نوشته‌ها

چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

حذف ارز نیمایی برای پنل و اینورتر خورشیدی و همچنین خروج کالاهای مرتبط با نیروگاه‌های خورشیدی از فهرست 750 قلم کالای قابل واردات با ارز نیمایی، چالش‌های متعددی را برای این صنعت در ایران به وجود خواهد آورد.

برخی از این چالش‌ها عبارتند از:
* افزایش قیمت تجهیزات: با حذف ارز نیمایی، قیمت پنل‌ها و اینورترهای خورشیدی به طور قابل توجهی افزایش یافته است. این امر باعث شده تا سرمایه‌گذاری در احداث نیروگاه‌های خورشیدی از صرفه اقتصادی خارج شده و از تمایل بخش خصوصی برای سرمایه‌گذاری در این حوزه کاسته شود.

* کاهش تولید: افزایش قیمت تجهیزات، به طور مستقیم در روند تولید و احداث نیروگاه‌های خورشیدی تاثیر منفی خواهد گذاشت. از آنجایی که قیمت تمام شده تولید برق خورشیدی افزایش میابد، تمایل برای احداث نیروگاه‌های جدید کاهش پیدا خواهد کرد.

* مشکلات تامین تجهیزات: در صورتیکه واردات پنل و اینورتر خورشیدی با ارز نیمایی امکان‌پذیر نباشد،  یافتن و تامین این تجهیزات از طریق واردات با ارز آزاد با دشواری‌های زیادی همراه خواهد شد. این امر علاوه بر افزایش قیمت، به طولانی شدن زمان احداث نیروگاه‌های خورشیدی نیز منجر می‌شود.
با وجود تاکید بر توسعه انرژی‌های تجدیدپذیر،  میبایست حمایت‌های کافی از سوی دولت برای جبران چالش‌های پیش روی این صنعت صورت گیرد. نبود سیاست‌های تشویقی و عدم ارائه تسهیلات مناسب به سرمایه‌گذاران، از جمله موانعی است که بر سر راه توسعه این صنعت در ایران قرار دارد.
علاوه بر این چالش‌ها، موارد زیر نیز می‌توانند به عنوان پیامدهای حذف ارز نیمایی برای صنعت  خورشیدی ایران در نظر گرفته شوند:

* افزایش وابستگی به سوخت‌های فسیلی: با افزایش هزینه تولید برق خورشیدی، تمایل به استفاده از سوخت‌های فسیلی افزایش خواهد یافت. این امر نه تنها مغایر با اهداف توسعه پایدار و حفظ محیط زیست است،  بلکه به تشدید آلودگی هوا و افزایش آلاینده‌های زیست‌محیطی نیز منجر می‌شود.

* از دست رفتن فرصت‌های شغلی: صنعت  خورشیدی در ایران پتانسیل ایجاد اشتغال قابل توجهی را دارد. با توقف روند توسعه این صنعت،  فرصت‌های شغلی زیادی از بین خواهد رفت.

* کاهش تنوع در منابع تولید برق:  حذف ارز نیمایی برای  خورشیدی  تنوع در منابع تولید برق را کاهش خواهد داد و وابستگی کشور به یک منبع خاص انرژی را افزایش می‌دهد. این امر می‌تواند امنیت انرژی کشور را به خطر انداخته و در زمان‌های بحران،  مشکلات عدیده‌ای را به وجود آورد. ضمن اینکه مشکل ناترازی برق کشور قابل حل نخواهد بود مگر با رویکرد حمایتی از نیروگاه های خورشیدی‌.
در نهایت،  لازم است به این نکته توجه شود که حذف ارز نیمایی برای تجهیزات خورشیدی  تنها به ضرر این صنعت نیست،  بلکه پیامدهای منفی آن دامنه‌ گسترده‌تری را شامل می‌شود و می‌تواند به طور کلی بر روند توسعه پایدار ایران تاثیر منفی بگذارد.

 

energy renewable solar panel transmission lines - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

راهکارهای پیشنهادی:

*حفظ ارز نیمایی و البته بهتر از آن تخصیص ارز ترجیحی به تجهیزات نیروگاه خورشیدی؛
نجات کشور از ریسک خاموشی سراسری، به حمایت‌های دولتی از صنعت فتوولتائیک وابسته است. این حمایت ها می‌تواند احداث نیروگاه های خورشیدی در ایران را تسریع کند و علاوه بر حل مشکل ناترازی برق و افزایش قابلیت اطمینان شبکه توزیع برق کشور به اقتصاد کشور کمک شایانی کرده و سبب ارز آوری برای کشور باشد.

* اعطای  تسهیلات و حمایت‌های مالی به سرمایه‌گذاران در این حوزه:  ارائه وام‌های کم‌بهره،  تخفیف در مالیات و عوارض گمرکی،  و همچنین ارائه یارانه‌های حمایتی از جمله اقداماتی هستند که می‌توانند برای جبران افزایش قیمت تجهیزات و تشویق سرمایه‌گذاری در این صنعت  مفید باشند.

* تدوین قوانین و مقررات حمایتی:  برقراری قوانین و مقررات شفاف و  حمایتی  می‌تواند  به  ایجاد  محیطی  مناسب برای  توسعه  این  صنعت  در  ایران  کمک  کند.

* تخصیص خطوط اعتباری: می‌تواند با اختصاص خطوط اعتباری کم‌بهره به سرمایه‌گذاران در این حوزه،  زمینه را برای احداث و توسعه نیروگاه‌های خورشیدی فراهم کرد.

* جذب  سرمایه‌گذاری  بخش  خصوصی  در  حوزه  خورشیدی :  دولت  می‌تواند  با  ایجاد  فضایی  مناسب  برای  فعالیت  بخش  خصوصی  و  ارائه  تسهیلات  لازم،  زمینه  را  برای  جذب  سرمایه‌گذاری  بیشتر  در  این  حوزه  فراهم  کند.

* توسعه  مشارکت‌های  عمومی-خصوصی:  توسعه  مشارکت‌های  عمومی-خصوصی  می‌تواند  به  اجرای  پروژه‌های  بزرگ  خورشیدی  و  کاهش  هزینه‌های  احداث  این  نیروگاه‌ها  کمک  کند.

istockphoto 1345681583 612x612 1 - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

با  اجرای  این  راهکارها  می‌توان  امید  داشت  که  چالش‌های  موجود  در  مسیر  توسعه  صنعت  خورشیدی  در  ایران  تا  حد  زیادی  مرتفع  شود  و  این  صنعت  به  عنوان  یکی  از  منابع  اصلی  تولید  برق  در  کشور  نقش  آفرینی  کند.
علاوه بر موارد ذکر شده، موارد زیر نیز می‌توانند به عنوان راهکارهای تکمیلی برای مقابله با چالش‌های نیروگاه‌های خورشیدی در ایران در نظر گرفته شوند:

* تسهیل صدور مجوزها:  بسیاری از سرمایه‌گذاران در این حوزه با بروکراسی پیچیده و زمان‌بر صدور مجوزها مواجه هستند.  تسهیل و streamlined کردن این فرآیند می‌تواند به تسریع روند احداث نیروگاه‌های خورشیدی و کاهش هزینه‌های سرمایه‌گذاری کمک کند.

* آموزش  نیروی  انسانی  متخصص:  توسعه  برنامه‌های  آموزشی  در  دانشگاه‌ها  و  مراکز  آموزشی  می‌تواند  به  تربیت  نیروی  انسانی  متخصص  در  زمینه  خورشیدی  و  ایجاد  زیربنای  لازم  برای  رشد  و  توسعه  این  صنعت  در  کشور  کمک  کند.

* استفاده  از  ظرفیت  صادرات:  ایران  از  نظر  پتانسیل  خورشیدی  یکی  از  کشورهای  برخوردار  در  منطقه  است.  با  توسعه  این  صنعت  و  کاهش  هزینه‌های  تولید،  می‌توان  از  ظرفیت  صادرات  برق  خورشیدی  به  کشورهای  همسایه  نیز  استفاده  کرد.

در  نهایت،  لازم  است  به  این  نکته  توجه  شود  که  توسعه  صنعت  خورشیدی  در  ایران  نیازمند  یک  عزم  ملی  و  همکاری  همه  دستگاه‌ها  و  نهادهای  ذیربط  است.  با  اتخاذ  سیاست‌های  مناسب  و  حمایت  از  این  صنعت،  می‌توان  امید  داشت  که  ایران  به  یکی  از  پیشگامان  منطقه  در  زمینه  استفاده  از  انرژی  خورشیدی  تبدیل  شود.

