق عمل می‌کنند و اغلب در مکان‌هایی که استفاده از روغن ممنوع یا مشکل است، مورد استفاده قرار می‌گیرند.

مقایسه ترانسفورماتورهای روغنی و خشک از نظر مزایا و معایب نشان می‌دهد که هر یک از این انواع ترانسفورماتور دارای ویژگی‌ها و کاربردهای خاصی هستند. در زیر به مقایسه دقیق این دو نوع ترانسفورماتور پرداخته شده است:

۱. مزایا:

   – بدون روغن: از عایق‌های خشک برای جلوگیری از نیاز به روغن استفاده می‌کنند.

   – نگهداری آسان: به دلیل عدم وجود روغن، نگهداری و تعمیرات آسان‌تر و اقتصادی‌تر هستند.

   – احتمال کمتر نشت: به دلیل عدم وجود روغن، خطر نشت کمتر است.

 

۲. معایب:

   – کمترین خنک‌کنندگی: نسبت به ترانسفورماتورهای روغنی، توانایی خنک‌کنندگی کمتری دارند.

   – مناسب برای کاربردهای محدودتر: بیشتر در محیط‌های خشک و با دماهای پایین مورد استفاده قرار می‌گیرند.

 

با توجه به نیازها و شرایط محیطی، انتخاب بین ترانسفورماتورهای روغنی و خشک بستگی به موارد خاص هر کاربرد دارد. همیشه تصمیم بهتر از طریق مشاوره با متخصصان ترانسفورماتور و شناخت دقیق از نیازهای سیستم خود به دست می‌آید.

 

   – ترانسفورماتورهای گازی: ترانسفورماتورهای گازی یا همان ترانسفورماتورهای گاز‌دار Gas-Insulated Transformers یا GIS) ) نوعی ترانسفورماتورهستند که مواد عایق میانه بین پیچ‌ها و هسته آن گاز است و به جای عایق‌های سنتی نفتی یا عایق‌های جامد مورد استفاده قرار می‌گیرد. معمولاً گاز مورد استفاده در این ترانسفورماتورها گاز سولفورهگزا فلوراید ( (SF6است که خواص عایقی عالی دارد.

مزایا:

   – طراحی فشرده: ترانسفورماتورهای گازی نسبت به ترانسفورماتورهای سنتی با عایق روغنی دارای طراحی فشرده‌تری هستند که برای نصب در مناطق شهری با فضای محدود مناسب هستند.

   – کاهش نیاز به نگهداری: طراحی محافظت شده باعث کاهش نیاز به نگهداری می‌شود.

   – مقاومت الکتریکی بالا: گاز SF6 مقاومت الکتریکی بالایی دارد که امکان انجام تنظیمات الکتریکی را فراهم می‌کند.

   – تقویت ایمنی: محفظه مهر و مومی به افزایش ایمنی کمک می‌کند با جلوگیری از فرار گاز و کاهش خطر آتش سوزی.

 کاربردها:

   – نصب‌های شهری: ترانسفورماتورهای گازی به عنوان یک انتخاب مناسب برای نصب در مناطق شهری با فضای محدود شناخته شده‌اند.

 

electrical substation - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

  1. ترانسفورماتورهای قدرت (انتقال):

ترانسفورماتورهای قدرت نقش حیاتی در سیستم‌های انتقال و توزیع برق دارند. این ترانسفورماتورها عمدتاً برای انتقال انرژی برق از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و نقش ترانسفورماتورهای قدرت پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای قدرت برای تغییر ولتاژ برق به منظور انتقال به فواصل بلند از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی استفاده می‌شوند.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای قدرت دارای دو یا چند پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

 

۳. انواع ترانسفورماتورهای قدرت:

   – ترانسفورماتورهای انتقال: جهت انتقال انرژی برق به فواصل بلند استفاده می‌شوند و ولتاژ آنها معمولاً بسیار بالاست.

   – ترانسفورماتورهای توزیع: برای انتقال انرژی به فواصل کمتر و در سطح شهری و صنعتی به کار می‌روند و ولتاژ آنها کمتر از ترانسفورماتورهای انتقال است.

 

۴. مزایا:

   – انتقال انرژی با افت ولتاژ کم.

   – افزایش یا کاهش ولتاژ به شکل مستمر و به صورت اتوماتیک.

   – عمر طولانی و نیاز به نگهداری کم.

 

۵. معایب:

   – اندازه و وزن بالا: برخی از ترانسفورماتورهای قدرت به دلیل توان بالا، اندازه و وزن بسیار بالایی دارند.

   – نیاز به مکان‌های ویژه برای نصب و نگهداری.

 

۶. کاربردها:

   – استفاده اصلی این ترانسفورماتورها در نقاط انتقال انرژی بین نیروگاه‌ها، ایستگاه‌های انتقال، و سیستم‌های توزیع برق است.

 

ترانسفورماتورهای قدرت با توجه به توان، نیازهای ولتاژی، و شرایط محیطی، به صورت اختصاصی برای هر نقطه انتقال و توزیع طراحی و استفاده می‌شوند. این ترانسفورماتورها جزء اجزای اساسی سیستم‌های انتقال و توزیع برق به شمار می‌آیند.

  

 

ترانسفورماتورهای یکپارچه (Compact):

ترانسفورماتورهای یکپارچه یا همان  Compact Transformersنوعی ترانسفورماتور هستند که به دلیل طراحی خاص و اندازه کوچک، معمولاً برای فضاها و نقاط محدود به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و کاربردهای ترانسفورماتورهای یکپارچه پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای یکپارچه با طراحی کوچک و یکپارچه خود به منظور استفاده در فضاهای محدود و نیازهای خاص ساخته شده‌اند.

 

۲. ساختار و عملکرد:

   – این ترانسفورماتورها به صورت یکپارچه و با اندازه کوچک‌تر و وزن سبک‌تر نسبت به ترانسفورماتورهای سنتی ساخته می‌شوند.

   – توان ولتاژی و جریانی که این ترانسفورماتورها توانسته‌اند پوشش دهند معمولاً کمتر از ترانسفورماتورهای بزرگ و سنتی است.

 

۳. مزایا:

   – اندازه کوچک و وزن سبک: این ترانسفورماتورها مناسب برای فضاهای محدود و نیازهای کاربردی خاص هستند.

   – نصب و استفاده آسان: به دلیل اندازه کوچک، نصب و نگهداری آنها نسبت به ترانسفورماتورهای بزرگتر ساده‌تر است.

   – قابلیت تنظیم ولتاژ: برخی از ترانسفورماتورهای یکپارچه دارای قابلیت تنظیم ولتاژ هستند.

 

۴. کاربردها:

   – در ایستگاه‌های تقسیم بار، که نیاز به ترانسفورماتورهای کوچک و مؤثر برای توزیع برق به مصارف مختلف دارند.

   – در صنایع خاص و اتوماسیون، جایی که فضا محدود و نیاز به تنظیم ولتاژ وجود دارد.

