نوشته‌ها

سوئیس آلپ‌ها را با پنل‌های خورشیدی می‌پوشاند: اکنون، آنها به چیزی غیرممکن دست یافته‌اند

کشورهای مختلف در سراسر جهان به دنبال تثبیت موفقیت‌آمیز خود در بخش انرژی هستند. این امر با اجرای طیف گسترده‌ای از پروژه‌ها با هدف تولید انرژی از طریق منابع تجدیدپذیر مانند انرژی خورشیدی و بادی محقق خواهد شد. سوئیس با نوآوری در یک ایده جدید در مورد پنل‌های خورشیدی که اروپا (و همچنین آمریکا) را تحت تأثیر قرار داده است، در بقیه جهان سر و صدا کرده است.

سوئیس با یک پروژه جدید فوتوولتائیک غافلگیر می‌شود

همانطور که بسیاری می‌دانند، گذار انرژی که در سطح جهانی در حال تجربه است، عمدتاً با منابع انرژی تجدیدپذیر مانند مزارع بزرگ بادی یا مزارع خورشیدی مشخص شده است، فراتر از این واقعیت که روش‌های بسیاری برای تولید انرژی پاک و پایدار مانند نیروگاه‌های بزرگ برق آبی و سایر نیروگاه‌هایی که انرژی زمین گرمایی تولید می‌کنند، وجود دارد.

سوئیس یکی از محبوب‌ترین منابع انرژی تجدیدپذیر را انتخاب کرد: انرژی تولید شده از پنل‌های خورشیدی. با این حال، پروژه بزرگ انرژی این کشور فراتر از کاربرد ساده پنل‌های خورشیدی در مناطق زمینی است، بلکه یکی از توسعه‌های جدید، پنل‌های خورشیدی شناور را انتخاب کرده است.

لازم به یادآوری است که مدتی پیش شاهد پروژه‌های مختلفی بوده‌ایم که پنل‌های خورشیدی شناور یک راه حل عالی برای تولید انرژی پاک از مخازن هستند، در حالی که از تبخیر آب در دوره‌های خشکسالی شدید جلوگیری می‌کنند.

90304741 12 installation copyright romande energie - سوئیس آلپ‌ها را با پنل‌های خورشیدی می‌پوشاند: اکنون، آنها به چیزی غیرممکن دست یافته‌اند

اگرچه در حال حاضر خشکسالی بزرگی در آلپ سوئیس وجود ندارد، دلایل جدیدی برای نصب پنل‌های خورشیدی شناور بر روی آنها کشف شده است. این امر انرژی کاملاً پاکی تولید می‌کند که به کاهش تولید انرژی از طریق سوخت‌های فسیلی کمک می‌کند.

این پروژه بر چه چیزی مبتنی است؟ یک مقدار رکوردشکن از پنل‌های خورشیدی نصب شده است

از سال 2019، یک شرکت سوئیسی به نام Romande Energie، مزارع بزرگ خورشیدی شناور را در یک مخزن در سوئیس به نام Lac des Toules نصب کرده است. ما در مورد یکی از اولین مخازن با ارتفاع بالا از سطح دریا صحبت می‌کنیم که یک مزرعه خورشیدی شناور نصب کرده است، همان مزرعه‌ای که ظرفیت کلی آن تقریباً 448 کیلووات خواهد بود.

با ورود به جزئیات بیشتر در مورد این پروژه چشمگیر فوتوولتائیک سوئیس، مخزن مورد نظر حدود 1810 متر بالاتر از سطح دریا است و دارای مجموع 35 پلتفرم از پنل‌های خورشیدی دو رویه است. اگرچه این به نظر می‌رسد بخش بزرگی از دریاچه را پوشش می‌دهد، این پنل‌های خورشیدی فقط حدود 2% از مساحت سطح مخزن را اشغال خواهند کرد.

پلتفرم‌های شناوری که پنل‌های خورشیدی دو رویه را در خود جای می‌دهند، برای مدت طولانی به کف دریا متصل می‌شوند، از ماه ژوئن تا دسامبر آنها شناور خواهند ماند. این به این دلیل است که این زمانی است که مخزن به دلیل آب شدن برف پر است و از ژانویه تا مه آنها کاملاً روی زمین قرار خواهند داشت.

درباره تأثیر زیست محیطی این پنل‌های خورشیدی بیشتر بدانید

از سوی دیگر، گروهی از دانشمندان دانشگاه علوم کاربردی زوریخ در حال تحقیق در مورد نصب پنل‌های خورشیدی در این مخزن خاص هستند و کشف کرده‌اند که این 35 پلتفرم تولیدکننده انرژی فوتوولتائیک، سرمایه‌گذاری انرژی را در کمی بیش از دو سال باز خواهند گرداند.

همچنین مشخص شد که نتایج این سیستم انرژی خورشیدی شناور کاهش واضحی در ردپای کربن نشان می‌دهد. این نصب تقریباً 94 گرم دی اکسید کربن در هر کیلووات ساعت منتشر می‌کند، عددی که به طور قابل توجهی پایین‌تر از هر نصب انرژی خورشیدی سنتی است.

این پروژه بزرگ نیروگاه با پنل‌های خورشیدی در آلپ، سوئیس، یک گام مهم به جلو در اجرای انرژی پاک و پایدار است که به گذار انرژی جهانی کمک می‌کند و حتی نسبت به نصب‌ پنل های فوتوولتائیک به طور سنتی استفاده شده، مزایای خاصی خواهد داشت.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله ecoticias

آلاچیق‌های خورشیدی با قاب چوبی برای کاربردهای مسکونی و تجاری

به گزارش آرا نیرو : شرکت Innoventum مستقر در سوئد، خط تولید آلاچیق خورشیدی مجهز به ماژول‌های دو طرفه در یک ساختار چوبی درختچه راه‌اندازی کرده است. این راه‌حل ممکن است شامل شارژ وسایل نقلیه برقی، ذخیره‌سازی انرژی، روشنایی LED و سیستم‌های اینورتر باشد.

شرکت سوئدی ارائه دهنده سیستم انرژی تجدیدپذیر Innoventum، خط تولید آلاچیق خورشیدی مجهز به ماژول‌های دو طرفه در یک ساختار چوبی چسب‌دار، همراه با شارژ وسایل نقلیه برقی، ذخیره‌سازی انرژی، روشنایی و تجهیزات اینورتر را راه‌اندازی کرده است.

آلاچیق چوبی درختچه Innoventum دارای اتصالات چوبی نامرئی و فونداسیون‌های پیچ زمینی است که توسط سازنده آلمانی Krinner عرضه می‌شود. چنین فونداسیون‌هایی نصب سریع‌تری نسبت به قالب‌های بتنی معمولی امکان‌پذیر می‌کنند و طبق گفته سازنده، تأثیر بسیار کمی بر محیط زیست دارند.