نویسنده: دپارتمان خبری آرا نیرو

محققان دپارتمان شیمی UNC-Chapel Hill از نیمه هادی ها برای برداشت و تبدیل انرژی خورشید به ترکیبات پر انرژی استفاده می کنند که پتانسیل تولید سوخت های سازگار با محیط زیست را دارند.

در مقاله منتشر شده در ACS Energy Letters، “خاتمه متیل (Methyl) سیلیکون نوع p باعث کاهش انتخابی CO2 فوتوالکتروشیمیایی توسط یک کاتالیزور مولکولی روتنیم (ruthenium) می شود.” محققان توضیح می دهند که چگونه از فرآیندی به نام خاتمه متیل (Methyl termination) استفاده می کنند که از یک ترکیب آلی ساده از یک کربن استفاده می کند. اتم به سه اتم هیدروژن پیوند می زند تا سطح سیلیکون را که یک جزء ضروری در سلول های خورشیدی است، اصلاح کند تا عملکرد آن در تبدیل دی‌اکسید کربن به مونوکسید کربن با استفاده از نور خورشید بهبود یابد.

این تحقیق با فرآیندی به نام فتوسنتز مصنوعی انجام شد که نحوه عملکرد گیاهان در استفاده از نور خورشید را برای تبدیل دی اکسید کربن به مولکول های غنی از انرژی تقلید می کند.

دی اکسید کربن یکی از گازهای گلخانه ای اصلی است که به تغییرات آب و هوایی منجر می شود. با تبدیل آن به مونوکسید کربن، که یک گاز گلخانه ای کمتر مضر و یک بلوک ساختمانی برای سوخت های پیچیده تر است، محققان گفتند که به طور بالقوه می توانند اثرات زیست محیطی انتشار دی اکسید کربن را کاهش دهند.

گابریلا بین، نویسنده اول مقاله و دکترا، می‌گوید: «یکی از چالش‌های انرژی خورشیدی این است که همیشه زمانی که ما بیشترین نیاز را به آن داریم، در دسترس نیست. چالش دیگر این است که الکتریسیته تجدیدپذیر، مانند برق ناشی از صفحات خورشیدی، مستقیماً مواد خام مورد نیاز برای ساخت مواد شیمیایی را تامین نمی کند. هدف ما ذخیره انرژی خورشیدی به شکل سوخت های مایع است که میتواند بعداً مورد استفاده قرار گیرد.
محققان از یک کاتالیزور مولکولی روتنیم با یک تکه سیلیکون اصلاح شده شیمیایی به نام فوتوالکترود استفاده کردند که با استفاده از انرژی نور بدون تولید محصولات جانبی ناخواسته مانند گاز هیدروژن، تبدیل دی اکسید کربن به مونوکسید کربن را تسهیل کرد و این فرآیند را برای تبدیل کربن دی اکسید به مواد دیگر کارآمدتر کرد.

جیلیان دمپسی، یکی از نویسندگان مقاله و پروفسور بومن و گوردون گری، گفت که وقتی آزمایش‌هایی را در محلولی پر از دی اکسید کربن انجام دادند، متوجه شدند که می‌توانند مونوکسید کربن را با بازده 87 درصد تولید کنند، به این معنی که سیستم از فوتوالکترودهای سیلیکونی اصلاح شده قابل مقایسه یا بهتر از سیستم هایی هستند که از الکترودهای فلزی سنتی مانند طلا یا پلاتین استفاده می کنند.

علاوه بر این، فوتوالکترود سیلیکونی 460 میلی ولت انرژی الکتریکی کمتری برای تولید واکنش مصرف کرد. دمپسی این را مهم خواند زیرا این فرآیند از برداشت مستقیم نور برای تکمیل یا جبران انرژی لازم برای هدایت واکنش شیمیایی که دی اکسید کربن را به مونوکسید کربن تبدیل می کند، استفاده می کند.

دمپسی می‌گوید: «چیز جالب این است که معمولاً سطوح سیلیکونی به جای مونوکسید کربن، گاز هیدروژن می‌سازند، که تولید آن از دی‌اکسید کربن را سخت‌تر می‌کند.

“با استفاده از این سطح سیلیکونی خاص با پایانه متیل، ما توانستیم از این مشکل جلوگیری کنیم. اصلاح سطح سیلیکون، فرآیند تبدیل CO2 به مونوکسید کربن را در آینده کارآمدتر و انتخابی تر می کند، که می تواند برای ساخت سوخت های مایع از نور خورشید در محیط بسیار مفید باشد.”
نویسنده: دپارتمان خبری آرا نیرو
منبع : University of North Carolina at Chapel Hill

شرکت Longi پنل خورشیدی ضد گرد و غبار را برای بخش C&I راه اندازی کرد

سازنده چینی خورشیدی Longi یک ماژول جدید “ضد گرد و غبار” را برای بازار تجاری و صنعتی (C&I) در استرالیا توسعه داده است. قاب به صورت هم سطح روی شیشه در ساید کوتاه قرار می گیرد و امکان می دهد که آب در لبه های فریم ماژول جمع نشود.

شرکت Longi ماژول جدید Hi-MO X6 Guardian C&I خود را در کنفرانس انرژی هوشمند سیدنی معرفی کرده است.

ماژول بازار استرالیا به آب اجازه می دهد تا آزادانه از سطح آن خارج شود، بنابراین بقایای گرد و غبار در اطراف لبه هایی که قاب به شیشه می رسد جمع نمی شود. با این حال، ماژول همچنان دارای قاب بندی سنتی در طرف های بلندتر خود است، بنابراین ماژول ها باید به جای افقی، بر روی یک محور عمودی نصب شوند.

photo 2024 03 12 18 56 03 - شرکت Longi پنل خورشیدی ضد گرد و غبار را برای بخش C&I راه اندازی کرد

Image: pv magazine

این ماژول از فناوری تماس برگشتی (BC) استفاده می‌کند که Longi محدوده استرالیایی خود را در سال 2023 به طور کامل به آن تغییر داد. فناوری BC مزایایی برای کارایی پنل خورشیدی دارد، زیرا تلفات سایه را کاهش می‌دهد.

حداکثر توان خروجی ماژول گاردین 590 وات است. این ماژول بزرگ است، ابعاد آن 2281 میلی‌متر در 1134 میلی‌متر است و وزن آن 27.2 کیلوگرم است.

این شرکت قصد دارد یک پنل خورشیدی برای نیروگاه‌ خورشیدی خانگی با همان مفهوم قاب خود تمیز شونده را در سه ماهه سوم یا چهارم سال جاری با ابعاد حدود 1722 میلی متر در 1134 میلی متر عرضه کند.

از نظر هزینه، شرکت اعلام کرد که Hi-MO X6 Guardian حدود 0.30 دلار استرالیا (0.20 دلار) در هر وات عرضه می شود.

در اواخر این ماه، Longi همچنین یک ماژول جدید Ultra Black را با توان خروجی 440 وات به بازار نیروگاه خورشیدی خانگی استرالیا عرضه خواهد کرد. یکی از ویژگی پنل‌های Ultra Black این است که ضد اثر انگشت است و کار را برای نصب کنندگان آسان تر می کند.
شرکت Longi تنها شرکت در بازار استرالیا نیست که ماژول ضد گرد و غبار بر اساس طراحی قاب پایین‌تر دارد. DAH Solar ماژول تمام صفحه خود را از اکتبر 2023 از طریق عمده‌فروش Austra Energy در کشور عرضه می‌کند. ماژول DAH Full Screen برای جلوگیری از تجمع گرد و غبار و آب، تمام لبه های قاب خود را پایین آورده است.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله PV

نقش فیوزها در نیروگاه خورشیدی فتوولتائیک
فیوزها در نیروگاه‌های خورشیدی فتوولتائیک (PV) نقشی حیاتی برای حفاظت از تجهیزات و ایمنی افراد ایفا می‌کنند. وظایف اصلی فیوزها در این سامانه‌ها عبارتند از:

1. حفاظت از پنل‌های خورشیدی:
در صورت اتصال کوتاه یا اضافه بار در پنل‌های خورشیدی، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن پنل‌ها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد پنل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

2. حفاظت از کابل‌ها:
در صورت اتصال کوتاه یا اضافه بار در کابل‌های رابط بین پنل‌ها و سایر تجهیزات، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن کابل‌ها جلوگیری شود.
فیوزها با قطع جریان، از ذوب شدن کابل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

3. حفاظت از اینورترها:
در صورت اتصال کوتاه یا اضافه بار در اینورترها، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن اینورترها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد اینورترها و بروز آتش‌سوزی جلوگیری می‌کنند.