 

ترانسفورماتورهای یکپارچه به دلیل اندازه کوچک و وزن سبک، مختص فضاهای محدود و نیازهای خاصی هستند. این ترانسفورماتورها به عنوان یکی از اجزای مهم در سیستم‌های برق و اتوماسیون برای افزایش بهره‌وری و انجام وظایف خاص به کار می‌روند.

   هر نوع ترانسفورماتور بر اساس نیازها و محیط کاربردی خود مزایا و معایب خاصی دارد. انتخاب نوع مناسب ترانسفورماتور بر اساس شرایط خاص سیستم برق و نیازهای انتقال و توزیع انرژی اهمیت زیادی دارد.

 

 تجهیزات حفاظت:

تجهیزات حفاظت در خطوط انتقال برق برای محافظت از تجهیزات و انسان‌ها در مواجهه با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ، یا افزایش جریان و… استفاده می‌شوند. این تجهیزات با شناسایی خطاها و حوادث به سرعت و به صورت اتوماتیک عملکرد می‌کنند تا خسارت به تجهیزات و افراد را کاهش دهند. در زیر به شرح تجهیزات حفاظت خطوط انتقال برق پرداخته شده است:

 

۱. رله‌های حفاظت:

   – این رله‌ها به صورت اتوماتیک عملکرد دارند و به تشخیص خطاها مانند اتصال کوتاه، افت ولتاژ، جریان بیش از حد، و … می‌پردازند.

   – رله‌های حفاظت بر اساس استانداردهای تعیین شده برای حفاظت از تجهیزات و خطوط برق تنظیم می‌شوند.

 

۲. ترمینال‌ها و سوئیچ‌های حفاظتی:

   – ترمینال‌ها و سوئیچ‌های حفاظتی به صورت مکانیکی یا الکتریکی جهت قطع و وصل سریع خطوط برق در صورت حادثه به کار می‌روند.

 

۳. ترانسفورماتورهای حفاظتی:

   – این ترانسفورماتورها وظیفه تغییر ولتاژ جهت اندازه‌گیری جریان و ولتاژ در خطوط را دارند تا اطلاعات لازم برای تشخیص حوادث به رله‌های حفاظت منتقل شود.

 

۴. کمپانساتورهای دینامیک:

   – برای مدیریت ولتاژ در خطوط انتقال از کمپانساتورهای دینامیک استفاده می‌شود تا افت ولتاژ در سیستم‌ها جلوگیری شود.

 

۵. سیستم‌های مانیتورینگ:

   – سیستم‌های مانیتورینگ مدام وضعیت خطوط را نظارت کرده و در صورت وقوع حوادث، اطلاعات را به تجهیزات حفاظت اطلاع می‌دهند.

 

۶. سوئیچ‌های خودکار:

   – سوئیچ‌های خودکار برای اتصال و قطع خودکار خطوط در شرایط خاص و زمان‌های اضطراری به کار می‌روند.

 

۷. کنترل‌ها و تجهیزات اتوماسیون:

   – تجهیزات اتوماسیون و کنترل‌ها برای مدیریت اتوماتیک خطوط و ایستگاه‌های انتقال برق به کار می‌روند.

 

 این تجهیزات حفاظت، ایمنی سیستم‌های برق را حفظ کرده و در مواجهه با حوادث احتمالی سریعاً و به صورت اتوماتیک عمل میکنند تا خسارت‌ها را به حداقل برسانند.

Figure1 0 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

تجهیزات کنترل و کمکی:

تجهیزات کنترل و کمکی در خطوط انتقال برق برای مدیریت و کنترل بهینه‌تر جریان برق، تنظیم ولتاژ، و مدیریت عملیات انتقال انرژی بین ایستگاه‌ها به کار می‌روند. این تجهیزات نقش مهمی در بهره‌وری و پایداری سیستم‌های برق ایفا می‌کنند. در زیر به شرح تجهیزات کنترل و کمکی در خطوط انتقال برق پرداخته شده است:

 

۱. سیستم‌های کنترل:

   – سیستم‌های کنترل مسئول مدیریت عملیات کلان شبکه برق و تنظیم پارامترهای مختلف مانند ولتاژ، جریان، و توان هستند.

   – این سیستم‌ها از الگوریتم‌ها و منطق کنترلی برای اجرای تصمیمات بهینه بر اساس وضعیت شبکه استفاده می‌کنند.

 

۲. واحدهای کنترل کننده فرکانس (Governor):

   – این واحدها به تنظیم سرعت ژنراتورها و ایستگاه‌ها بر اساس نیازهای فرکانس شبکه برق می‌پردازند تا تطابق تولید و مصرف انرژی حفظ شود.

 

۳. کنترل‌های ولتاژ (Voltage Control):

   – این کنترل‌ها واحدهای تنظیم ولتاژ در نقاط مختلف شبکه برق هستند تا ولتاژ در سطوح مشخصی نگهداری شود.

 

۴. تجهیزات کمکی:

   – ترمینال‌ها و تجهیزات کمکی برای مدیریت انرژی و تجهیزات در ایستگاه‌های انتقال به کار می‌روند.

   – این تجهیزات شامل کمپانساتورها، ترانسفورماتورهای کمکی، باتری‌ها و سیستم‌های UPS می‌شوند.

 

۵. سیستم‌های ارتباطات:

   – سیستم‌های ارتباطات برای انتقال داده‌ها و اطلاعات بین ایستگاه‌ها، زیرسیستم‌های کنترل، و تجهیزات مختلف استفاده می‌شوند.

 

۶. مانیتورینگ و ابزار دقیق:

   – دستگاه‌های مانیتورینگ و ابزار دقیق برای نظارت بر وضعیت تجهیزات، اندازه‌گیری جریان، ولتاژ و سایر پارامترهای سیستم به کار می‌روند.

 

۷. تجهیزات حفاظت و کنترل:

   – تجهیزات حفاظت و کنترل برای تشخیص و مقابله با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ و … مورد استفاده قرار می‌گیرند.

 

تمام این تجهیزات کنترل و کمکی با همکاری و هماهنگی با سیستم‌های حفاظتی و مانیتورینگ، ایمنی و بهره‌وری شبکه برق را افزایش می‌دهند. این تجهیزات بر اساس تکنولوژی‌های پیشرفته جهت بهبود عملکرد و اطمینان‌پذیری سیستم‌های برق به‌کار می‌روند.

 

 

خطوط انتقال برق:

خطوط انتقال برق از جمله اجزای حیاتی در سیستم‌های برق هستند که برای انتقال انرژی برق از منبع تولید به مصارف نهایی مورد استفاده قرار می‌گیرند. این خطوط اغلب به صورت یک سیستم شبکه‌ای و پیچیده، بر روی ایستاه‌ها و ستون‌ها قرار گرفته و نقل قدرت برق را امکان‌پذیر می‌سازند. در زیر به شرح اجزای مهم خطوط انتقال برق پرداخته شده است:

 

۱.انواع خطوط انتقال:

   – خطوط انتقال مستقیم (Overhead Lines) :خطوطی که بر روی ستون‌ها یا برج‌ها نصب شده و به وسیله سیم‌های هوایی منتقل می‌شود.