شرکت سوئدی اخیراً دو آلاچیق 12 وسیله نقلیه را در دفتر Schneider Electric Electropole در گرونوبل تکمیل کرد. آلاچیق‌ها دارای 136 ماژول دو شیشه 430 وات دو طرفه با گارانتی عملکرد خطی و محصول 30 ساله هستند.

هر کدام به یک راه حل میکرو شبکه جریان مستقیم (DC) پیشرفته توسعه یافته توسط DC Systems B.V، یک شرکت Schneider Electric که در هلند مستقر است و در سیستم‌های DC برای کاربردهای تجاری و زیرساخت تخصص دارد، مجهز هستند.

راه حل میکرو شبکه برای پارکینگ‌ها امکان انتخاب بین عملیات خارج از شبکه یا متصل به شبکه را فراهم می‌کند. ژولین دالیگولت، مدیرعامل Innoventum، به pv magazine گفت: «این یک گزینه است که شارژ EV را در هر جایی امکان‌پذیر می‌کند»، و اشاره کرد که تنها تبدیل DC-AC در محل اتصال به شبکه است.

solar carport under side - آلاچیق‌های خورشیدی با قاب چوبی برای کاربردهای مسکونی و تجاری

بقیه تجهیزات در DC کار می‌کنند، از جمله پنل‌های خورشیدی، شارژرهای وسایل نقلیه برقی و روشنایی LED یکپارچه. تعداد کاهش یافته تبدیل‌های DC/AC در زیرسیستم‌های مختلف آلاچیق به معنای کابل‌کشی کمتر و هزینه‌های کاهش یافته است، طبق گفته Innoventum.

علاوه بر راه‌حل‌های املاک تجاری، Innoventum خط استانداردی از کیت‌های آلاچیق کوچک و متوسط را ارائه می‌دهد. آنها مقاومت بار برف 2.5 کیلو نیوتن/م2 دارند و شامل یک سیستم رک مقاوم در برابر آب هستند. سه مدل وجود دارد: Solar Carport 15، یک سیستم 6.2 کیلوواتی با اندازه 29.9 متر مربع و پشتیبانی از 30،000 کیلومتر شارژ در سال؛ Solar Carport 18، یک سیستم 7.4 کیلوواتی، با اندازه 35.8 متر مربع و پشتیبانی از 38،000 کیلومتر شارژ در سال؛ Solar Carport 24، یک سیستم 9.9 کیلوواتی، با اندازه 47.6 متر مربع و پشتیبانی از 43،000 کیلومتر شارژ در سال.

پوشش زمین فوق بازتابنده سفید رنگ برای فعال کردن آلبیدو بالا و بازگشت سریع‌تر سرمایه اختیاری است. سیستم‌های ذخیره انرژی توسط سازنده سوئیسی Studer Innotec عرضه می‌شوند. تجهیزات پیشرفته شارژ وسایل نقلیه برقی می‌تواند توسط CTEK Sweden عرضه شود.

طبق گفته Innoventum، در حال ساخت یک شبکه برای پروژه‌های صنعتی تجاری است. فروش به طور مستقیم از سوئد انجام می‌شود، به جز در بریتانیا که شریک فناوری انرژی تجدیدپذیر آن، Pure Energy (REGen) Ltd، مسئول بازاریابی و نصب محصول است.

رصد تحولات در چشم‌انداز انرژی‌های تجدیدپذیر آفریقای جنوبی

 

این مقاله به رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی پرداخته و چالش‌های مربوط به نوسانات تولید برق بادی در زمستان به دلیل عبور جبهه‌های سرد، و همچنین تاثیر آن بر تقاضای برق را توضیح می‌دهد.

 

برنامه تامین انرژی تجدیدپذیر آفریقای جنوبی با مشارکت بخش خصوصی، موجب افزایش تولید برق بادی شده است.

روزنامه دیلی ماوریک از مزارع بادی Brandvalley و Rietkloof در منطقه Karoo بازدید کرد که در حال ساخت هستند. هر یک از این مزارع پس از تکمیل، قادر خواهند بود سالانه حدود ۵۹۰ گیگاوات ساعت انرژی تولید کنند.

غول‌های سفید دست‌ساز مزارع بادی Brandvalley و Rietkloof، تضادی خیره‌کننده با چشم‌انداز ناهموار و خالی از سکنه Karoo ایجاد کرده‌اند. این پروژه‌های خواهر در امتداد مرز بین استان‌های کیپ غربی و کیپ شمالی، درست در کنار جاده R354 که شهرهای Matjiesfontein و Sutherland را به هم متصل می‌کند، قرار دارند.

پس از تکمیل، هر مزرعه بادی دارای 32 توربین بادی Vestas V150-4.5MW خواهد بود که قادر به تولید حدود 590 گیگاوات ساعت انرژی در سال است. این امر به هر پروژه اجازه می‌دهد سالانه حدود 183000 خانوار را تامین انرژی کند و در عین حال از انتشار تقریباً 620,000 تن معادل CO2 در هر سال جلوگیری کند.

1.1 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : در حال ساخت در نیروگاه بادی Brandvalley: تصویری از یک توربین بادی در حال تکمیل. (عکس: تامسین متلرکمپ)

 

مزارع بادی Brandvalley و Rietkloof بخشی از گروهی از پروژه‌هایی هستند که در فوریه ۲۰۲۳ تحت پنجره مزایده ۵ برنامه تامین انرژی تجدیدپذیر آفریقای جنوبی با مشارکت بخش خصوصی (REIPPP) به مرحله تامین مالی نهایی رسیدند. انتظار می‌رود هر دو پروژه در سه ماهه چهارم سال جاری به صورت تجاری به بهره‌برداری برسند.

2 fb30ae - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

تیغه یک توربین بادی توسط جرثقیل در نیروگاه بادی Brandvalley بلند می‌شود. (عکس: تامسین متلرکمپ)

 

 

3 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

کارگران در پایه‌ی یک توربین بادی در حال ساخت در نیروگاه بادی Brandvalley. کارگران سمت راست با استفاده از طناب‌های بلند، زاویه تیغه‌ای را که توسط جرثقیل بلند می‌شود، تنظیم می‌کنند. (عکس: تامسین متلرکمپ)

توسعه بخش تولید برق بادی در آفریقای جنوبی

در سال‌های اخیر، بخش انرژی‌های تجدیدپذیر آفریقای جنوبی با سرعت زیادی گسترش یافته است. انبوهی از پروژه‌های ساختمانی ظرفیت تولید برق از طریق انرژی خورشیدی و بادی را افزایش داده است.

شرکت Eskom گزارش داد که از تاریخ ۱ ژوئن ۲۰۲۳ تا ۳۱ می ۲۰۲۴، ۱۱.۴ تراوات ساعت انرژی از مزارع بادی خصوصی تحت برنامه REIPPPP خریداری کرده است. در حال حاضر ۴۰ مزرعه بادی تحت این برنامه وجود دارد که ۳۴ مورد از آنها با ظرفیت مشترک ۳۳۵۷.۳ مگاوات در حال بهره‌برداری تجاری هستند. شش مزرعه بادی دیگر نیز در حال ساخت می‌باشند.