4. حفاظت از جان افراد:
در صورت بروز نقص الکتریکی در سامانه PV، فیوزها جریان را قطع می‌کنند تا از برق گرفتگی افراد جلوگیری شود.

انواع فیوزهای مورد استفاده در نیروگاه‌های خورشیدی:
فیوزهای DC: این نوع فیوزها برای حفاظت از مدارهای DC در سامانه‌های PV استفاده می‌شوند.
فیوزهای AC: این نوع فیوزها برای حفاظت از مدارهای AC در سامانه‌های PV استفاده می‌شوند.
نکات مهم در انتخاب فیوز برای نیروگاه‌های خورشیدی:
جریان نامی: فیوز باید با توجه به جریان نامی مدار انتخاب شود.
ولتاژ نامی: فیوز باید با توجه به ولتاژ نامی مدار انتخاب شود.
ظرفیت قطع: فیوز باید با توجه به ظرفیت قطع مورد نیاز سامانه PV انتخاب شود.

نتیجه:
فیوزها جزئی ضروری از سامانه‌های PV هستند و نقش مهمی در حفاظت از تجهیزات و افراد ایفا می‌کنند. انتخاب و نصب صحیح فیوزها می‌تواند از بروز مشکلات و خطرات احتمالی جلوگیری کند.
کمیسیون بین‌المللی الکتروتکنیک (IEC) نیز الزامات و روش‌های تست فیوزهای مخصوص نیروگاه‌های خورشیدی را به تفصیل ارائه داده که خلاصه آن را به شرح زیر ارائه می‌دهیم.
استاندارد IEC 60269: فیوزها – فیوزهای مخصوص سامانه‌های فتوولتائیک
این بخش از IEC 60269 الزامات و روش‌های تست فیوزهای مخصوص سامانه‌های فتوولتائیک (PV) را ارائه می‌دهد. هدف از این استاندارد، تضمین عملکرد ایمن و قابل اعتماد فیوزها در سامانه‌های PV است.

دامنه کاربرد
این استاندارد برای فیوزهای مورد استفاده در سامانه‌های PV با ولتاژ نامی DC تا 1500 ولت و جریان نامی تا 1250 آمپر قابل استفاده است. این استاندارد شامل فیوزهای مورد استفاده در هر دو نوع سامانه PV متصل به شبکه و مستقل از شبکه است.

تعاریف
در این استاندارد، اصطلاحات زیر به کار رفته است:
سامانه فتوولتائیک: سامانه‌ای که از سلول‌های فتوولتائیک برای تبدیل انرژی تابشی خورشید به انرژی الکتریکی استفاده می‌کند.
سامانه فتوولتائیک متصل به شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل است.
سامانه فتوولتائیک مستقل از شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل نیست.
فیوز: وسیله‌ای که برای قطع جریان الکتریکی در صورت عبور جریان بیش از حد از آن طراحی شده است.

الزامات
فیوزهای مورد استفاده در سامانه‌های PV باید الزامات زیر را برآورده کنند:
ظرفیت قطع: فیوز باید قادر به قطع جریان اتصال کوتاه در سامانه PV باشد.
توانایی قطع جریان معکوس: فیوز باید قادر به قطع جریان معکوس در سامانه PV باشد.
ویژگی‌های ولتاژ-جریان: فیوز باید دارای مشخصات ولتاژ-جریان مناسب برای استفاده در سامانه PV باشد.
عایق بندی: فیوز باید دارای عایق بندی مناسب برای استفاده در سامانه PV باشد.
مقاومت در برابر محیط: فیوز باید در برابر شرایط محیطی مختلف مقاوم باشد.
روش‌های تست
این استاندارد روش‌های تستی را برای ارزیابی انطباق فیوزها با الزامات ذکر شده در بالا ارائه می‌دهد.

پیوست‌ها
این استاندارد شامل پیوست‌های زیر است:
پیوست A: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV متصل به شبکه
پیوست B: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV مستقل از شبکه
پیوست C: روش‌های تست برای ارزیابی توانایی قطع جریان معکوس
پیوست D: روش‌های تست برای ارزیابی ویژگی‌های ولتاژ-جریان

فهرست مراجع
• IEC 60269-1:2000, Low-voltage fuses – Part 1: General requirements
• IEC 60269-2:2007, Low-voltage fuses – Part 2: Supplementary requirements for a.c. fuse-links for rated voltages up to 1 000 V
• IEC 60947-1:2007, Low-voltage switchgear and controlgear – Part 1: General rules
تاریخ انتشار
2015
نسخه
1.0
نویسنده: دپارتمان خبری آرا نیرو
منبع:
کمیسیون بین‌المللی الکتروتکنیک (IEC)

راهکارهای شبکه هوشمند Smart Grid برای رفع ناترازی برق
شبکه‌های هوشمند (Smart Grids) مجموعه‌ای از فناوری‌ها و راه‌حل‌ها هستند که می‌توانند برای بهبود پایداری، انعطاف‌پذیری و راندمان شبکه‌های برق

مورد استفاده قرار گیرند. این شبکه‌ها می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند.

برخی از راهکارهای شبکه هوشمند برای رفع ناترازی برق عبارتند از:

1. مدیریت تقاضا که شامل موارد زیر می‌باشد؛

قیمت‌گذاری پویا: با تغییر قیمت برق در زمان‌های مختلف روز، می‌توان مصرف‌کنندگان را به مصرف در زمان‌های کم‌بار ترغیب کرد.

کنترل بار: با استفاده از فناوری‌های هوشمند، می‌توان مصرف برق را در زمان‌های اوج مصرف به طور خودکار کاهش داد.

پاسخگویی به تقاضا: با ارائه مشوق به مصرف‌کنندگان، می‌توان آنها را به کاهش مصرف برق در زمان‌های بحرانی تشویق کرد.

2. افزایش تولید برق؛

استفاده از منابع انرژی تجدیدپذیر: با استفاده از منابع انرژی تجدیدپذیر مانند نیروگاه خورشیدی و بادی می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد.
ذخیره‌سازی انرژی: با ذخیره‌سازی انرژی در زمان‌های تولید مازاد، می‌توان از آن در زمان‌های کمبود برق استفاده کرد.

3. ارتقای شبکه؛

استفاده از فناوری‌های دیجیتال: با استفاده از فناوری‌های دیجیتال مانند هوش مصنوعی و یادگیری ماشین می‌توان شبکه را به طور بهینه‌تر مدیریت کرد.

ایجاد شبکه‌های توزیع هوشمند: با ایجاد شبکه‌های توزیع هوشمند، می‌توان به طور موثرتری برق را به مصرف‌کنندگان رساند.

4. افزایش تعامل با مصرف‌کنندگان؛

ارائه اطلاعات به مصرف‌کنندگان: با ارائه اطلاعات به مصرف‌کنندگان در مورد مصرف برقشان، می‌توان آنها را به مصرف بهینه‌تر برق تشویق کرد.

توانمندسازی مصرف‌کنندگان: با ارائه ابزارهای لازم به مصرف‌کنندگان، می‌توان آنها را در مدیریت مصرف برق خود مشارکت داد.

مزایای استفاده از شبکه‌های هوشمند برای رفع ناترازی برق:

کاهش وابستگی به منابع انرژی فسیلی: با استفاده از شبکه‌های هوشمند می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد و انتشار گازهای گلخانه‌ای را کاهش داد.

افزایش پایداری شبکه: شبکه‌های هوشمند می‌توانند پایداری شبکه را در برابر اختلالات و حوادث افزایش دهند.

کاهش هزینه‌ها: با استفاده از شبکه‌های هوشمند می‌توان هزینه‌های تولید و توزیع برق را کاهش داد.

چالش‌های استفاده از شبکه‌های هوشمند:

هزینه اولیه بالا: پیاده‌سازی شبکه‌های هوشمند نیازمند سرمایه‌گذاری اولیه بالا است.

امنیت سایبری: شبکه‌های هوشمند به دلیل استفاده از فناوری‌های دیجیتال، در معرض تهدیدات سایبری هستند.

نیاز به آموزش: برای استفاده از شبکه‌های هوشمند، نیاز به آموزش و ظرفیت‌سازی در بین مصرف‌کنندگان و اپراتورها وجود دارد.

نتیجه‌گیری:

شبکه‌های هوشمند می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند. با استفاده از این شبکه‌ها می‌توان پایداری، انعطاف‌پذیری و راندمان شبکه‌های

برق را افزایش داد و هزینه‌ها را کاهش داد. با وجود برخی چالش‌ها، مزایای استفاده از شبکه‌های هوشمند بسیار بیشتر از هزینه‌های آن است.

در مقالات آتی به جزئیات بیشتری از شبکه‌های هوشمند می‌پردازیم.