   – خطوط زیرزمینی (Underground Cables): خطوطی که در زیر زمین قرار دارند و انرژی برق را به وسیله کابل‌های زیرزمینی انتقال می‌دهند.

 

  1. ویژگی‌های خطوط انتقال:

   – ولتاژ عملیاتی: خطوط انتقال برق معمولاً با ولتاژ‌های بسیار بالا عمل می‌کنند تا از افت انرژی در مسافت‌های طولانی جلوگیری شود.

   – ساختار و مواد: ساختار خطوط انتقال از جنس موادی مانند فولاد، آلومینیوم، و یا مخلوطی از این مواد استفاده می‌کند.

EMS starts work on EUR 8 15 million Bistrica substation e1529062487986 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

تأثیر نیروگاه‌های تجدیدپذیر برهزینه‌های تجهیزات و خطوط انتقال برق

نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، نیروگاه بادی و هیدروالکتریک به طور قابل توجهی بر ساختار و هزینه‌های تجهیزات و خطوط انتقال برق تأثیر می‌گذارند. این تأثیرات می‌توانند در چند زمینه مهم مشاهده شوند:

 

۱. تولید برق ناپایدار:

   – نیروگاه‌های تجدیدپذیر بر پایه باد، خورشید یا آب، تولید برق ناپایداری دارند که به دلیل شرایط آب و هوایی متغیر و تغییرات در سطح تابش خورشید یا سرعت باد اتفاق می‌افتد.

   – این ناپایداری توسط سیستم‌های انتقال برق باید مدیریت شود تا پایداری و امنیت شبکه برق حفظ شود. که در مقاله گذشته با عنوان ” یک روش طراحی موثر برای نیروگاه های فتوولتائیک خورشیدی  ” راه حل آن ارائه شده است. به منظور تعدیل نوسانات تولید نیروگاه‌های تجدیدپذیر، فناوری‌های ذخیره‌سازی انرژی نیز در شبکه برق معرفی می‌شوند. این ذخیره‌سازی ممکن است هزینه‌های اضافی برای نصب و نگهداری داشته باشد.

 

  1. بهبود زیرساخت‌ها:

   – با توسعه نیروگاه‌های تجدیدپذیر، نیاز به بهبود و توسعه زیرساخت‌های انتقال برق نیز احساس می‌شود. این شامل افزایش ظرفیت و بهبود کیفیت خطوط انتقال و تجهیزات مرتبط است.

 

  1. کاهش افت ولتاژ:

   – نیروگاه‌های تجدیدپذیر مانند نیروگاه‌های خورشیدی و بادی در نواحی دور از مراکز مصرف نصب می‌شوند. این نیروگاه‌ها می‌توانند افت ولتاژ را در نواحی دورتر از مراکز تولید انرژی کاهش دهند. کاهش افت ولتاژ ممکن است نیاز به احداث خطوط انتقال با قطر بزرگتر را کاهش داده و هزینه‌های احداث و نگهداری را در خطوط انتقال برق کاهش دهد.

 

  1. کاهش ازدحام:

کاهش ازدحام در سیستم انتقال برق به معنای کاهش ترافیک و فشار در شبکه انتقال برق است و می‌تواند به عنوان یک مزیت مهم در نتیجه استفاده از نیروگاه‌های تجدیدپذیرمثل نیروگاه‌ خورشیدی و بادی در سیستم انرژی مدنظر قرار گیرد. برخی از جنبه‌های کاهش ازدحام کاهش افت شبکه بین نقاط تولید و مصرف است. این اقدام ممکن است باعث کاهش طول خطوط انتقال و ازدحام مرتبط با آنها شود. نیروگاه‌های تجدیدپذیر معمولاً از منابع محلی انرژی مانند نور خورشید در نیروگاه خورشیدی یا باد در نیروگاه بادی بهره می‌برند. استفاده از این منابع محلی نیاز به انتقال انرژی از مناطق دورتر را کاهش میدهد که می‌تواند هزینه‌های انتقال و از دست دادن انرژی را به حداقل برساند.

همچنین، استفاده از تکنولوژی‌های هوشمند و سیستم‌های اتوماسیون در اداره شبکه انتقال برق می‌تواند به بهبود بهره‌وری و مدیریت ازدحام در شبکه برق کمک کند. این تدابیر می‌توانند در کاهش هزینه‌های انتقال انرژی و افزایش پایداری سیستم تأثیرگذار باشند.

تأثیرات دقیق بر هزینه‌های تجهیزات و خطوط انتقال برق با توجه به مکان، نوع نیروگاه تجدیدپذیر، و شرایط محیطی متفاوت خواهد بود. این تأثیرات باید به عنوان یکی از عوامل در برنامه‌ریزی و طراحی سیستم انتقال برق در نظر گرفته شوند.

بنابراین، تأثیر نیروگاه‌های تجدیدپذیر بر هزینه‌ها و ساختار تجهیزات و خطوط انتقال برق نیازمند مدیریت دقیق، فناوری‌های پیشرفته و توسعه زیرساخت‌های مناسب است.

 

نویسنده: مهدی پارساوند

استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی به تبادل و خرید و فروش انرژی بین کشورها یا انجمن‌های اقتصادی مختلف اشاره دارد. انرژی ممکن است از منابع مختلفی مانند نفت، گاز، زغال‌سنگ، انرژی هسته‌ای، انرژی خورشیدی و باد به دست آید. در تجارت انرژی، کشورها سعی می‌کنند نیازهای انرژی خود را برطرف کنند، همزمان با بهره‌مندی از منابع داخلی و یا از طریق واردات انرژی از منابع خارجی.

تجارت انرژی می‌تواند بر اساس قراردادهای ثابت (مثل قراردادهای بلندمدت) یا معاملات کوتاه‌مدت (مثل خرید و فروش روزانه) انجام شود. در بسیاری از موارد، قراردادهای تجارت انرژی به صورت طولانی‌مدت منعقد می‌شوند تا اطمینان از تأمین پایدار انرژی برای طرفین باشد.

کشورهای صادرکننده انرژی می‌توانند منابع طبیعی خود را به دیگر کشورها صادر کرده و درآمد حاصل از این تجارت را به دست آورند. در عین حال، کشورهای وابسته به واردات انرژی ممکن است به دنبال تنوع منابع و کاهش وابستگی به یک منبع خاص باشند.

تاثیرات سیاسی، اقتصادی، و محیطی تجارت انرژی بسیار گسترده است و می‌تواند به تعیین نقشه قدرت و روابط بین‌المللی نیز تأثیر بگذارد. همچنین، مسائلی مانند تغییرات اقلیمی، امنیت انرژی، و توسعه پایدار نیز به طور مستقیم در این زمینه تأثیرگذارند.