4 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

نیروگاه بادی Brandvalley در حال ساخت در سایتی در امتداد مرزهای کیپ غربی و کیپ شمالی. (عکس: تامسین متلرکمپ)

 

نوسان در میزان تولید برق بادی در آفریقای جنوبی

شرکت Eskom اعلام کرده است که میزان برقی که روزانه توسط انرژی بادی وارد شبکه برق آفریقای جنوبی می‌شود، بسیار متغیر است. بالاترین میزان ثبت‌شده تولید برق بادی در یک روز، ۳۱۰۰ مگاوات بوده است، در حالی که این میزان می‌تواند تا حدود ۲۰۰ مگاوات نیز کاهش یابد.

این بخش اطلاعات تکمیلی راجع به نوسانات تولید برق بادی در آفریقای جنوبی ارائه می‌دهد و با متن قبلی در مورد توسعه این بخش مرتبط است.

نوسانات فصلی در تولید برق بادی

بر اساس گفته‌های Eskom، «به دلیل نصب بیشتر ژنراتورهای بادی در امتداد مناطق ساحلی کیپ، در تولید برق بادی آفریقای جنوبی، قطعاً فصل‌بندی وجود دارد. در تابستان، تولید برق بادی در طول شب به شدت کاهش می‌یابد و در زمان غروب آفتاب به حداکثر میزان خود در طول روز می‌رسد.»

«این امر به دلیل بادهای قوی دریایی است که به سمت غروب آفتاب می‌وزند و ناشی از اختلاف دما بین خشکی و دریا است. این الگو تقریباً به طور کامل با الگوی تقاضای برق کشور مطابقت دارد، زیرا بالاترین تقاضا در عصر و حوالی غروب آفتاب است.»

این متن جزئیات بیشتری را در مورد دلایل نوسانات روزانه تولید برق بادی ارائه می دهد و همچنین به ارتباط بین این نوسانات و تقاضای برق کشور اشاره می کند.

5 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

بادسنج و جهت‌یاب باد در بالاترین نقطه توربین بادی نیروگاه Brandvalley، بر روی محفظه (محل قرارگیری تجهیزات) یا بالای دکل نصب شده‌اند. (عکس: تامسین متلرکمپ)

چالش‌های تولید برق بادی در زمستان

متاسفانه، میزان تولید برق بادی در زمستان تحت تاثیر جبهه‌های سردی است که از مناطق کیپ عبور می‌کنند. قبل از رسیدن جبهه سرد، بادهای شدید می‌وزند و این امر به طور قابل توجهی خروجی تولید برق بادی را افزایش می‌دهد. با عبور جبهه سرد از مناطق کیپ، حوضه کم‌فشار پشت این جبهه باعث کاهش شدید تولید برق بادی می‌شود.

موسسه Eskom گزارش می‌دهد که: «این خروجی بالا به دنبال خروجی پایین اغلب طی ۳۶ تا ۴۸ ساعت اتفاق می‌افتد و با رسیدن هوای سرد به گائوتنگ همزمان می‌شود. بنابراین، علاوه بر تامین تقاضای اضافی ناشی از هوای سرد، باید کمبود ناشی از کاهش تولید برق بادی را نیز جبران کند.»

6 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : هاب روتور یک توربین بادی در مزرعه بادی برندوالی. توپی روتور پره ها را نگه می دارد و آنها را به محور اصلی توربین بادی متصل می کند. (عکس: Tamsin Metelerkamp)

غول‌های بادی مقاوم

شرکت Red Rocket Energy، تولیدکننده مستقل انرژی و مسئول این پروژه‌ها، اعلام کرده است که توربین‌های بادی در مزارع بادی Brandvalley و Rietkloof دارای عمر مفید حداقل ۲۰ ساله هستند، اما بسته به شرایط خاص محل، می‌توانند تا ۳۰ سال یا بیشتر عمر کنند.

بزرگی قطعات تشکیل دهنده هر توربین بادی، افراد حاضر در محل را بسیار کوچک نشان می‌دهد. به گفته اولوین هوفمان، رئیس بخش مدیریت پروژه، تدارکات و ساخت‌وساز در شرکت Red Rocket Energy، طول هر تیغه تقریباً ۷۴ متر و قطر کامل روتور برای یک سازه کامل ۱۵۰ متر است. همچنین ارتفاع محل اتصال پره‌ها (هاب) ۹۰ متر و ارتفاع نوک تیغه‌ها ۱۶۵ متر می‌باشد.

7 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : تیغه یک توربین بادی در مزرعه بادی برندوالی. (عکس: Tamsin Metelerkamp)

 

8 - رصد تولید برق بادی با مطالعه موردی نیروگاه بادی در آفریقای جنوبی

عکس : اولوین هافمن، رئیس پروژه، مدیریت تدارکات و ساخت و ساز در Red Rocket Energy، در مقابل تیغه یک توربین بادی در مزرعه بادی برندوالی. (عکس: Tamsin Metelerkamp)

 

هافمن گفت: جرثقیل مورد استفاده برای بلند کردن پره ها در بالای توربین ها باید دمونتاژ شود و با استفاده از 25 کامیون حمل و نقل شود.

 

در حالی که تعداد کارکنان شاغل در سایت های مزرعه بادی در طول فرآیند ساخت و ساز متفاوت است، در این مرحله به طور متوسط ​​روزانه 600 کارمند در هر سایت وجود دارد. بیش از 25 درصد از این کارکنان از جوامع اطراف پروژه ها هستند.

بر اساس گفته های شرکت انرژی رد راکت، نگرانی مهمی که کار در سایت های برندولی و ریتکلوف را هدایت می کند، اطمینان از طراحی، ساخت و بهره برداری از تمام سازه ها مطابق با قوانین ملی و بین المللی، دستورالعمل ها و بهترین روش های موجود برای محافظت از محیط زیست و حفظ تنوع زیستی است.

این پروژه ها از طریق فرآیندهای ارزیابی تأثیر زیست محیطی مجوز معتبر زیست محیطی دریافت کرده اند.

شرکت رد راکت توضیح داد: «این پروژه ها برای دستیابی به رویکرد “بدون کاهش خالص” [در زمینه] تنوع زیستی، به ویژه برای گونه های در معرض خطر و اکوسیستم ها تلاش می کنند. اگرچه تأثیرات پرندگان را نباید به تنهایی در نظر گرفت، اما این تأثیرات از طریق مجوزهای زیست محیطی (EA) و برنامه های مدیریت زیست محیطی (EMPr) پروژه ها به شدت مورد نظارت و مدیریت قرار می گیرند.»