 

نویسنده: دپارتمان خبری آرا نیرو

منابع:
وب‌سایت‌ها:
• U.S. Department of Energy – Office of Electricity
• National Institute of Standards and Technology (NIST): (https://www.nist.gov/smartgrid)
• Smart Grid International
• Electric Power Research Institute (EPRI)
مجله‌ها:
• IEEE Transactions on Smart Grid: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
• IET Smart Grid
• Elsevier – Renewable and Sustainable Energy Reviews: https://www.sciencedirect.com/journal/renewable-and-sustainable-energy-reviews
کتاب‌ها:
• Smart Grid: Modernization of Electric Power Delivery, by James Momoh
• The Smart Grid: An Introduction, by Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, and Akihiko Yokoyama
• Power Systems: Modeling, Computation, and Applications, by Abhijit Chakrabarti and Sunita Misra
گزارش‌ها:
• The Smart Grid: An Overview of Opportunities and Challenges, by the U.S. Department of Energy
• Modernizing the Electric Grid: A Primer on Smart Grid Technologies and Their Benefits, by the Electric Power Research Institute
سازمان‌ها:
• International Smart Grid Action Network (ISGAN)
• Smart Grid European Technology Platform (SG-ETP)
•  Google Scholar

ناترازی برق همسایگان ایران

قسمت اول؛ عراق

 

ناترازی برق به عدم تعادل بین تولید و مصرف برق اشاره دارد. به عبارت دیگر، زمانی که تقاضا برای برق از عرضه آن بیشتر باشد.

شرکت ره آورد آرا نیرو تصمیم دارد در یک رشته مقاله به واکاوی ناترازی برق در ایران و همسایگان خود بپردازد و درنهایت راهکاری مهندسی شده برای گذر از ناترازی در برق ارائه دهد. با ما همراه باشید.

 

وضعیت ناترازی در عراق:

عراق با ناترازی قابل توجهی در برق روبرو است. تقاضا برای برق در این کشور به طور فزاینده ای در حال افزایش است، در حالی که ظرفیت تولید برق به اندازه کافی برای پاسخگویی به این تقاضا افزایش نیافته است.

 

چالش های صنعت برق عراق کمبود تولید، فرسودگی و کمبود تجهیزات در نیروگاه های برق، وابستگی به واردات گاز از ایران، ناتوانی در تامین کامل نیازهای داخلی، قطعی برق به خصوص در فصل های گرم سال که در مناطق مختلف شدت های متفاوتی دارد و اثرات منفی بر زندگی روزمره و فعالیت های اقتصادی گذاشته است.

Direct Cost of Electricity Shortage on Iraqs GDP 2007 2020 Authors analysis - ناترازی برق همسایگان ایران

source:https://www.researchgate.net/

دلایل ناترازی:

 

کمبود سرمایه گذاری:

کمبود سرمایه گذاری در بخش برق، منجر به فرسودگی تجهیزات و ناکارآمدی شبکه برق شده است.

 

البته فساد در بخش برق، که مانع استفاده بهینه از منابع و سرمایه گذاری ها شده است و حملات تروریستی به تاسیسات برق، نیز از چالش های مهم در عراق است.

 

رشد جمعیت عراق نیز از عوامل دیگر این ناترازی است که گرمای هوا، منجر به افزایش استفاده از کولرهای گازی در بخش مسکونی و به تبع آن افزایش تقاضا برای برق در فصل های گرم سال می‌شود.

 

عواقب ناترازی برق، قطعی برق و آسیب به اقتصاد و به تبع آن نارضایتی عمومی است.

 

راه حل های ناترازی:

افزایش سرمایه گذاری: 

دولت عراق باید در بخش برق سرمایه گذاری بیشتری کند تا ظرفیت تولید برق را افزایش دهد.

 

توسعه خطوط انتقال برق: 

دولت عراق باید خطوط انتقال برق را توسعه دهد تا پایداری شبکه برق را افزایش دهد.

افزایش استفاده از منابع انرژی تجدیدپذیر: 

دولت عراق باید از منابع انرژی تجدیدپذیر، مانند نیروگاه خورشیدی و نیروگاه بادی، بیشتر استفاده کند.

Lincoln AggregationGraphic1 TownEversource - ناترازی برق همسایگان ایران

source:https://www.masspowerchoice.com/

بهینه سازی مصرف: 

دولت عراق باید با برنامه های آموزشی و تشویقی، مردم را به مصرف بهینه برق تشویق کند.

 

چشم انداز:

حل کامل مشکل ناترازی برق در عراق به زمان و سرمایه گذاری قابل توجهی نیاز دارد. انتظار می رود که با اجرای راه حل های ذکر شده، ناترازی برق در سالهای آینده به تدریج کاهش یابد.

 

جزئیات تقاضای برق در عراق:

 

عوامل موثر:

 

جمعیت عراق حدود 40 میلیون نفر است و به طور فزاینده ای در حال افزایش است. افزایش جمعیت، منجر به افزایش تقاضا برای برق در عراق شده است.

رشد اقتصادی عراق در سال های اخیر به طور متوسط ​​4% بوده است. رشد اقتصادی، منجر به افزایش تقاضا برای برق در بخش های مختلف اقتصادی شده است.

عراق در منطقه ای گرم و خشک واقع شده است. استفاده از کولرهای گازی در فصل های گرم سال، منجر به افزایش تقاضا برای برق می شود.

 

میزان تقاضا:

تقاضا برای برق در عراق در حال حاضر حدود 25 گیگاوات است. پیش بینی می شود که تقاضا برای برق در عراق در سال های آینده به طور متوسط ​​5% در سال افزایش یابد.

ظرفیت تولید برق در عراق در حال حاضر حدود 15 گیگاوات است. کمبود تولید برق، منجر به قطعی برق در عراق، به خصوص در فصل های گرم سال، می شود.

 

عراق برای جبران کمبود برق، مجبور به واردات برق از ایران است. وابستگی به واردات برق، عراق را در معرض آسیب پذیری های اقتصادی قرار میدهد.

اقدامات در حال انجام:

دولت عراق در حال سرمایه گذاری در ساخت نیروگاه های جدید، به خصوص نیروگاه های گازی و سیکل ترکیبی، است.

تعدادی از شرکت های ایرانی در حال ساخت نیروگاه های جدید در عراق هستند.

 

توسعه خطوط انتقال برق: 

دولت عراق در حال توسعه خطوط انتقال برق برای افزایش پایداری شبکه برق و کاهش هدررفت برق است.

 

افزایش استفاده از منابع انرژی تجدیدپذیر

دولت عراق برنامه هایی برای افزایش استفاده از منابع انرژی تجدیدپذیر، مانند انرژی خورشیدی و بادی، در سال های آینده دارد.

 

چشم انداز:

تقاضا برای برق در عراق در سال های آینده به طور فزاینده ای در حال افزایش خواهد بود. انتظار می رود که با اجرای برنامه های در حال انجام، وضعیت برق در سال های آینده به تدریج بهبود یابد.

 

 

جزئیات نیروگاه های عراق:

 

کل ظرفیت تولید برق نصب شده در عراق حدود 15 گیگاوات است. از این مقدار، حدود 11 گیگاوات از طریق نیروگاه های حرارتی (گازی و فسیلی) و 4 گیگاوات از طریق نیروگاه های برق آبی تامین می شود.

حدود 80% از برق عراق توسط نیروگاه های حرارتی تولید می شود. این نیروگاه ها عمدتاً از گاز طبیعی به عنوان سوخت استفاده می کنند. تعدادی از نیروگاه های حرارتی عراق نیز از مازوت و گازوئیل استفاده می کنند.
حدود 20% از برق عراق توسط نیروگاه های برق آبی تولید می شود.
سد دوکان در شمال عراق بزرگترین منبع تولید برق آبی در این کشور است.

سهم نیروگاه های تجدیدپذیر در تولید برق عراق:

سهم نیروگاه های تجدیدپذیر در عراق هنوز بسیار ناچیز است، با این حال، دولت عراق برنامه هایی برای توسعه این نوع نیروگاه ها در سال های آینده دارد.

با ما در مقالات بعدی همراه باشید. 

نویسنده : مهدی پارساوند

منابع:

• The World Bank
• The International Energy Agency (IEA)

• BP Statistical Review of World Energy

• The Organization of the Petroleum Exporting Countries (OPEC)

• The Arab Electric Power Generation Company (AEPGC)

• Enerdata

• Iraq Ministry of Electricity

روش‌شناسی جدید برای شناسایی زمین مناسب برای agrivoltaic یا کشاورزی-فتوولتائیک

به گزارش آرا نیرو، محققان در سوئد روش جدیدی را برای شناسایی سطوح مناسب برای پروژه های agrivoltaic در کشور خود ترسیم کرده اند. آنها دریافتند که تقریباً 8.6٪ (تقریباً 38485 کیلومتر مربع) از زمین آن‌ها پتانسیل میزبانی از تاسیسات agrivoltaic را دارد.