تجارت انرژی مبتنی بر نیروگاه‌های تجدیدپذیر به تبادل و خرید و فروش انرژی، که از منابع تجدیدپذیر مانند انرژی خورشیدی، باد، هیدروپاور، گرمای زمین، و سایر منابع پاک تولید می‌شود، اشاره دارد که از منابعی مانند نور خورشید ( نیروگاه خورشیدی فتوولتائیک ) ، باد ( نیروگاه بادی متشکل از توربین های مگاواتی )، آب‌های سطحی و زیرزمینی ( نیروگاه های برق آبی )، و سایر منابع تجدیدپذیر بهره می‌برد. این منابع به دلیل اینکه قابلیت تجدید خود را دارند، تامین انرژی پایدار و دوستدار محیط زیست را فراهم می‌کنند.

توسعه نیروگاه‌های تجدیدپذیر می‌تواند اشتغال، توسعه فناوری، و رشد اقتصادی را تحت تأثیر قرار دهد. همچنین، این تجارت می‌تواند به کاهش وابستگی به منابع انرژی سنتی و کاهش هزینه‌های انرژی کمک کند.

استفاده از نیروگاه‌های تجدیدپذیر به معنای کاهش انتشار گازهای گلخانه‌ای و دیگر آلودگی‌های زیست محیطی است. این تجارت می‌تواند به حفاظت از محیط زیست و کاهش تأثیرات منفی تغییرات اقلیمی کمک کند.

 

تجارت انرژی می‌تواند منافع اقتصادی زیادی برای کشورها فراهم کند. در زیر به برخی از این منافع اشاره شده است:

  1. افزایش درآمد ناخالص داخلی (GDI): صادرات انرژی، می‌تواند منبع اصلی درآمد برای کشورها باشد. درآمدهای حاصل از تجارت انرژی می‌تواند به افزایش GDI و توسعه اقتصادی کشورها کمک کند.

 

  1. ایجاد فرصت‌های اشتغال: صنایع انرژی، از جمله نیروگاه‌ها و زیرساخت‌های مرتبط، ایجاد فرصت‌های شغلی زیادی را برای جمعیت فراهم می‌کنند. این شغل‌ها اغلب در زمینه‌های مهندسی، تکنولوژی، حمل و نقل، و خدمات پشتیبانی فراهم می‌شوند.

 

  1. توسعه زیرساخت‌ها: برای تولید، انتقال، و صادرات انرژی، زیرساخت‌های حمل و نقل و انتقال انرژی نیاز است. سرمایه‌گذاری در این زیرساخت‌ها می‌تواند به توسعه زیرساخت‌های کلان و تقویت اقتصاد منطقه انرژی‌زا کمک کند.

 

  1. تحقق استقلال انرژی: بسیاری از کشورها سعی دارند با داشتن منابع انرژی داخلی قوی، استقلال بیشتری در تأمین نیازهای انرژی خود داشته باشند. این استقلال انرژی می‌تواند زیرساخت‌های اقتصادی و امنیت ملی را تقویت کند.

 

  1. تبادل تخصص و فناوری: تجارت انرژی ممکن است باعث تبادل تخصص و فناوری در زمینه‌های نوین انرژی شود. این تبادل می‌تواند به توسعه فناوری‌های پایدار و بهبود بهره‌وری در زمینه انرژی منجر شود.

 

  1. تأمین امنیت انرژی: کشورهای وابسته به واردات انرژی ممکن است از تجارت انرژی برای تأمین امنیت انرژی استفاده کنند. تنوع منابع انرژی و دسترسی به منابع انرژی پایدار از طریق تجارت می‌تواند به کاهش ریسک وابستگی به یک منبع خاص کمک کند.
    تصویر تابلو سبز بورس 1402 araniroo 1 آرانیرو copy - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی، اگر به درستی مدیریت شود، می‌تواند به توسعه اقتصادی، اشتغالزایی، و امنیت انرژی یک کشور کمک کند. همچنین، این تجارت می‌تواند بستری برای همکاری بین المللی و تبادل تجاری فراهم کند.

برای توسعه تجارت انرژی از منابع تجدیدپذیر، لازم است زیرساخت‌های مناسبی در نظر گرفته شوند از جمله احداث نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، بادی، هیدروپاور، و گاهی حتی نیروگاه‌های انرژی دریاها (مانند نیروگاه‌های موج و جاری). این نیروگاه‌ها به تولید برق از منابع تجدیدپذیر کمک می‌کنند. به منظور مدیریت موثر تولید انرژی از منابع تجدیدپذیر، زیرساخت‌های ذخیره‌سازی انرژی نیز حائز اهمیت هستند. این زیرساخت‌ها شامل سیستم‌های باتری، انرژی ذخیره‌شده در شکل گاز، یا حتی ساختارهای ذخیره‌سازی گرما می‌شوند و از تعادل سیستم انرژی استفاده می‌کنند و در مدیریت نیاز به انرژی در ساعات اوج و کم‌بار تاثیرگذار هستند.

انرژی، به عنوان رگ حیات صنایع، خانه‌ها و اقتصادها، ارتباط زیادی با فرصت‌های فراوانی برای کارآفرینان دارد. درک جزئیات بازار انرژی و مقابله با چالش‌ها گام‌های اساسی برای یک ورود موفق به این حوزه می‌باشد.

ایران، با منابع غنی و تقاضای رو به رشد برای انرژی، زمینهٔ خوبی را برای تجارت انرژی فراهم می‌کند. دینامیک بازار، تحت تأثیر عوامل داخلی و بین‌المللی، نقش مهمی در شکل‌گیری فرصت‌ها دارد. شناخت بازیگران اصلی و آگاهی از روندهای بازار برای تصمیم‌گیری مطلوب بسیار حائز اهمیت است.

تأمین مجوزها و پروانه‌های لازم و اطمینان از رعایت مقررات زیست‌محیطی، جنبه حیاتی یک تجارت انرژی است. درک چارچوب حقوقی و گنجاندن آن در استراتژی کسب و کار گام مهمی است.

کسب و کارهای انرژی به سرمایه‌گذاری قابل توجهی نیاز دارند. کارآفرینان باید با دقت مناسب به بررسی منابع سرمایه‌ای بپردازند، گزینه‌های تأمین مالی را بررسی کنند و مدل مالی قوی ایجاد کنند تا بتوانند از نوسانات بازار جلوگیری کنند.

تکنولوژی نقش تحول‌آفرینی در حوزه انرژی دارد. کارآفرینان باید از پیشرفت‌های فناورانه بهره‌مند شوند تا به بهبود کارایی عملیاتی و ادغام فناوری‌های هوشمند برای تداوم شیوه‌های پایدار بپردازند.

شناسایی و کاهش ریسک‌ها جزء مؤلفه‌های اصلی یک تجارت انرژی موفق است. از ناپایداری‌های جغرافیایی تا نوسانات بازار، داشتن استراتژی‌های مدیریت ریسک قوی و برنامه‌های آمادگی ضروری است. شناخت و بهره‌مندی از سیاست‌های حمایتی دولت و انگیزه‌ها برای کارآفرینان انرژی، گام استراتژیکی است. کارآفرینان باید از این ایمنی‌ها، مانند معافیت مالیاتی و حمایت‌ها، بازدید کنند و بررسی کنند چگونه می‌توانند از آنها بهره‌مند شوند.