«هر دو نیروگاه بادی برندولی و ریتکلوف برای کاهش تأثیر بر پرندگان، از تیغه های توربین با الگوی خاص به عنوان اولین سطح کاهش آسیب استفاده کرده اند. علاوه بر این، نیروگاه بادی برندولی از فناوری پیشرو در صنعت به نام سیستم خاموش شدن خودکار بر اساس تقاضا استفاده خواهد کرد… سایر اقدامات تکنولوژیکی زیست محیطی در محل شامل اجرای روشنایی فعال با حسگر برای کاهش تأثیرات بصری در شب طبق مقررات هواپیمایی کشوری است.»

نویسنده : دپارتمان خبری آرا نیرو 

 

 

 

 

 

 

 

چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

حذف ارز نیمایی برای پنل و اینورتر خورشیدی و همچنین خروج کالاهای مرتبط با نیروگاه‌های خورشیدی از فهرست 750 قلم کالای قابل واردات با ارز نیمایی، چالش‌های متعددی را برای این صنعت در ایران به وجود خواهد آورد.

برخی از این چالش‌ها عبارتند از:
* افزایش قیمت تجهیزات: با حذف ارز نیمایی، قیمت پنل‌ها و اینورترهای خورشیدی به طور قابل توجهی افزایش یافته است. این امر باعث شده تا سرمایه‌گذاری در احداث نیروگاه‌های خورشیدی از صرفه اقتصادی خارج شده و از تمایل بخش خصوصی برای سرمایه‌گذاری در این حوزه کاسته شود.

* کاهش تولید: افزایش قیمت تجهیزات، به طور مستقیم در روند تولید و احداث نیروگاه‌های خورشیدی تاثیر منفی خواهد گذاشت. از آنجایی که قیمت تمام شده تولید برق خورشیدی افزایش میابد، تمایل برای احداث نیروگاه‌های جدید کاهش پیدا خواهد کرد.

* مشکلات تامین تجهیزات: در صورتیکه واردات پنل و اینورتر خورشیدی با ارز نیمایی امکان‌پذیر نباشد،  یافتن و تامین این تجهیزات از طریق واردات با ارز آزاد با دشواری‌های زیادی همراه خواهد شد. این امر علاوه بر افزایش قیمت، به طولانی شدن زمان احداث نیروگاه‌های خورشیدی نیز منجر می‌شود.
با وجود تاکید بر توسعه انرژی‌های تجدیدپذیر،  میبایست حمایت‌های کافی از سوی دولت برای جبران چالش‌های پیش روی این صنعت صورت گیرد. نبود سیاست‌های تشویقی و عدم ارائه تسهیلات مناسب به سرمایه‌گذاران، از جمله موانعی است که بر سر راه توسعه این صنعت در ایران قرار دارد.
علاوه بر این چالش‌ها، موارد زیر نیز می‌توانند به عنوان پیامدهای حذف ارز نیمایی برای صنعت  خورشیدی ایران در نظر گرفته شوند:

* افزایش وابستگی به سوخت‌های فسیلی: با افزایش هزینه تولید برق خورشیدی، تمایل به استفاده از سوخت‌های فسیلی افزایش خواهد یافت. این امر نه تنها مغایر با اهداف توسعه پایدار و حفظ محیط زیست است،  بلکه به تشدید آلودگی هوا و افزایش آلاینده‌های زیست‌محیطی نیز منجر می‌شود.

* از دست رفتن فرصت‌های شغلی: صنعت  خورشیدی در ایران پتانسیل ایجاد اشتغال قابل توجهی را دارد. با توقف روند توسعه این صنعت،  فرصت‌های شغلی زیادی از بین خواهد رفت.

* کاهش تنوع در منابع تولید برق:  حذف ارز نیمایی برای  خورشیدی  تنوع در منابع تولید برق را کاهش خواهد داد و وابستگی کشور به یک منبع خاص انرژی را افزایش می‌دهد. این امر می‌تواند امنیت انرژی کشور را به خطر انداخته و در زمان‌های بحران،  مشکلات عدیده‌ای را به وجود آورد. ضمن اینکه مشکل ناترازی برق کشور قابل حل نخواهد بود مگر با رویکرد حمایتی از نیروگاه های خورشیدی‌.
در نهایت،  لازم است به این نکته توجه شود که حذف ارز نیمایی برای تجهیزات خورشیدی  تنها به ضرر این صنعت نیست،  بلکه پیامدهای منفی آن دامنه‌ گسترده‌تری را شامل می‌شود و می‌تواند به طور کلی بر روند توسعه پایدار ایران تاثیر منفی بگذارد.

 

energy renewable solar panel transmission lines - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

راهکارهای پیشنهادی:

*حفظ ارز نیمایی و البته بهتر از آن تخصیص ارز ترجیحی به تجهیزات نیروگاه خورشیدی؛
نجات کشور از ریسک خاموشی سراسری، به حمایت‌های دولتی از صنعت فتوولتائیک وابسته است. این حمایت ها می‌تواند احداث نیروگاه های خورشیدی در ایران را تسریع کند و علاوه بر حل مشکل ناترازی برق و افزایش قابلیت اطمینان شبکه توزیع برق کشور به اقتصاد کشور کمک شایانی کرده و سبب ارز آوری برای کشور باشد.

* اعطای  تسهیلات و حمایت‌های مالی به سرمایه‌گذاران در این حوزه:  ارائه وام‌های کم‌بهره،  تخفیف در مالیات و عوارض گمرکی،  و همچنین ارائه یارانه‌های حمایتی از جمله اقداماتی هستند که می‌توانند برای جبران افزایش قیمت تجهیزات و تشویق سرمایه‌گذاری در این صنعت  مفید باشند.

* تدوین قوانین و مقررات حمایتی:  برقراری قوانین و مقررات شفاف و  حمایتی  می‌تواند  به  ایجاد  محیطی  مناسب برای  توسعه  این  صنعت  در  ایران  کمک  کند.

* تخصیص خطوط اعتباری: می‌تواند با اختصاص خطوط اعتباری کم‌بهره به سرمایه‌گذاران در این حوزه،  زمینه را برای احداث و توسعه نیروگاه‌های خورشیدی فراهم کرد.

* جذب  سرمایه‌گذاری  بخش  خصوصی  در  حوزه  خورشیدی :  دولت  می‌تواند  با  ایجاد  فضایی  مناسب  برای  فعالیت  بخش  خصوصی  و  ارائه  تسهیلات  لازم،  زمینه  را  برای  جذب  سرمایه‌گذاری  بیشتر  در  این  حوزه  فراهم  کند.