یک گروه بین المللی از محققان روشی را برای شناسایی و طبقه بندی مناطق مناسب برای نصب سیستم های agrivoltaic ایجاد کرده اند.
پیترو کامپانا یکی از نویسندگان این مقاله به مجله pv گفت: “این یکی از اولین مطالعات منتشر شده در مورد ترکیب رویکردهای سیستم های اطلاعات جغرافیایی (GIS) و تکنیک های تصمیم گیری چند معیاره (MCDM) برای شناسایی و طبقه بندی مناسب ترین منطقه برای سیستم های agrivoltaic است.”

این مطالعه نشان داد که تقریباً 8.6٪  (حدود 38485 کیلومتر مربع) از زمین در سوئد برای سیستم های agrivoltaic مناسب است.
محققان با استفاده از سیستم‌های agrivoltaic عمودی با ماژول‌های دو وجهی، ظرفیت کل پتانسیل نصب شده را برای مناطق طبقه‌بندی شده به عنوان “عالی”، “بسیار خوب” و “خوب” حدود 1.2 PWh تعیین کردند، در حالی که کل ظرفیت نصب شده در قلمرو “عالی” و “بسیار خوب” با حدود 207 تراوات ساعت است. هر دو قلمرو، مجموع ظرفیت تولید بسیار بالاتری نسبت به مصرف واقعی برق در سراسر کشور در سال 2021 دارند و همچنین از بالاترین سطح مصرف برق پیش‌بینی‌شده برای سوئد در سال 2050 فراتر می‌روند.

به گزارش آرا نیرو، این گروه از یک رویکرد پنج مرحله‌ای GIS-MCDM استفاده کرد که در آن GIS تجزیه و تحلیل مبتنی بر مکان را با تجسم و پردازش داده‌های جغرافیایی انجام داد و الگوریتم MCDM برای محاسبه وزن معیارهای ارزیابی مختلف استفاده شد. نقشه‌های جغرافیایی که طبقه‌بندی مناسب برای هر یک از معیارها و همچنین نقشه تناسب نهایی را نشان می‌دهند، از طریق ابزار ArcGIS Pro پردازش شدند.
کامپانا گفت: در مقایسه با گزارش JRC در مورد پتانسیل‌های سیستم‌های agrivoltaic در اروپا که از داده‌های آماری استفاده می‌کند، ما از جدیدترین محصول Corine Land Cover (CLC2018) استفاده کرده‌ایم که از آنجا می‌توانیم مناطقی را که از نظر فیزیکی استفاده می‌شود یا می‌توان به عنوان کشاورزی استفاده کرد، تخمین زد.

تجزیه و تحلیل نشان داد که مناطقی که به عنوان مراتع طبقه بندی می شوند می توانند حدود 80 تراوات ساعت در سال را تأمین کنند “در حالی که 90٪ از پتانسیل علوفه مراتع ملی را حفظ می کنند.” محققان فرض کردند که سازه های تاسیسات خورشیدی عمودی باعث کاهش 10 درصدی سطح محصول موثر می شود. علیرغم کاهش محصول در عرض‌های جغرافیایی بالا، این تیم اشاره کرد که سیستم‌های agrivoltaic پتانسیل تقویت مالی برای کشاورزان را دارند.
یافته‌های آن‌ها در گزارش «پتانسیل‌های سیستم‌های Agrivoltaic در سوئد: تحلیل چند معیاره به کمک geospatial» که در Applied Energy منتشر شده است، موجود است.
نویسندگان شامل محققانی از دانشگاه نفت و مواد معدنی پادشاه فهد عربستان سعودی، دانشگاه کافرشیخ مصر، دانشگاه کاتولیکا دل ساکرو کوئوره ایتالیا، و دانشگاه مالاردالن سوئد، دانشگاه اوپسالا، و موسسه هواشناسی و هیدرولوژی سوئد بودند.
منبع: مجله PV

دانشمندان ایتالیایی سیستم جدیدی برای تولید ارزان و کارآمد هیدروژن سبز ایجاد کردند

موضوع: انرژی سبز – انرژی هیدروژن – نانوذرات

محققان IIT و BeDimensional از نانوذرات روتنیوم، فلز نجیب که از نظر رفتار شیمیایی شبیه پلاتین است، اما بسیار ارزان‌تر است، استفاده کردند تا به عنوان فاز فعال کاتد الکترولیزور عمل کند که منجر به افزایش کلی کارایی الکترولیز می‌شود.
به گزارش آرا نیرو، با تلاش مشترک تحقیقاتی بین IIT وspin-off BeDimensional روشی کشف شده است که از ذرات روتنیوم در ارتباط با یک سیستم الکترولیز با انرژی خورشیدی استفاده می کند.
برای تولید موثرتر و ارزانتر هیدروژن سبز چه چیزی لازم است؟ ظاهراً ذرات کوچک روتنیوم (ruthenium) و یک سیستم انرژی خورشیدی برای الکترولیز آب. این راه حلی است که توسط یک تیم مشترک شامل Istituto Italiano di Tecnologia (موسسه فناوری ایتالیا، IIT) جنوا، و BeDimensional S.p.A شناسایی شده است.

این فناوری که در چارچوب فعالیت‌های آزمایشگاه مشترک توسعه یافته و اخیراً در دو مجله با فاکتور تأثیر بالا (Nature Communications و Journal of the American Chemical Society) منتشر شده است، بر اساس خانواده جدیدی از الکتروکاتالیست‌ها است که می‌تواند هزینه‌های سبز را کاهش دهد.
تولید هیدروژن در مقیاس صنعتی
هیدروژن به عنوان یک بردار انرژی پایدار، جایگزینی برای سوخت های فسیلی در نظر گرفته می شود. اما همه هیدروژن ها در مورد اثرات زیست محیطی یکسان نیستند. در واقع، روش اصلی تولید هیدروژن امروزه از طریق اصلاح بخار متان است، فرآیندی مبتنی بر سوخت فسیلی که دی اکسید کربن (CO2) را به عنوان یک محصول جانبی آزاد می کند.

هیدروژن تولید شده توسط این فرآیند به عنوان “خاکستری” (زمانی که CO2 در جو آزاد می شود) یا “آبی” (زمانی که CO2 تحت جذب و ذخیره سازی زمین شناسی قرار می گیرد) طبقه بندی می شود. برای کاهش قابل توجه انتشار به صفر تا سال 2050، این فرآیندها باید با فرآیندهای سازگار با محیط زیست جایگزین شوند که هیدروژن “سبز” (یعنی انتشار خالص صفر) را ارائه کنند. هزینه هیدروژن “سبز” به شدت به بازده انرژی مجموعه (الکترولایزر) بستگی دارد که مولکول های آب را به هیدروژن و اکسیژن تقسیم می کند.
نوآوری های فناوری در تولید هیدروژن
محققان تیم مشترک این اکتشاف روش جدیدی ابداع کرده‌اند که کارایی بیشتری نسبت به روش‌های شناخته‌شده فعلی در تبدیل انرژی الکتریکی (سوگیری انرژی مورد استفاده برای تقسیم مولکول‌های آب) به انرژی شیمیایی ذخیره‌شده در مولکول‌های هیدروژن تولید شده را تضمین می‌کند. این تیم مفهومی از کاتالیزور را توسعه داده است و از منابع انرژی تجدیدپذیر مانند انرژی الکتریکی تولید شده توسط پنل خورشیدی استفاده کرده است.
ما در مطالعه خود نشان داده‌ایم که چگونه می‌توان کارایی یک فناوری قوی و توسعه‌یافته را به حداکثر رساند، علی‌رغم سرمایه‌گذاری اولیه که کمی بیشتر از آنچه برای یک الکترولیز استاندارد مورد نیاز است. یونگ زو و میشل فری از گروه نانوشیمی در IIT در جنوا اظهار داشتند: این به این دلیل است که ما از فلز گرانبهایی مانند روتنیم استفاده می کنیم.

photo 2024 02 12 17 16 32 - دانشمندان ایتالیایی سیستم جدیدی برای تولید ارزان و کارآمد هیدروژن سبز ایجاد کردند

Credit: IIT-Istituto Italiano di Tecnologia

به گزارش آرا نیرو، محققان از نانوذرات روتنیوم استفاده کردند، فلزی نجیب که از نظر رفتار شیمیایی مشابه پلاتین است اما بسیار ارزان‌تر است. نانوذرات روتنیوم به عنوان فاز فعال کاتد الکترولیزور عمل می‌کنند که منجر به افزایش کلی کارایی الکترولیز می‌شود.
ما آنالیزها و آزمایش‌های الکتروشیمیایی را تحت شرایط صنعتی مهم انجام داده‌ایم که به ما امکان می‌دهد فعالیت کاتالیزوری موادمان را ارزیابی کنیم. علاوه بر این، شبیه‌سازی‌های نظری به ما امکان می‌دهد تا رفتار کاتالیزوری نانوذرات روتنیم را در سطح مولکولی درک کنیم. سباستیانو بلانی و مارلینا زاپیا از BeDimensional که در این کشف نقش داشتند، مکانیسم تقسیم آب بر روی سطوح پایه آنها طی ترکیب داده‌های آزمایش‌ها با پارامترهای فرآیند اضافی را توضیح دادند، و یک تحلیل فنی-اقتصادی انجام داده‌ که رقابت‌پذیری این فناوری را در مقایسه با الکترولیزهای پیشرفته را نشان می‌دهد.