 

نتیجه‌گیری

در نتیجه، ورود به تجارت انرژی در ایران نیازمند یک رویکرد چندجانبه است. از فهم دینامیک بازار تا بهره‌گیری از نوآوری‌های فناورانه و ایجاد شراکت‌های استراتژیک، کارآفرینان باید در منظومه پیچیده‌ای حرکت کنند.

حضور در تجارت انرژی‌های تجدیدپذیر، به ویژه در زمینه نیروگاه خورشیدی در ایران، می‌تواند یک فرصت عالی برای سرمایه‌گذاری و توسعه کسب و کار باشد. قبل از ورود به این صنعت، تحقیقات دقیقی در مورد بازار انرژی تجدیدپذیر و نیروگاه‌ خورشیدی در ایران انجام دهید. ارزیابی نیازهای بازار، میزان تقاضا، قوانین و مقررات مرتبط با تجارت انرژی و دیگر عوامل بازاریابی می‌تواند کمک شایانی به شناخت بازار کند. آگاهی از قوانین و مقررات مرتبط با تولید و تجارت انرژی تجدیدپذیر در ایران بسیار حائز اهمیت است. بررسی مجوزها، حقوق ارتعاشی، تسهیلات دولتی و دیگر الزامات قانونی از جمله مسائلی هستند که باید به آنها توجه کنید.

   انتخاب مکان مناسب برای نصب نیروگاه خورشیدی از اهمیت بسیاری برخوردار است. بررسی شدت تشعشعات خورشیدی، نقشه‌های باد، دمای محل، ارتفاع و سایر شرایط جوی می‌تواند تأثیر زیادی در عملکرد نیروگاه داشته باشد.

   برای شروع یک پروژه نیروگاه خورشیدی، تأمین منابع مالی ضروری است. می‌توانید از تسهیلات بانکی، سرمایه‌گذاری‌های خصوصی یا حتی برنامه‌های حمایتی دولتی بهره‌مند شوید.

   برقراری همکاری با شرکت‌ها و متخصصان معتبر در زمینه نیروگاه‌ خورشیدی، از جمله مهندسان، مشاوران حقوقی و مدیران پروژه، به شما کمک می‌کند تا با چالش‌ها بهتر کنار بیایید و بهترین نتیجه را بگیرید.

   استفاده از تکنولوژی‌های به‌روز در نیروگاه خورشیدی شما را قادر به بهره‌مندی از کارایی بالاتر و هزینه‌های کمتر می‌کند.

   در تجارت انرژی، مسئولیت اجتماعی بازیگر کلیدی است. توجه به اثرات زیست‌محیطی، ایمنی کارگران، اشتغال محلی و سایر ابعاد مسئولیت اجتماعی می‌تواند تصمیم‌گیری‌های شما را بهبود بخشد.

   برنامه‌ریزی مناسب برای بازاریابی و فروش انرژی تولیدی از نیروگاه خورشیدی را انجام دهید. ایجاد روابط با خریداران محتمل، شرکت‌های انرژی، گروه‌های صنعتی و دیگر بازارهای هدف از این قسمت حائز اهمیت است.

   برنامه‌ریزی برای پایش و نگهداری نیروگاه خورشیدی به منظور حفظ عملکرد بهینه و کاهش هزینه‌ها بسیار ضروری است.

با رعایت این نکات و برنامه‌ریزی دقیق، حضور در تجارت انرژی تجدیدپذیر، به ویژه در زمینه نیروگاه‌ خورشیدی، می‌تواند فرصتی موفق‌ برای سرمایه‌گذاری و توسعه کسب و کار شما باشد.

ضمن اینکه با ورود به الگوی تجارت انرژی منطقه‌ای در قالب صادرات انرژی به کشورها یا مناطق همسایه میتوانید تجارت خود را بین المللی کنید. هچنین ما به عنوان شرکت آرا نیرو آمادگی داریم در این الگو، ارتباط شما را به طور گسترده در زمینه تجارت انرژی برقرار کنیم. این شامل صادرات و واردات انرژی به وسیله سیستم‌های انتقال برق بین‌المللی است. در دهه‌های اخیر، با توسعه انرژی‌های تجدیدپذیر، الگوهای تجارت انرژی نیز تغییر کرده است. کشورها و شرکت‌ها اکنون می‌توانند انرژی تولید شده از منابع تجدیدپذیر را تجارت کنند و به اشتراک بگذارند.

البته در دنیا اشکال دیگری از تجارت انرژی نیز مرسوم میباشد که نمونه آن تجارت انرژی همتا به همتا است و نیازمند شبکه هوشمند انرژی است که متاسفانه در ایران از ساختار شبکه هوشمند برق بی بهره هستیم.

Renewable Energy Business - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی همتا به همتا، یک مفهوم در زمینه انرژی است که به معنای تبادل مستقیم انرژی بین افراد یا واحدهای تولید انرژی می‌باشد، بدون واسطه‌های مرسوم چون شرکت‌های توزیع و انتقال انرژی. در این مدل، افراد یا واحدهای تولید انرژی مستقیماً با سایر افراد یا واحدها تبادل انرژی می‌کنند، بدون نیاز به شبکه‌های مرکزی یا شرکت‌های متعلق به دولت.

 

این رویکرد به منظور افزایش کارآیی، کاهش هزینه‌ها، و حمایت از تولید انرژی پایدار مطرح شده است. این سیستم می‌تواند باعث ایجاد یک بازار محلی برای انرژی شود که در آن تولید کنندگان و مصرف‌کنندگان می‌توانند به طور مستقیم با یکدیگر معامله کنند.

به عنوان مثال، یک فرد یا شرکتی که انرژی را از منابع تجدیدپذیر تولید می‌کند، می‌تواند این انرژی را به صورت مستقیم به همسایگان یا دیگر افراد در یک منطقه فرستاده و با آنها تبادل کند، بدون اینکه نیاز به انتقال انرژی از طریق شبکه‌های مرکزی باشد.

تجارت انرژی همتا به همتا به توسعه انرژی‌های تجدیدپذیر، افزایش بهره‌وری و کاهش اثرات منفی بر محیط زیست کمک می‌کند. این مدل همچنین می‌تواند اقتصاد محلی را تقویت کرده و به ایجاد یک سیستم انرژی مستقل و پایدار کمک کند.