* توسعه  مشارکت‌های  عمومی-خصوصی:  توسعه  مشارکت‌های  عمومی-خصوصی  می‌تواند  به  اجرای  پروژه‌های  بزرگ  خورشیدی  و  کاهش  هزینه‌های  احداث  این  نیروگاه‌ها  کمک  کند.

istockphoto 1345681583 612x612 1 - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

با  اجرای  این  راهکارها  می‌توان  امید  داشت  که  چالش‌های  موجود  در  مسیر  توسعه  صنعت  خورشیدی  در  ایران  تا  حد  زیادی  مرتفع  شود  و  این  صنعت  به  عنوان  یکی  از  منابع  اصلی  تولید  برق  در  کشور  نقش  آفرینی  کند.
علاوه بر موارد ذکر شده، موارد زیر نیز می‌توانند به عنوان راهکارهای تکمیلی برای مقابله با چالش‌های نیروگاه‌های خورشیدی در ایران در نظر گرفته شوند:

* تسهیل صدور مجوزها:  بسیاری از سرمایه‌گذاران در این حوزه با بروکراسی پیچیده و زمان‌بر صدور مجوزها مواجه هستند.  تسهیل و streamlined کردن این فرآیند می‌تواند به تسریع روند احداث نیروگاه‌های خورشیدی و کاهش هزینه‌های سرمایه‌گذاری کمک کند.

* آموزش  نیروی  انسانی  متخصص:  توسعه  برنامه‌های  آموزشی  در  دانشگاه‌ها  و  مراکز  آموزشی  می‌تواند  به  تربیت  نیروی  انسانی  متخصص  در  زمینه  خورشیدی  و  ایجاد  زیربنای  لازم  برای  رشد  و  توسعه  این  صنعت  در  کشور  کمک  کند.

* استفاده  از  ظرفیت  صادرات:  ایران  از  نظر  پتانسیل  خورشیدی  یکی  از  کشورهای  برخوردار  در  منطقه  است.  با  توسعه  این  صنعت  و  کاهش  هزینه‌های  تولید،  می‌توان  از  ظرفیت  صادرات  برق  خورشیدی  به  کشورهای  همسایه  نیز  استفاده  کرد.

در  نهایت،  لازم  است  به  این  نکته  توجه  شود  که  توسعه  صنعت  خورشیدی  در  ایران  نیازمند  یک  عزم  ملی  و  همکاری  همه  دستگاه‌ها  و  نهادهای  ذیربط  است.  با  اتخاذ  سیاست‌های  مناسب  و  حمایت  از  این  صنعت،  می‌توان  امید  داشت  که  ایران  به  یکی  از  پیشگامان  منطقه  در  زمینه  استفاده  از  انرژی  خورشیدی  تبدیل  شود.

نویسنده: دپارتمان خبری آرا نیرو

محققان دپارتمان شیمی UNC-Chapel Hill از نیمه هادی ها برای برداشت و تبدیل انرژی خورشید به ترکیبات پر انرژی استفاده می کنند که پتانسیل تولید سوخت های سازگار با محیط زیست را دارند.

در مقاله منتشر شده در ACS Energy Letters، “خاتمه متیل (Methyl) سیلیکون نوع p باعث کاهش انتخابی CO2 فوتوالکتروشیمیایی توسط یک کاتالیزور مولکولی روتنیم (ruthenium) می شود.” محققان توضیح می دهند که چگونه از فرآیندی به نام خاتمه متیل (Methyl termination) استفاده می کنند که از یک ترکیب آلی ساده از یک کربن استفاده می کند. اتم به سه اتم هیدروژن پیوند می زند تا سطح سیلیکون را که یک جزء ضروری در سلول های خورشیدی است، اصلاح کند تا عملکرد آن در تبدیل دی‌اکسید کربن به مونوکسید کربن با استفاده از نور خورشید بهبود یابد.

این تحقیق با فرآیندی به نام فتوسنتز مصنوعی انجام شد که نحوه عملکرد گیاهان در استفاده از نور خورشید را برای تبدیل دی اکسید کربن به مولکول های غنی از انرژی تقلید می کند.

دی اکسید کربن یکی از گازهای گلخانه ای اصلی است که به تغییرات آب و هوایی منجر می شود. با تبدیل آن به مونوکسید کربن، که یک گاز گلخانه ای کمتر مضر و یک بلوک ساختمانی برای سوخت های پیچیده تر است، محققان گفتند که به طور بالقوه می توانند اثرات زیست محیطی انتشار دی اکسید کربن را کاهش دهند.

گابریلا بین، نویسنده اول مقاله و دکترا، می‌گوید: «یکی از چالش‌های انرژی خورشیدی این است که همیشه زمانی که ما بیشترین نیاز را به آن داریم، در دسترس نیست. چالش دیگر این است که الکتریسیته تجدیدپذیر، مانند برق ناشی از صفحات خورشیدی، مستقیماً مواد خام مورد نیاز برای ساخت مواد شیمیایی را تامین نمی کند. هدف ما ذخیره انرژی خورشیدی به شکل سوخت های مایع است که میتواند بعداً مورد استفاده قرار گیرد.
محققان از یک کاتالیزور مولکولی روتنیم با یک تکه سیلیکون اصلاح شده شیمیایی به نام فوتوالکترود استفاده کردند که با استفاده از انرژی نور بدون تولید محصولات جانبی ناخواسته مانند گاز هیدروژن، تبدیل دی اکسید کربن به مونوکسید کربن را تسهیل کرد و این فرآیند را برای تبدیل کربن دی اکسید به مواد دیگر کارآمدتر کرد.

جیلیان دمپسی، یکی از نویسندگان مقاله و پروفسور بومن و گوردون گری، گفت که وقتی آزمایش‌هایی را در محلولی پر از دی اکسید کربن انجام دادند، متوجه شدند که می‌توانند مونوکسید کربن را با بازده 87 درصد تولید کنند، به این معنی که سیستم از فوتوالکترودهای سیلیکونی اصلاح شده قابل مقایسه یا بهتر از سیستم هایی هستند که از الکترودهای فلزی سنتی مانند طلا یا پلاتین استفاده می کنند.

علاوه بر این، فوتوالکترود سیلیکونی 460 میلی ولت انرژی الکتریکی کمتری برای تولید واکنش مصرف کرد. دمپسی این را مهم خواند زیرا این فرآیند از برداشت مستقیم نور برای تکمیل یا جبران انرژی لازم برای هدایت واکنش شیمیایی که دی اکسید کربن را به مونوکسید کربن تبدیل می کند، استفاده می کند.

دمپسی می‌گوید: «چیز جالب این است که معمولاً سطوح سیلیکونی به جای مونوکسید کربن، گاز هیدروژن می‌سازند، که تولید آن از دی‌اکسید کربن را سخت‌تر می‌کند.

“با استفاده از این سطح سیلیکونی خاص با پایانه متیل، ما توانستیم از این مشکل جلوگیری کنیم. اصلاح سطح سیلیکون، فرآیند تبدیل CO2 به مونوکسید کربن را در آینده کارآمدتر و انتخابی تر می کند، که می تواند برای ساخت سوخت های مایع از نور خورشید در محیط بسیار مفید باشد.”
نویسنده: دپارتمان خبری آرا نیرو
منبع : University of North Carolina at Chapel Hill

شرکت Longi پنل خورشیدی ضد گرد و غبار را برای بخش C&I راه اندازی کرد

سازنده چینی خورشیدی Longi یک ماژول جدید “ضد گرد و غبار” را برای بازار تجاری و صنعتی (C&I) در استرالیا توسعه داده است. قاب به صورت هم سطح روی شیشه در ساید کوتاه قرار می گیرد و امکان می دهد که آب در لبه های فریم ماژول جمع نشود.