مقرون به صرفه بودن فناوری جدید
روتنیوم فلز گرانبهایی است که در مقادیر کم به عنوان محصول جانبی استخراج پلاتین (30 تن در سال در مقایسه با تولید سالانه 200 تن پلاتین) اما با هزینه کمتر (18.5 دلار در هر گرم در مقابل 30 دلار برای پلاتین) به دست می آید. فناوری جدید شامل استفاده از تنها 40 میلی گرم روتنیوم در هر کیلووات است، در تضاد کامل با استفاده گسترده از پلاتین (تا 1 گرم در هر کیلووات) و ایریدیوم (بین 1 تا 2.5 گرم در هر کیلووات، با قیمت ایریدیوم در حدود 150 دلار در هر گرم) که الکترولیزهای غشایی مبادله پروتون را مشخص می کنند.

محققان IIT و BeDimensional با استفاده از روتنیوم، کارایی الکترولیزهای قلیایی را بهبود بخشیده‌اند، فناوری که دهه ها به دلیل استحکام و دوام آن مورد استفاده قرار گرفته است. به عنوان مثال، این فناوری بر روی کپسول آپولو 11 بود که بشریت را در سال 1969 به ماه برد. خانواده جدید کاتدهای مبتنی بر روتنیوم برای الکترولیزهای قلیایی که توسعه یافته است بسیار کارآمد است و عمر طولانی دارد، بنابراین قادر است هزینه های تولید هیدروژن سبز را کاهش دهد.

محققان نتیجه گرفتند: «در آینده، ما قصد داریم این فناوری و سایر فناوری‌ها، مانند کاتالیزورهای نانوساختار مبتنی بر مواد دوبعدی پایدار را در الکترولایزرهای پیشرفته با انرژی الکتریکی از منابع تجدیدپذیر، از جمله برق تولید شده توسط پنل‌های فتوولتائیک، به کار ببریم».

مراجع:
“ساختارهای نانوهتروساختار Ru-Cu برای واکنش موثر تکامل هیدروژن در الکترولیزهای آب قلیایی” توسط یونگ زو، سباستیانو بلانی، گابریله صالح، میشل فری، دیپاک وی. ، ابینایا آنامالای، دانیلو اولیویرا د سوزا، لوکا دی تریتزیو، ایوان اینفانته، فرانچسکو بوناکوروسو و لیبراتو ماننا، 25 سپتامبر 2023، مجله انجمن شیمی آمریکا.
DOI: 10.1021/jacs.3c06726

«الکترولایزرهای آب قلیایی با کارایی بالا بر اساس کاتد نانوپلاکت‌های مس آشفته شده با روم» توسط یونگ زو، سباستیانو بلانی، میشل فری، گابریله صالح، دیپاک وی. ، فرانچسکو بوناکورسو و لیبراتو ماننا، 4 اوت 2023، Nature Communications.
DOI: 10.1038/s41467-023-40319-5

پنل های خورشیدی مونو(تک) کریستال در مقابل پلی(چند) کریستال: تفاوت چیست؟

به گزارش آرا نیرو اکثر پنل های خورشیدی مسکونی این روزها از نوع مونو کریستال مشکی هستند.

در یک نگاه، همه صفحات خورشیدی ممکن است شبیه به هم یا حداقل بسیار مشابه به نظر برسند. با دقت نگاه کنید و متوجه تفاوت های ظریف، یعنی رنگ سلول های خورشیدی خواهید شد. این تفاوت ها هم از نظر هزینه و هم از نظر میزان برق تولیدی می تواند معنی زیادی داشته باشد.

انواع مختلفی از پنل‌های خورشیدی در بازار موجود است، از جمله پنل‌های مونو کریستال، پلی کریستال و لایه نازک، که هر کدام ویژگی‌های عملکردی و قیمت‌های متفاوتی دارند.

انواع مختلف پنل ها می توانند تعیین کنند که چقدر باید پرداخت کنید و به چه تعداد پنل نیاز دارید.

آیا پنل های خورشیدی می توانند در هزینه شما صرفه جویی کنند؟

به تاثیر انرژی خورشیدی که می تواند بر خانه شما بگذارد علاقه دارید؟ برخی از اطلاعات اولیه را به کارشناس های آرا نیرو ارائه دهید، و ما فوراً یک تخمین رایگان از صرفه جویی در انرژی شما ارائه خواهیم کرد.
در اینجا آنچه باید در مورد انواع اصلی پنل های خورشیدی بدانید، آورده شده است.

تعریف پنل های خورشیدی مونو کریستال و پلی کریستال
تفاوت بین دو نوع اصلی پنل های خورشیدی که امروزه نصب می شوند، مونو کریستال و پلی کریستال، با نحوه ساخت آنها شروع می شود، تفاوتی که بر عملکرد آنها، مدت زمان ماندگاری و ظاهر آنها در سقف شما تأثیر می گذارد. Optivolt، یک شرکت فناوری خورشیدی مستقر در سیلیکون ولی گفت که پنل های مونو کریستال معمولا عملکرد بهتری دارند اما کمی هزینه بیشتری دارند.
اگر بازار خورشیدی یک مسابقه بود، پنل های مونوکریستال برنده می شدند. طبق گزارشی که در سپتامبر 2022 توسط آزمایشگاه ملی لارنس برکلی منتشر شد، حدود 90 درصد از صفحات خورشیدی نصب شده در سال 2021 مونو کریستال بودند.

اگر مجبور به انتخاب بین پنل های خورشیدی هستید، احتمالاً بین گزینه های مونوکریستال انتخاب خواهید کرد. صرف نظر از اینکه از بین پنل‌های مونو کریستال انتخاب می‌کنید یا گزینه‌های چند بلوری، باید اندازه پنل‌ها را نسبت به فضای موجود، ضمانت‌های آن‌ها، بودجه و ظاهر آن‌ها در نظر بگیرید.
پنل های خورشیدی مونوکریستال
پنل های مونوکریستال از یک شمش سیلیکونی ساخته می شوند. برای ایجاد شمش، میله ای از سیلیکون کریستالی خالص به نام کریستال دانه در سیلیکون مذاب قرار می گیرد. سپس به آرامی کشیده می شود و به سمت بالا می چرخد ​​و به یک شمش سیلیکونی تبدیل می شود. شمش به صورت ویفرهای نازک بریده می شود که سطح آن زبر شده است تا بتواند نور خورشید بیشتری را شکست دهد. سپس یک لایه فسفر به هر ویفر اضافه می شود. برای ساخت هر پنل خورشیدی بین 32 تا 96 ویفر سیلیکونی خالص نیاز است. هر چه تعداد سلول های سیلیکونی در هر پنل بیشتر باشد، انرژی خروجی بالاتری خواهد داشت.
مدل‌های مونوکریستال کارآمدترین پنل‌های خورشیدی برای تأسیسات مسکونی هستند (به‌طور متوسط ​​بازده 17 تا 22 درصد) اما کمی گران‌تر از نمونه‌های پلی‌کریستالی خود هستند (حدود 1 تا 1.5 سنت دلار به ازای هر وات قبل از نصب). آنها می توانند ظاهری کاملا مشکی داشته باشند که برخی افراد آن را ترجیح می دهند و معمولاً 25 سال ضمانت دارند، اگرچه عمر مفید آنها می تواند بسیار طولانی تر باشد.

photo 2024 01 31 11 09 43 - پنل های خورشیدی مونو(تک) کریستال در مقابل پلی(چند) کریستال: تفاوت چیست؟

پنل های خورشیدی پلی کریستالی
پنل های خورشیدی پلی کریستالی گاهی اوقات پنل‌های خورشیدی چند کریستالی یا چند بلوری نامیده می شوند. آنها همچنین از سیلیکون ساخته شده اند، اما به جای اینکه از یک ویفر ایجاد شوند، از چند قطعه سیلیکون ساخته شده اند. سیلیکون ذوب می شود و سپس به صورت قطعاتی خنک می شود که قبل از برش برای پنل با هم قالب گیری می شوند. فرآیند تکمیل همانند پنل های مونوکریستالی است.
آنها کمی ارزان تر هستند ( 1 تا 1.5 سنت دلار در هر وات قبل از نصب) و کارایی کمتری دارند (به طور متوسط ​​15٪ تا 17٪). آنها همچنین در گرما کمی ضعیف تر عمل می کنند اما هنوز عمر مفیدی دارند که بیش از 20 سال است.