جلوتر ماندن از منحنی فناوری به معنای تقویت مزیت رقابتی شماست. به همین دلیل است که ما بینش های نوآوری مبتنی بر داده در صنعت انرژی را به شما ارائه می دهیم. در پایان با امید به شکل گیری زیرساخت های شبکه هوشمند برق در ایران، 5 راه حل دستچین شده برای تجارت انرژی همتا به همتا را با ذکر مثال از چند شرکت و استارت آپ موفق جهانی ارائه میدهیم:

 

  1. Hygge یک بازار انرژی مستقل ایجاد می کند

سال تاسیس: 2017

مکان: تورنتو، کانادا

شریک: تجارت انرژی های تجدیدپذیر

استارتاپ کانادایی Hygge Energy یک بازار تجارت انرژی های تجدیدپذیر را ارائه می دهد که در سراسر جهان قابل دسترسی است. پلت فرم استارت آپ خدمات تراکنشی را هم در جلو و هم در پشت کنتور فعال می کند. اولی به شرکت های خدمات شهری اجازه می دهد تا از دارایی های توزیع شده خود با افزایش معاملات انرژی استفاده کنند، در حالی که دومی از رویکرد تجارت همتا به همتا استفاده می کند که مبتنی بر جامعه، بازار، و توسعه دهنده است. Hygge از طریق باکس سفارشی خود که ترکیبی از هوش مصنوعی AI، بلاکچین خصوصی و قدرت محاسباتی بالا است، به این مهم دست می یابد. این استارت‌آپ همچنین یک برنامه کاربردی تلفن هوشمند ارائه می‌کند که به تولیدکنندگان انرژی خصوصی اجازه می‌دهد تا تولید مازاد خود را به شرکت‌های برق بفروشند و انرژی کم‌هزینه را با همسایگان معامله کنند. این امر بازده سرمایه گذاری را برای نیروگاه های خصوصی افزایش می دهد و درآمد شرکت های برق را از طریق بهبود توان عملیاتی انرژی افزایش می دهد.

 

  1. Exodus یک برنامه تجارت همتا به همتا را ارائه می دهد

سال تاسیس: 2018

مکان: لیدز، انگلستان

شریک برای: اشتراک انرژی خانه به خانه

Exodus یک استارت‌آپ مستقر در بریتانیا است که ExodusHOME را توسعه می‌دهد، برنامه‌ای برای گوشی‌های هوشمند برای فعال کردن تجارت همتا به همتا در جوامع محلی. ExodusHOME به صاحبان خانه با واحدهای تولید برق محلی اجازه می دهد تا بر تولید، مصرف و سطوح ذخیره انرژی نظارت کنند. با این بینش، مصرف کنندگان می توانند انرژی مازاد خود را با سایر خریداران و مصرف کنندگان مبادله کنند و همچنین آن را به شبکه برق انتقال دهند. این بازار انرژی به نفع جامعه است و راه اندازی واحدهای تولید انرژی تجدیدپذیر محلی را از طریق مشوق های مالی ترویج می کند. بنابراین، منجر به توسعه راه‌حل‌های سخت‌افزاری در دسترس برای تولید انرژی‌های تجدیدپذیر خارج از شبکه می‌شود و انتقال انرژی را تسریع می‌کند. این همچنین بار هزینه های سرمایه ای را بر اپراتورهای شبکه و واحدهای تولید برق کاهش می دهد.

 

  1. سوئیچ تجارت انرژی خورشیدی را فعال می کند

سال تاسیس: 2018

مکان: کیپ تاون، آفریقای جنوبی

شریک: بازرگانی انرژی خورشیدی

استارت‌آپ انرژی سوئیچ انرژی مستقر در آفریقای جنوبی راه‌حل‌های هوشمند اندازه‌گیری و مدیریت انرژی را ارائه می‌دهد. مودم استارت‌آپ برق را در زمان واقعی مشاهده و کنترل می‌کند، تعویض لوازم خانگی را زمان‌بندی می‌کند و تجارت برق خورشیدی را فعال می‌کند. Switch Energy همچنین یک پلت فرم نرم افزاری را توسعه می دهد که شامل یک برنامه تلفن همراه و یک کنسول مدیریت برای تسهیل نظارت بر تولید و مصرف انرژی در زمان واقعی است. علاوه بر این، به کاربران اجازه می دهد تا انرژی را بین ساختمان های دارای تولید خورشیدی در شبکه های زیر متری مبادله کنند، بنابراین وابستگی خانوارها به شبکه اصلی کاهش می یابد.

 

  1. TroonDx تبادل برق غیرمتمرکز را توسعه می دهد

سال تاسیس: 2019

مکان: چنای، هند

شریک: تجارت غیرمتمرکز انرژی، بازار انرژی مبتنی بر بلاک چین

TroonDx یک استارت آپ هندی است که یک پلتفرم نرم افزاری مبتنی بر بلاک چین را فراهم می کند که زیرساخت های حیاتی را در شبکه انرژی برای تبادل نیرو به هم متصل می کند. پلتفرم تبادل برق غیرمتمرکز این استارت آپ، تراکنش های دیجیتالی امن را بدون وابستگی به یک نقطه مرکزی قدرت امکان پذیر می کند. این پلتفرم قراردادهای هوشمندی را ارائه می‌کند که اجرای تراکنش‌ها را خودکار می‌کند و شفافیت در توافق‌نامه‌های خریدار و فروشنده را افزایش می‌دهد و امکان معاملات بی‌درنگ را فراهم می‌کند. این باعث ایجاد چندین بازار انرژی ابرمحلی خودکفا با حداقل وابستگی به شبکه اصلی می شود. علاوه بر این، بلاک چین یک مسیر حسابرسی تغییرناپذیر از هر تراکنش انرژی را حفظ می کند که به حسابداری، حل و فصل صورتحساب و فرآیندهای حل اختلاف خودکار کمک می کند.

 

  1. nyway یک بازار انرژی های تجدیدپذیر ایجاد می کند

سال تاسیس: 2017

مکان: هامبورگ، آلمان

شریک: بازار انرژی های تجدیدپذیر

استارت‌آپ آلمانی به هر حال بازار انرژی‌های تجدیدپذیر را برای معاملات انرژی همتا به همتا ایجاد می‌کند. پلت فرم این استارت آپ به مصرف کنندگان انرژی این امکان را می دهد که فروشنده های خصوصی برق را انتخاب و انتخاب کنند. این به مشتریان اجازه می دهد تا انرژی پاک را با قیمت های پایین در محل خود خریداری کنند. enyway همچنین از فناوری مبتنی بر بلاک چین برای ثبت و حسابرسی این تراکنش ها استفاده می کند. علاوه بر این، بازار استارت آپ نیازی به نصب دستگاه یا زیرساخت جدیدی برای تامین انرژی خریداری شده به مشتریان خود ندارد. راه حل enyway تضمین می کند که انرژی کاملاً پایدار، شفاف و ایمن است، بنابراین از هرگونه وقفه در عرضه جلوگیری می کند.