شرکت Longi ماژول جدید Hi-MO X6 Guardian C&I خود را در کنفرانس انرژی هوشمند سیدنی معرفی کرده است.

ماژول بازار استرالیا به آب اجازه می دهد تا آزادانه از سطح آن خارج شود، بنابراین بقایای گرد و غبار در اطراف لبه هایی که قاب به شیشه می رسد جمع نمی شود. با این حال، ماژول همچنان دارای قاب بندی سنتی در طرف های بلندتر خود است، بنابراین ماژول ها باید به جای افقی، بر روی یک محور عمودی نصب شوند.

photo 2024 03 12 18 56 03 - شرکت Longi پنل خورشیدی ضد گرد و غبار را برای بخش C&I راه اندازی کرد

Image: pv magazine

این ماژول از فناوری تماس برگشتی (BC) استفاده می‌کند که Longi محدوده استرالیایی خود را در سال 2023 به طور کامل به آن تغییر داد. فناوری BC مزایایی برای کارایی پنل خورشیدی دارد، زیرا تلفات سایه را کاهش می‌دهد.

حداکثر توان خروجی ماژول گاردین 590 وات است. این ماژول بزرگ است، ابعاد آن 2281 میلی‌متر در 1134 میلی‌متر است و وزن آن 27.2 کیلوگرم است.

این شرکت قصد دارد یک پنل خورشیدی برای نیروگاه‌ خورشیدی خانگی با همان مفهوم قاب خود تمیز شونده را در سه ماهه سوم یا چهارم سال جاری با ابعاد حدود 1722 میلی متر در 1134 میلی متر عرضه کند.

از نظر هزینه، شرکت اعلام کرد که Hi-MO X6 Guardian حدود 0.30 دلار استرالیا (0.20 دلار) در هر وات عرضه می شود.

در اواخر این ماه، Longi همچنین یک ماژول جدید Ultra Black را با توان خروجی 440 وات به بازار نیروگاه خورشیدی خانگی استرالیا عرضه خواهد کرد. یکی از ویژگی پنل‌های Ultra Black این است که ضد اثر انگشت است و کار را برای نصب کنندگان آسان تر می کند.
شرکت Longi تنها شرکت در بازار استرالیا نیست که ماژول ضد گرد و غبار بر اساس طراحی قاب پایین‌تر دارد. DAH Solar ماژول تمام صفحه خود را از اکتبر 2023 از طریق عمده‌فروش Austra Energy در کشور عرضه می‌کند. ماژول DAH Full Screen برای جلوگیری از تجمع گرد و غبار و آب، تمام لبه های قاب خود را پایین آورده است.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله PV

نقش فیوزها در نیروگاه خورشیدی فتوولتائیک
فیوزها در نیروگاه‌های خورشیدی فتوولتائیک (PV) نقشی حیاتی برای حفاظت از تجهیزات و ایمنی افراد ایفا می‌کنند. وظایف اصلی فیوزها در این سامانه‌ها عبارتند از:

1. حفاظت از پنل‌های خورشیدی:
در صورت اتصال کوتاه یا اضافه بار در پنل‌های خورشیدی، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن پنل‌ها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد پنل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

2. حفاظت از کابل‌ها:
در صورت اتصال کوتاه یا اضافه بار در کابل‌های رابط بین پنل‌ها و سایر تجهیزات، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن کابل‌ها جلوگیری شود.
فیوزها با قطع جریان، از ذوب شدن کابل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

3. حفاظت از اینورترها:
در صورت اتصال کوتاه یا اضافه بار در اینورترها، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن اینورترها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد اینورترها و بروز آتش‌سوزی جلوگیری می‌کنند.

4. حفاظت از جان افراد:
در صورت بروز نقص الکتریکی در سامانه PV، فیوزها جریان را قطع می‌کنند تا از برق گرفتگی افراد جلوگیری شود.

انواع فیوزهای مورد استفاده در نیروگاه‌های خورشیدی:
فیوزهای DC: این نوع فیوزها برای حفاظت از مدارهای DC در سامانه‌های PV استفاده می‌شوند.
فیوزهای AC: این نوع فیوزها برای حفاظت از مدارهای AC در سامانه‌های PV استفاده می‌شوند.
نکات مهم در انتخاب فیوز برای نیروگاه‌های خورشیدی:
جریان نامی: فیوز باید با توجه به جریان نامی مدار انتخاب شود.
ولتاژ نامی: فیوز باید با توجه به ولتاژ نامی مدار انتخاب شود.
ظرفیت قطع: فیوز باید با توجه به ظرفیت قطع مورد نیاز سامانه PV انتخاب شود.

نتیجه:
فیوزها جزئی ضروری از سامانه‌های PV هستند و نقش مهمی در حفاظت از تجهیزات و افراد ایفا می‌کنند. انتخاب و نصب صحیح فیوزها می‌تواند از بروز مشکلات و خطرات احتمالی جلوگیری کند.
کمیسیون بین‌المللی الکتروتکنیک (IEC) نیز الزامات و روش‌های تست فیوزهای مخصوص نیروگاه‌های خورشیدی را به تفصیل ارائه داده که خلاصه آن را به شرح زیر ارائه می‌دهیم.
استاندارد IEC 60269: فیوزها – فیوزهای مخصوص سامانه‌های فتوولتائیک
این بخش از IEC 60269 الزامات و روش‌های تست فیوزهای مخصوص سامانه‌های فتوولتائیک (PV) را ارائه می‌دهد. هدف از این استاندارد، تضمین عملکرد ایمن و قابل اعتماد فیوزها در سامانه‌های PV است.

دامنه کاربرد
این استاندارد برای فیوزهای مورد استفاده در سامانه‌های PV با ولتاژ نامی DC تا 1500 ولت و جریان نامی تا 1250 آمپر قابل استفاده است. این استاندارد شامل فیوزهای مورد استفاده در هر دو نوع سامانه PV متصل به شبکه و مستقل از شبکه است.

تعاریف
در این استاندارد، اصطلاحات زیر به کار رفته است:
سامانه فتوولتائیک: سامانه‌ای که از سلول‌های فتوولتائیک برای تبدیل انرژی تابشی خورشید به انرژی الکتریکی استفاده می‌کند.
سامانه فتوولتائیک متصل به شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل است.
سامانه فتوولتائیک مستقل از شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل نیست.
فیوز: وسیله‌ای که برای قطع جریان الکتریکی در صورت عبور جریان بیش از حد از آن طراحی شده است.