پنل های خورشیدی مونوکریستال در مقابل پلی کریستال
در اینجا به مقایسه دو نوع پنل خورشیدی رایج می‌پردازیم:

ظاهر
زیبایی در چشم بیننده است، اما پنل های مونوکریستال ظاهر تیره تری دارند که با اکثر سقف ها بهتر ترکیب می شود. پنل های پلی کریستالی آبی به نظر می رسند و کمی بیشتر خودنمایی می کنند. در شکل سلول‌های واقعی تفاوت‌هایی وجود دارد، اما احتمالاً آن‌ها به اندازه رنگ چشم را جلب نمی‌کنند.
برنده: مونو کریستال

بهره وری
کارایی پنل، میزان نور خورشید را که یک پنل خورشیدی به برق تبدیل می‌کند اندازه‌گیری می‌کند. هر چه این عدد بیشتر باشد، سیستم کارآمدتر است. پنل‌های مونوکریستال دارای محدوده بازدهی بین 17% تا 22% می باشند در حالی که محدوده کارایی پنل های خورشیدی پلی کریستال از 15% تا 17% می‌باشد.
برنده: پنل های خورشیدی مونو کریستال

ضریب دما
ضریب دما معیاری است که نشان می دهد یک پنل خورشیدی برای هر درجه سانتیگراد بالای 25 (77 درجه فارنهایت) چقدر کارایی کمتری دارد. محبوب‌ترین مدل های مونو کریستال دارای ضرایب دمایی هستند که از -.26٪ تا -.35٪ متغیر است. برای پنل های خورشیدی پلی کریستال، نرخ کمی بدتر است.
برنده: پنل های خورشیدی مونو کریستال

طول عمر
میزان الکتریسیته تولید شده توسط پنل های خورشیدی هر سال کاهش می یابد. این بر طول عمر پنل ها تأثیر می گذارد. برای پنل های خورشیدی مونوکریستال، احتمالاً پس از 25 سال، حدود 85 درصد از خروجی اولیه را خواهید داشت، یعنی مدت زمان یک گارانتی معمولی. بسیاری از سیستم ها می‌توانند حتی بیشتر عمر کنند. تخریب پنل های خورشیدی پلی کریستال اندکی بدتر است که منجر به کاهش شدیدتر و طول عمر کوتاه تر می شود.
برنده: پنل های خورشیدی مونو کریستال

هزینه
هزینه خرید و نصب پنل‌های خورشیدی به تعداد پنل‌هایی که نیاز دارید، میانگین مصرف انرژی، خروجی پنل‌های خورشیدی و میزان نور خورشید در محل خانه‌تان بستگی دارد.

هزینه متوسط ​​نصب خورشیدی بین دو تا سه میلیون تومان در هر کیلووات بسته به محل شما است. برای اولین بار پس از مدت ها، هزینه پنل های خورشیدی در نیمه اول سال 2023 به دلیل تورم و مشکلات زنجیره تامین طولانی افزایش یافت. و البته در نیمه سال دوم کاهش قابل توجهی داشت. علیرغم نوسانات، پنل های خورشیدی پلی کریستالی همچنان ارزان تر به فروش می‌رود، اگرچه احتمالاً در طول عمر پنل های خورشیدی پلی کریستال خود صرفه جویی کمتری خواهید کرد.
برنده: پنل های خورشیدی پلی کریستال

بهترین کاربردها برای پنل های خورشیدی مونوکریستال در مقابل پلی کریستال
پنل های مونوکریستال به دلیل کارایی بالاتر و ظاهر مشکی براق و یکنواخت شناخته شده اند. به این ترتیب، صاحبان خانه ها تمایل دارند از آنها حمایت کنند زیرا کمی زیباتر هستند. با توجه به راندمان برتر آنها، آنها می توانند برق بیشتری را از یک منطقه کوچکتر تولید کنند، و زمانی که اندازه سقف شما کوچکتر است، آنها را به یک انتخاب عالی تبدیل میکند.

علاوه بر این، بازده برق بالاتر پنل‌های مونو کریستال به این معنی است که پول قابل توجهی در قبوض برق خود صرفه‌جویی می‌کنید و در طول زمان بازدهی بیشتری از سرمایه‌گذاری خود دریافت می‌کنید، که احتمالاً بخشی از این دلیل است که آنها معمولاً در برنامه‌های مسکونی نصب می‌شوند.

از سوی دیگر، پنل های خورشیدی پلی کریستال گزینه مقرون به صرفه تری برای مشتریان با بودجه کمتر هستند. آنها به بهترین وجه در ساختمان های تجاری با اندازه سقف بزرگ استفاده می شوند.

photo 2024 01 31 11 09 49 - پنل های خورشیدی مونو(تک) کریستال در مقابل پلی(چند) کریستال: تفاوت چیست؟

چگونه در پنل های خورشیدی صرفه جویی کنیم؟
به گزارش آرا نیرو چندین روش خلاقانه برای صرفه جویی در هزینه سرمایه گذاری در پنل خورشیدی شما وجود دارد. صاحبان خانه می توانند از اعتبارات مالیاتی، کمک های بلاعوض یا سایر مشوق های محلی استفاده کنند که می تواند هزینه خالص سیستم خورشیدی را بدون توجه به نوع پنل خورشیدی انتخاب شده به میزان قابل توجهی کاهش دهد.
هر سرمایه گذاری در یک سیستم پنل خورشیدی مستلزم تعادل ظریف بین هزینه های اولیه، پس انداز طولانی مدت و موقعیت منحصر به فرد مشتری است. پنل های پلی کریستال مقرون به صرفه تر از پنل های مونو کریستال هستند، اما شما باید با خروجی برق کمتر آنها مبارزه کنید.
انواع دیگر پنل های خورشیدی
پنل های خورشیدی لایه نازک سومین نوع از پنل های خورشیدی محبوب هستند. آنها عمدتاً در مزارع خورشیدی استفاده می شوند و به ندرت برای مقاصد مسکونی به دلیل نسبت راندمان پایین آنها از 10٪ تا 13٪ استفاده می شود. آنها برای تولید همان مقدار الکتریسیته که پنل های خورشیدی مونوکریستال و پلی کریستال دارند، به سطح بزرگتری نیاز دارند. طول عمر آنها معمولاً بین 10 تا 20 سال است.

پنل های لایه نازک علیرغم راندمان نسبتا کم و نیاز به فضای بیشتر، بهترین ضریب دمایی را دارند که آنها را برای استفاده در مکان های با دمای بالا با آب و هوای گرم تر عالی می کند، مثل مناطق گرمسیری ایران همچون اهواز. قیمت صفحات خورشیدی لایه نازک بین 12 تا 15 سنت دلار به ازای هر وات متغیر است.

نتیجه
هنگام انتخاب بین پنل های خورشیدی مونوکریستال و پلی کریستال، درک تفاوت های کلیدی هر دو نوع پنل خورشیدی و اینکه چگونه این تفاوت ها ممکن است بر عملکرد کلی سیستم تأثیر بگذارد، ضروری است. پنل‌های خورشیدی مونوکریستالی برای مصارف مسکونی مناسب‌تر هستند و به دلیل بهره‌وری بالاتر، صرفه‌جویی بیشتری را در یک دوره طولانی ارائه می‌کنند. نکته منفی این است که هزینه بیشتری دارند.

از طرف دیگر، پنل های پلی کریستال کمی ارزان تر از پنل های مونو کریستال هستند اما کارایی کمتری دارند. اگر با یک شرکت خورشیدی کار می کنید، احتمالاً پنل‌های خورشیدی مونوکریستال دریافت خواهید کرد، زیرا آنها بسیار رایج تر هستند. در چند مورد، پنل های پلی کریستالی ممکن است منطقی باشد، اگرچه آنها در حال حاضر سهم بسیار کوچکتری از پنل های بازار را در اختیار دارند.