 

نویسنده: مهدی پارساوند

 

 

فهرست مطالب

باتری LiFePO4 چیست؟

باتری LiFePO4 چگونه کار می کند؟

باتری های LiFePO4 برای چه مواردی استفاده می شوند؟

باتری LTO چیست؟

باتری LTO چگونه کار می کند؟

باتری های LTO برای چه استفاده می شوند؟

تفاوت بین باتری LTO و LiFePO4

باتری LTO در مقابل  LiFePO4 – مزایا و معایب

کدام بهتر است – باتری LTO در مقابل LiFePO4

تصمیم نهایی

 

 

هر دو باتری LTO و LiFePO4 لیتیومی هستند، بنابراین آیا آنها مشابه هستند یا تفاوت هایی دارند؟ تفاوت های زیادی وجود دارد. این مقاله تفاوت بین شان و مزایا و معایب باتری LTO و LiFePO4 و اینکه کدام یک ارزش خرید بیشتری دارد را توضیح می دهد.

Screen Shot 2022 03 22 at 5.14.13 PM - مزایا و معایب باتری LTO در مقابل LiFePO4

باطری

باتری LiFePO4 چیست؟

LiFePO4 نوعی باتری مبتنی بر لیتیوم است و نام کامل آن فسفات آهن لیتیوم (لیتیوم آهن فسفات) است. باتری LiFePO4 به دلیل چرخه عمیق خود مشهور است، ولتاژ آن 3.2 ولت است، LiFePO4 با چگالی بالا، چگالی انرژی بالاتر از 250 وات ساعت در لیتر، انرژی ویژه بیشتر از 130 وات ساعت / کیلوگرم مشخص می شود، بنابراین، باتری های LiFePO4 نسبتا سبک هستند و به طور گسترده در حمل و نقل استفاده می شوند. وسایل نقلیه، دستگاه های قابل حمل، پشتیبان باتری خانه و غیره.

 

باتری LiFePO4 چگونه کار می کند؟

هر باتری دارای دو جمع کننده جریان، یک آند و یک کاتد، و همچنین یک جداکننده، الکترولیت و مایع است. هر الکترود (آند و کاتد) حاوی یون لیتیوم است. الکترولیت به عنوان یک محیط عمل میکند که از طریق آن یون های لیتیوم با بار مثبت توسط جداکننده از آند به کاتد منتقل می شوند.

هر زمان که یون های لیتیوم مهاجرت می کنند، الکترون ها را در آند آزاد می کنند. این یک ولتاژ در کلکتور مثبت تولید می کند. هنگامی که دستگاهی را در پریز برق قرار می دهید، الکتریسیته از کلکتور مثبت به دستگاه شارژ شده و به کلکتور منفی برمی گردد. یون های لیتیوم در طول شارژ و تخلیه بین الکترودهای مثبت و منفی به عقب و جلو مهاجرت می کنند.

 

باتری های LiFePO4 برای چه مواردی استفاده می شوند؟

  • با در نظر گرفتن قابلیت‌های باتری‌های LTO در مقابل LiFePO4، LiFePO4 برنده می‌شود زیرا قابل حمل‌تر است و عمر چرخه‌ای طولانی‌تری دارد. اینها آنها را برای قایق های کوچک و موتورهای کایاک عالی می کند.

 

  • باتری های LiFePO4 جایگزین باتری های اسید سرب و NiMh در تجهیزات ارتباطات رادیویی، و جایگزین بسیاری از کاربری های شما می شوند.
  • در دوچرخه های الکترونیکی و اسکوترهای الکترونیکی نیز استفاده می شود.
  • در مناطق بدون برق، باتری های LiFePO4 با اینورتر و مبدل می توانند چندین بار الکتریکی را تامین کنند. می توانند برق لوازم خانگی را در زمان قطع برق تامین کند.

 

باتری LTO چیست؟

لیتیوم-تیتانات-اکسید(LTO)  به عنوان یک ماده الکترود منفی برای باتری های لیتیوم-یون جدید، به دلیل خواص بسیار عالی خود توجه ها را به خود جلب کرده است. باتری LTO نوعی تیتانات لیتیوم است که به عنوان ماده الکترود منفی باتری لیتیوم یونی استفاده می شود و می تواند با مواد الکترود مثبت مانند منگنات لیتیوم، مواد سه تایی یا فسفات آهن لیتیوم ترکیب شود تا یک لیتیوم 2.4 ولت یا 1.9 ولت ایجاد کند. باتری ثانویه یونی باتری LTO دارای بالاترین انرژی ویژه 90 وات ساعت بر کیلوگرم است، اما از مزیت ایمنی بالا برخوردار است. این باتری سریعتر شارژ می شود زیرا آند فضای بیشتری برای جذب جریان دارد.

 

باتری LTO چگونه کار می کند؟

باتری LTO مانند باتری لیتیوم یونی از یک آند، یک کاتد و یک الکترود تشکیل شده است. هر یک از این سه جزء در تامین انرژی گجت نقش دارند. فرآیند یون های لیتیوم از الکترود مثبت به ماده ساختار اسپینل لیتیوم تیتانات الکترود منفی در حال شارژ شدن است، در حالی که تخلیه حرکت در جهت مخالف، عقب و جلو است و شارژ و دشارژ باتری و منبع تغذیه به سمت بار را کامل می کند.

 

باتری های LTO برای چه استفاده می شوند؟

باتری لیتیوم تیتانیوم دارای کاربردهای عملی در صنعت و تنظیمات پزشکی متعدد است. کاربردهای دیگر آن عبارتند از:

  • ایستگاه های پایه ارتباطی، بیمارستان ها، امور مالی، مخابرات و سیستم های قدرت پشتیبان حیاتی سیستم.
  • در برنامه های حمل و نقل مانند وسایل نقلیه الکتریکی و ایستگاه های شارژ، اتوبوس های توریستی، قایق های تفریحی عملکرد خوبی دارد.
  • علاوه بر این، مصرف‌کنندگان می‌توانند از این باتری‌های لیتیومی در طیف گسترده‌ای از اسباب‌بازی‌ها، اسباب‌بازی‌ها، هدفون‌های بی‌سیم، لوازم خانگی کوچک و بزرگ، ابزارهای برقی دستی و خودروهای الکتریکی استفاده کنند.

 

تفاوت بین باتری LTO و LiFePO4

ما به طور خاص باتری LTO و LiFePO4 را از پنج نقطه مهم انتخاب باتری مقایسه می کنیم، بنابراین بیایید تفاوت های اصلی باتری LTO و LiFePO4 را بررسی کنیم:

 

تفاوت سطح انرژی در LTO در مقابل LiFePO4

باتری های LTO و LiFePO4 از نظر انرژی بسیار متفاوت هستند. توان ویژه باتری LiFePO4 1400-2400 وات بر کیلوگرم و باتری لیتیوم تیتانات 750 وات بر کیلوگرم است.

علاوه بر انرژی ویژه در مقایسه LTO در مقابل LiFePO4، باتری لیتیوم آهن فسفات بهتر است. آنها برای برنامه های کاربردی با سیستم های تعبیه شده یا زمان های اجرا طولانی دوام زیادی دارند.

 

اکسید لیتیوم تیتانات به دلیل افزایش چگالی انرژی به ویژه در شرایط دمای بالا ناپایدار است. چرخه عمر باتری LTO بیش از 4000 چرخه است، اما میزان خود تخلیه آن 2-10٪ در ماه است، نرخ خود تخلیه باتری LiFePO4 تنها 1-3.5٪ است.