الزامات
فیوزهای مورد استفاده در سامانه‌های PV باید الزامات زیر را برآورده کنند:
ظرفیت قطع: فیوز باید قادر به قطع جریان اتصال کوتاه در سامانه PV باشد.
توانایی قطع جریان معکوس: فیوز باید قادر به قطع جریان معکوس در سامانه PV باشد.
ویژگی‌های ولتاژ-جریان: فیوز باید دارای مشخصات ولتاژ-جریان مناسب برای استفاده در سامانه PV باشد.
عایق بندی: فیوز باید دارای عایق بندی مناسب برای استفاده در سامانه PV باشد.
مقاومت در برابر محیط: فیوز باید در برابر شرایط محیطی مختلف مقاوم باشد.
روش‌های تست
این استاندارد روش‌های تستی را برای ارزیابی انطباق فیوزها با الزامات ذکر شده در بالا ارائه می‌دهد.

پیوست‌ها
این استاندارد شامل پیوست‌های زیر است:
پیوست A: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV متصل به شبکه
پیوست B: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV مستقل از شبکه
پیوست C: روش‌های تست برای ارزیابی توانایی قطع جریان معکوس
پیوست D: روش‌های تست برای ارزیابی ویژگی‌های ولتاژ-جریان

فهرست مراجع
• IEC 60269-1:2000, Low-voltage fuses – Part 1: General requirements
• IEC 60269-2:2007, Low-voltage fuses – Part 2: Supplementary requirements for a.c. fuse-links for rated voltages up to 1 000 V
• IEC 60947-1:2007, Low-voltage switchgear and controlgear – Part 1: General rules
تاریخ انتشار
2015
نسخه
1.0
نویسنده: دپارتمان خبری آرا نیرو
منبع:
کمیسیون بین‌المللی الکتروتکنیک (IEC)

راهکارهای شبکه هوشمند Smart Grid برای رفع ناترازی برق
شبکه‌های هوشمند (Smart Grids) مجموعه‌ای از فناوری‌ها و راه‌حل‌ها هستند که می‌توانند برای بهبود پایداری، انعطاف‌پذیری و راندمان شبکه‌های برق

مورد استفاده قرار گیرند. این شبکه‌ها می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند.

برخی از راهکارهای شبکه هوشمند برای رفع ناترازی برق عبارتند از:

1. مدیریت تقاضا که شامل موارد زیر می‌باشد؛

قیمت‌گذاری پویا: با تغییر قیمت برق در زمان‌های مختلف روز، می‌توان مصرف‌کنندگان را به مصرف در زمان‌های کم‌بار ترغیب کرد.

کنترل بار: با استفاده از فناوری‌های هوشمند، می‌توان مصرف برق را در زمان‌های اوج مصرف به طور خودکار کاهش داد.

پاسخگویی به تقاضا: با ارائه مشوق به مصرف‌کنندگان، می‌توان آنها را به کاهش مصرف برق در زمان‌های بحرانی تشویق کرد.

2. افزایش تولید برق؛

استفاده از منابع انرژی تجدیدپذیر: با استفاده از منابع انرژی تجدیدپذیر مانند نیروگاه خورشیدی و بادی می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد.
ذخیره‌سازی انرژی: با ذخیره‌سازی انرژی در زمان‌های تولید مازاد، می‌توان از آن در زمان‌های کمبود برق استفاده کرد.

3. ارتقای شبکه؛

استفاده از فناوری‌های دیجیتال: با استفاده از فناوری‌های دیجیتال مانند هوش مصنوعی و یادگیری ماشین می‌توان شبکه را به طور بهینه‌تر مدیریت کرد.

ایجاد شبکه‌های توزیع هوشمند: با ایجاد شبکه‌های توزیع هوشمند، می‌توان به طور موثرتری برق را به مصرف‌کنندگان رساند.

4. افزایش تعامل با مصرف‌کنندگان؛

ارائه اطلاعات به مصرف‌کنندگان: با ارائه اطلاعات به مصرف‌کنندگان در مورد مصرف برقشان، می‌توان آنها را به مصرف بهینه‌تر برق تشویق کرد.

توانمندسازی مصرف‌کنندگان: با ارائه ابزارهای لازم به مصرف‌کنندگان، می‌توان آنها را در مدیریت مصرف برق خود مشارکت داد.

مزایای استفاده از شبکه‌های هوشمند برای رفع ناترازی برق:

کاهش وابستگی به منابع انرژی فسیلی: با استفاده از شبکه‌های هوشمند می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد و انتشار گازهای گلخانه‌ای را کاهش داد.

افزایش پایداری شبکه: شبکه‌های هوشمند می‌توانند پایداری شبکه را در برابر اختلالات و حوادث افزایش دهند.

کاهش هزینه‌ها: با استفاده از شبکه‌های هوشمند می‌توان هزینه‌های تولید و توزیع برق را کاهش داد.

چالش‌های استفاده از شبکه‌های هوشمند:

هزینه اولیه بالا: پیاده‌سازی شبکه‌های هوشمند نیازمند سرمایه‌گذاری اولیه بالا است.

امنیت سایبری: شبکه‌های هوشمند به دلیل استفاده از فناوری‌های دیجیتال، در معرض تهدیدات سایبری هستند.

نیاز به آموزش: برای استفاده از شبکه‌های هوشمند، نیاز به آموزش و ظرفیت‌سازی در بین مصرف‌کنندگان و اپراتورها وجود دارد.

نتیجه‌گیری:

شبکه‌های هوشمند می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند. با استفاده از این شبکه‌ها می‌توان پایداری، انعطاف‌پذیری و راندمان شبکه‌های

برق را افزایش داد و هزینه‌ها را کاهش داد. با وجود برخی چالش‌ها، مزایای استفاده از شبکه‌های هوشمند بسیار بیشتر از هزینه‌های آن است.

در مقالات آتی به جزئیات بیشتری از شبکه‌های هوشمند می‌پردازیم.

 

نویسنده: دپارتمان خبری آرا نیرو

منابع:
وب‌سایت‌ها:
• U.S. Department of Energy – Office of Electricity
• National Institute of Standards and Technology (NIST): (https://www.nist.gov/smartgrid)
• Smart Grid International
• Electric Power Research Institute (EPRI)
مجله‌ها:
• IEEE Transactions on Smart Grid: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
• IET Smart Grid
• Elsevier – Renewable and Sustainable Energy Reviews: https://www.sciencedirect.com/journal/renewable-and-sustainable-energy-reviews
کتاب‌ها:
• Smart Grid: Modernization of Electric Power Delivery, by James Momoh
• The Smart Grid: An Introduction, by Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, and Akihiko Yokoyama
• Power Systems: Modeling, Computation, and Applications, by Abhijit Chakrabarti and Sunita Misra
گزارش‌ها:
• The Smart Grid: An Overview of Opportunities and Challenges, by the U.S. Department of Energy
• Modernizing the Electric Grid: A Primer on Smart Grid Technologies and Their Benefits, by the Electric Power Research Institute
سازمان‌ها:
• International Smart Grid Action Network (ISGAN)
• Smart Grid European Technology Platform (SG-ETP)
•  Google Scholar

ناترازی برق همسایگان ایران

قسمت اول؛ عراق

 

ناترازی برق به عدم تعادل بین تولید و مصرف برق اشاره دارد. به عبارت دیگر، زمانی که تقاضا برای برق از عرضه آن بیشتر باشد.