 

ایالات متحده 22 میلیون هکتار را با پنل های خورشیدی پوشش می دهد

 

چند روز پیش، دولت بایدن اعلام کرد که 22 میلیون هکتار از زمین های عمومی را برای توسعه خورشیدی در دسترس قرار می دهد. «کار وزارت کشور برای توسعه مسئولانه و سریع پروژه های انرژی های تجدیدپذیر برای دستیابی به هدف دولت بایدن- هریس برای آلودگی کربنی بسیار مهم است. لورا دانیل دیویس، معاون موقت وزیر، گفت: بخش برق رایگان تا سال 2035 – و این نقشه راه خورشیدی به روز شده به ما کمک می کند در ایالت های بیشتری و در سرزمین های بیشتری در غرب اقدام کنیم. وزارت کشور از طریق سرمایه‌گذاری‌های تاریخی، به ایجاد زیرساخت‌های آب و هوایی مدرن و انعطاف‌پذیر کمک می‌کند که از جوامع ما در برابر تأثیرات بدتر تغییرات آب و هوایی محافظت می‌کند.

 

 

بلافاصله، کسانی که به Faux News گوش می‌دادند وارد میدان شدند و شروع به زاری کردند که چگونه طرح بایدن بخش‌های عظیمی از زمین را بی‌ارزش می‌کند. (اگر این اعلامیه حفاری چاه‌های نفت و گاز در آن 22 میلیون جریب باشد، همین افراد خوشحال می‌شوند.) حتی روزنامه گاردین که معمولاً قابل اعتماد است، با این تیتر به هیستری پرداخت: «ایالات متحده به 22 میلیون هکتار برای توسعه انرژی خورشیدی نیاز دارد. ”

 

در واقع، ایالات متحده به پنل های خورشیدی در حدود 700,000 جریب زمین نیاز دارد تا به هدف دولت مبنی بر انتقال کشور به انرژی 100% تجدیدپذیر تا سال 2035 دست یابد. در حال حاضر حدود 34,000 هکتار از زمین های عمومی به انرژی خورشیدی اختصاص داده شده است. همچنین، توجه داشته باشید که در طرح انرژی پاک بایدن تمام آن انرژی تجدیدپذیر از مزارع خورشیدی پر نمی‌شود. انتظار می رود منابع بادی نیز سهم عمده ای در این هدف داشته باشند.

 

700,000 هکتار به 1100 مایل مربع تبدیل می شود. این مقدار زیادی به نظر می رسد، اما در مجموع، ایالات متحده 3،532،316 مایل مربع را پوشش میدهد، که به این معنی است که تنها 0.031115 درصد آن مورد نیاز است تا هر فرد و کسب و کار در آمریکا برق را از منبعی دریافت کند که تهدیدی برای ایجاد شرایط اضطراری آب و هوایی نباشد. وقتی به زمین بزرگ کشور نگاه می کنید اعداد چندان ترسناک به نظر نمی رسند.

 

نگرانی های NIMBY نقش مهمی در تعیین اینکه کدام یک از آن 22 میلیون هکتار زمین عمومی به پروژه های انرژی خورشیدی اختصاص داده می شود، ایفا می کند. رهنمودهای گنجانده شده در طرح دولت، اولویت را برای تأسیساتی که در فاصله 10 مایلی یک سایت اتصال به شبکه موجود، هستند، قرار می دهد. هزینه ساخت خط انتقال از یک مزرعه خورشیدی در فاصله 100 مایلی از نزدیکترین محل اتصال شبکه ممکن است بیشتر از هزینه خود مزرعه خورشیدی باشد.

 

 

بدخواهان برای از دست دادن زمین های کشاورزی عزاداری می کنند و متوجه نیستند که درآمد حاصل از تاسیسات خورشیدی و بادی به کشاورزان در ایالات متحده کمک می کند تا از ورشکستگی جلوگیری کنند زیرا قیمت تجهیزات کشاورزی، بذر و کود سر به فلک کشیده است.  ممکن است قیمت مواد غذایی افزایش یابد، اما کشاورزی هنوز یکی از سخت ترین راه ها برای امرار معاش است. این قیمت‌های بالا در قفسه‌های فروشگاه‌های مواد غذایی همیشه به پول بیشتر در جیب کشاورزان تبدیل نمی‌شود.

 

پروژه Edwards & Sanborn Solar & Storage Online نمونه ای از این تاسیسات خورشیدی جدید در زمین های عمومی است. اکنون در پایگاه نیروی هوایی ادواردز و بخش هایی از شهرستان کرن کالیفرنیا در حال بهره برداری کامل است.  این پروژه در سال 2021 آغاز شده و به صورت مرحله ای فعال شده است، اکنون در حال بهره برداری کامل است. این پروژه بیش از 4600 هکتار را پوشش می دهد و شامل بیش از 1.9 میلیون پنل خورشیدی ساخته شده توسط First Solar است.  در مجموع، این پروژه می تواند 875 مگاوات انرژی خورشیدی تولید کند و دارای 3287 مگاوات ساعت ذخیره انرژی با ظرفیت کل اتصال 1300 مگاوات است.

 

این پروژه برق شهر سن خوزه، ادیسون کالیفرنیای جنوبی، گاز اند الکتریک اقیانوس آرام، اتحاد برق پاک و استارباکس را تامین می کند. بخشی از این پروژه در پایگاه نیروی هوایی ادواردز واقع شده است و بزرگترین همکاری عمومی و خصوصی در تاریخ وزارت دفاع ایالات متحده بود. این پروژه از باتری هایLG Chem، Samsung و BYD استفاده می کند.

 

در مجموع، بیش از 1000 کارگر ماهر به این پروژه کمک کردند و به نتایج ایمنی برجسته ای دست یافتند که شامل بیش از یک میلیون ساعت بدون آسیب و جایزه ایمنی توسط انجمن پیمانکاران عمومی کالیفرنیا بود. مارک دوناهو، معاون ارشد مورتنسون، گفت: «مورتنسون مفتخر است که به Terra-Gen در ارائه پروژه ادواردز و سنبورن و ارائه انرژی پاک و انعطاف‌پذیر به منطقه کمک می‌کند. من به تاسیسات در سطح جهانی که تیم ما برای Terra-Gen طراحی، ساخت و راه اندازی کرده افتخار می کنم.

شاید بالاترین افتخار برای پارک انرژی و انرژی خورشیدی ادواردز و سنبورن که به تازگی تکمیل شده است را سرتیپ ویلیام کیل، فرمانده مرکز مهندسی عمران نیروی هوایی در پایگاه نیروی هوایی ادواردز کسب کند. «در آمریکا می‌توانیم در زمین‌های بایر، نیروی خورشید را در آغوش بگیریم و یک شگفتی مهندسی خلق کنیم.  بنابراین، وقت بگذارید و فکر کنید، کارهای بزرگی را که انجام شده است ببینید، و اهمیت این پروژه و آنچه می تواند منجر به آن شود را درک کنید.  امیدوارم این فقط جرقه باشد.»

غذای آماده

 وضعیت اضطراری آب و هوا از اهمیت کمتری برخوردار نیست. انتشار جهانی گازهای گلخانه ای همچنان در حال افزایش است زیرا کشورهای جهان آلودگی های بیشتری را به جو می ریزند. هدف بایدن برای 100 درصد برق پاک تا سال 2035 جسورانه است.

 

ما به عنوان یک جامعه، دیگر نمی توانیم از منابع انرژی خود به شکلی بی رویه استفاده کنیم. برای نسل های آینده چیزهای زیادی در خطر است. انرژی‌های تجدیدپذیر در زمین‌های عمومی می‌تواند برد-برد باشد. جاستین میوس، یکی از مبارزان انجمن Wilderness به گاردین گفت: این امری ضروری است و ممکن است.

 

آیا در مورد مکان و نحوه ساخت پروژه های جدید خورشیدی در زمین های عمومی بحث و اختلاف نظر وجود خواهد داشت؟ البته که وجود خواهد داشت. نیازهای جامعه بزرگتر و همچنین حفاظت از گیاهان و جانوران بومی باید در نظر گرفته شود. اما همانطور که پرزیدنت کندی در ابتدای پروژه آپولو به ما توصیه کرد، “ما این کارها را انتخاب می کنیم نه به این دلیل که آسان هستند، بلکه به این دلیل که سخت هستند.”

 

کربن زدایی از اقتصاد کشورهای جهان سخت ترین کاری است که بشر تاکنون انجام داده است و البته ضروری ترین.

منبع: CleanTechnica

نویسنده: Steve Hanley