 

ذخیره سازی طولانی مدت در LTO در مقابل LiFePO4

هنگام تصمیم گیری در مورد شیمی برای ذخیره باتری، بسیار مهم است که باتری را پیدا کنید که بتواند شارژ خود را برای مدت زمان طولانی حفظ کند. در عوض، پس از بیش از یک سال استفاده، باتری همچنان باید تقریباً به خوبی زمانی که نو بود شارژ شود.

بنابراین، در باتری های LTO در مقابل LiFePO4، چه فسفات آهن لیتیوم یا لیتیوم تیتانیوم را انتخاب کنید، ماده ای دریافت خواهید کرد که می تواند شارژ شما را برای مدت طولانی حفظ کند. لیتیوم فسفات آهن 350 روز ماندگاری دارد. لیتیوم تیتانیوم 300 روز دوام می آورد. از منظر نرخ خود تخلیه، باتری LiFePO4 نیازی به شارژ مکرر ندارد.

 

تفاوت هزینه در باتری LTO در مقابل LiFePO4

وقتی قیمت باتری های LTO را در مقابل LiFePO4 مقایسه می کنیم، LiFePO4 برتر است، در عین اینکه ویژگی های برتری نسبت به سایر باتری ها دارد با قیمتی مناسب تر در بازارهای جهانی عرضه میشود و در مقایسه با باتری LTO، مقرون به صرفه و کارآمد است. به طور قابل توجهی، باتری LTO دارای برچسب قیمت بالاتری است که آن را در نقطه ضعف قرار می دهد.

 

تفاوت وزن در LTO در مقابل LiFePO4

اگر به باتری‌های  LTO در مقابل  LiFePO4 در کنار هم نگاه کنیم، مشخص می‌شود که باتری‌های فسفات آهن لیتیوم قابل حمل‌تر و سبک‌تر هستند، به دلیل چگالی انرژی LTO در مقابل LiFePO4، فسفات آهن لیتیوم 220-250 Wh/L است در حالی که باتری LTO فقط 130Wh/L وزن آن 50 درصد سبک تر از باتری های لیتیوم تیتانات است. بنابراین، اگر یک باتری قابل حمل می خواهید، روی LiFePO4 سرمایه گذاری کنید زیرا طراحی سبک وزن دارد.

کدام بهتر است ؟ باتری LTO در مقابل LiFePO4

بیایید در مورد باتری LTO در مقابل LiFePO4 بحث کنیم که از نظر ایمنی، طبیعت دوستدار محیط زیست و موارد دیگر کدام بهتر است، بهترین گزینه از نظر همه ویژگی ها کدام است؟ پس بیایید با مقایسه هر دوی آنها متوجه شویم.

از منظر ایمنی، لیتیوم تیتانات به دلیل پتانسیل تعادل بالایی که دارد از ایمنی خوبی برخوردار است و روی الکترود منفی دندریت لیتیوم تشکیل نمی دهد. عملکرد چرخه خوب است، تعداد روزهای ماندگاری شارژ بیشتر از باتری LiFePO4 است و کار در محیط دمای پایین تحت تأثیر قرار نمیگیرد. این به ویژه برای اتوبوس های انرژی جدید و تجهیزات ذخیره انرژی در مقیاس بزرگ مناسب است.

اما در LTO در مقابل LiFePO4، رقابت LTO دشوار است، چگالی انرژی کم و هزینه بسیار بالا است، قوام نسبتا ضعیف است، و سهم بازار هنوز کوچک است.

تصمیم نهایی

در پایان مقایسه بین باتری های LTO و LiFePO4، هیچ باتری از همه نظر بی نقص نیست، هر نوع باتری به طور مداوم در حال بهینه سازی است. در حال حاضر فسفات آهن لیتیوم بیشترین استفاده را دارد. از نظر عملکرد باتری و تجربه کاربر، باتری فسفات آهن لیتیوم (LiFePO4) به دلیل چگالی انرژی بالا، فاقد اثر باتری تنبل(Memory effect)، عملکرد عالی در دمای بالا و مدیریت هزینه بهتر، همیشه باتری اصلی بوده است.

 

باتری سلول چگونه کار میکند؟

.

باتری ها برای قرن ها مورد استفاده قرار گرفته اند و اثبات باستان شناسی نشان می دهد که سلول های گالوانیک ممکن است 2000 سال پیش استفاده شوند. باتری سلول مرطوب، همچنین به عنوان “باتری با سیل” شناخته می شود، یکی از اولین نوع باتری های امروز است که برای استفاده معمول ایجاد می شود. تاریخچه آن به سال 1836 بازمی گردد، زمانی که جان فردریک دانیل اولین باتری سلول خورشید را ساخت.

صرف نظر از این واقعیت که باتری ساخته شده توسط جان Frederic Daniell برای انتقال بسیار ظریف و خطرناک بود، برای آن زمان مناسب بود. از آن به بعد، مردم با کمک مهارت و تکنولوژی خود باتری سلول های مرطوب را ارتقا دادند و امروز آنها در حال گذراندن تمام آزمون ها و معیارهای مورد نیاز هستند.

..

برای اولین بار در مورد مکانیسم کار خود بحث کنید. پایانه های باتری با بار متصل می شوند و واکنش شیمیایی بین الکترولیت، اکسید سرب و سرب ایجاد می کنند. این واکنش شیمیایی موجب جریان برق به بار از طریق پایانه ها می شود که بیشتر باعث حذف اسید سولفوریک از محلول شده است که به صفحات تقویت شده است. در نقطه زمانی که باتری با جریان معکوس شارژ می شود، اتصال بین اسید سولفوریک و صفحات شکسته می شود و اسید به محلول باز می گردد، به این وسیله فرصتی برای عرضه بیشتر برای مصرف آینده فراهم می شود.

.

انواع باتری سلول مرطوب

.

سلول های مرطوب، همانند سلول های خشک، به دو طبقه بندی اساسی تقسیم می شوند:

الف) اولیه (غیر قابل شارژ): همانطور که از نام آن یاد می شود، در نوع باتری اولیه، واکنش شیمیایی تولید الکتریسیته قابل برگشت نیست، بنابراین پس از خاموش شدن آن هرگز نمی تواند دوباره شارژ شود.

ب) ثانویه (قابل شارژ): با این حال، در نوع باتری های ثانویه، این واکنش شیمیایی می تواند معکوس شود و بنابراین باتری می تواند بارهای “n” را بپیماید.

 

استفاده و تعویض

.

پس از استفاده مداوم در طول سال، یک باتری سلول مرطوب می تواند قدرت کافی برای بار متصل به آن را ندهد. این اتفاق می افتد زیرا با استفاده از مواد پلاستیکی فرسایش می یابد و در نتیجه باعث کاهش اندازه آنها می شود. مواد تخریب شده از صفحات باتری تنظیم می شود و حتی صفحات کوچکتر را از بین می برد و به طور کامل باتری را از بین می برند.