شرکت ره آورد آرا نیرو تصمیم دارد در یک رشته مقاله به واکاوی ناترازی برق در ایران و همسایگان خود بپردازد و درنهایت راهکاری مهندسی شده برای گذر از ناترازی در برق ارائه دهد. با ما همراه باشید.

 

وضعیت ناترازی در عراق:

عراق با ناترازی قابل توجهی در برق روبرو است. تقاضا برای برق در این کشور به طور فزاینده ای در حال افزایش است، در حالی که ظرفیت تولید برق به اندازه کافی برای پاسخگویی به این تقاضا افزایش نیافته است.

 

چالش های صنعت برق عراق کمبود تولید، فرسودگی و کمبود تجهیزات در نیروگاه های برق، وابستگی به واردات گاز از ایران، ناتوانی در تامین کامل نیازهای داخلی، قطعی برق به خصوص در فصل های گرم سال که در مناطق مختلف شدت های متفاوتی دارد و اثرات منفی بر زندگی روزمره و فعالیت های اقتصادی گذاشته است.

Direct Cost of Electricity Shortage on Iraqs GDP 2007 2020 Authors analysis - ناترازی برق همسایگان ایران

source:https://www.researchgate.net/

دلایل ناترازی:

 

کمبود سرمایه گذاری:

کمبود سرمایه گذاری در بخش برق، منجر به فرسودگی تجهیزات و ناکارآمدی شبکه برق شده است.

 

البته فساد در بخش برق، که مانع استفاده بهینه از منابع و سرمایه گذاری ها شده است و حملات تروریستی به تاسیسات برق، نیز از چالش های مهم در عراق است.

 

رشد جمعیت عراق نیز از عوامل دیگر این ناترازی است که گرمای هوا، منجر به افزایش استفاده از کولرهای گازی در بخش مسکونی و به تبع آن افزایش تقاضا برای برق در فصل های گرم سال می‌شود.

 

عواقب ناترازی برق، قطعی برق و آسیب به اقتصاد و به تبع آن نارضایتی عمومی است.

 

راه حل های ناترازی:

افزایش سرمایه گذاری: 

دولت عراق باید در بخش برق سرمایه گذاری بیشتری کند تا ظرفیت تولید برق را افزایش دهد.

 

توسعه خطوط انتقال برق: 

دولت عراق باید خطوط انتقال برق را توسعه دهد تا پایداری شبکه برق را افزایش دهد.

افزایش استفاده از منابع انرژی تجدیدپذیر: 

دولت عراق باید از منابع انرژی تجدیدپذیر، مانند نیروگاه خورشیدی و نیروگاه بادی، بیشتر استفاده کند.

Lincoln AggregationGraphic1 TownEversource - ناترازی برق همسایگان ایران

source:https://www.masspowerchoice.com/

بهینه سازی مصرف: 

دولت عراق باید با برنامه های آموزشی و تشویقی، مردم را به مصرف بهینه برق تشویق کند.

 

چشم انداز:

حل کامل مشکل ناترازی برق در عراق به زمان و سرمایه گذاری قابل توجهی نیاز دارد. انتظار می رود که با اجرای راه حل های ذکر شده، ناترازی برق در سالهای آینده به تدریج کاهش یابد.

 

جزئیات تقاضای برق در عراق:

 

عوامل موثر:

 

جمعیت عراق حدود 40 میلیون نفر است و به طور فزاینده ای در حال افزایش است. افزایش جمعیت، منجر به افزایش تقاضا برای برق در عراق شده است.

رشد اقتصادی عراق در سال های اخیر به طور متوسط ​​4% بوده است. رشد اقتصادی، منجر به افزایش تقاضا برای برق در بخش های مختلف اقتصادی شده است.

عراق در منطقه ای گرم و خشک واقع شده است. استفاده از کولرهای گازی در فصل های گرم سال، منجر به افزایش تقاضا برای برق می شود.

 

میزان تقاضا:

تقاضا برای برق در عراق در حال حاضر حدود 25 گیگاوات است. پیش بینی می شود که تقاضا برای برق در عراق در سال های آینده به طور متوسط ​​5% در سال افزایش یابد.

ظرفیت تولید برق در عراق در حال حاضر حدود 15 گیگاوات است. کمبود تولید برق، منجر به قطعی برق در عراق، به خصوص در فصل های گرم سال، می شود.

 

عراق برای جبران کمبود برق، مجبور به واردات برق از ایران است. وابستگی به واردات برق، عراق را در معرض آسیب پذیری های اقتصادی قرار میدهد.

اقدامات در حال انجام:

دولت عراق در حال سرمایه گذاری در ساخت نیروگاه های جدید، به خصوص نیروگاه های گازی و سیکل ترکیبی، است.

تعدادی از شرکت های ایرانی در حال ساخت نیروگاه های جدید در عراق هستند.

 

توسعه خطوط انتقال برق: 

دولت عراق در حال توسعه خطوط انتقال برق برای افزایش پایداری شبکه برق و کاهش هدررفت برق است.

 

افزایش استفاده از منابع انرژی تجدیدپذیر

دولت عراق برنامه هایی برای افزایش استفاده از منابع انرژی تجدیدپذیر، مانند انرژی خورشیدی و بادی، در سال های آینده دارد.

 

چشم انداز:

تقاضا برای برق در عراق در سال های آینده به طور فزاینده ای در حال افزایش خواهد بود. انتظار می رود که با اجرای برنامه های در حال انجام، وضعیت برق در سال های آینده به تدریج بهبود یابد.

 

 

جزئیات نیروگاه های عراق:

 

کل ظرفیت تولید برق نصب شده در عراق حدود 15 گیگاوات است. از این مقدار، حدود 11 گیگاوات از طریق نیروگاه های حرارتی (گازی و فسیلی) و 4 گیگاوات از طریق نیروگاه های برق آبی تامین می شود.

حدود 80% از برق عراق توسط نیروگاه های حرارتی تولید می شود. این نیروگاه ها عمدتاً از گاز طبیعی به عنوان سوخت استفاده می کنند. تعدادی از نیروگاه های حرارتی عراق نیز از مازوت و گازوئیل استفاده می کنند.
حدود 20% از برق عراق توسط نیروگاه های برق آبی تولید می شود.
سد دوکان در شمال عراق بزرگترین منبع تولید برق آبی در این کشور است.

سهم نیروگاه های تجدیدپذیر در تولید برق عراق:

سهم نیروگاه های تجدیدپذیر در عراق هنوز بسیار ناچیز است، با این حال، دولت عراق برنامه هایی برای توسعه این نوع نیروگاه ها در سال های آینده دارد.

با ما در مقالات بعدی همراه باشید. 

نویسنده : مهدی پارساوند

منابع:

• The World Bank
• The International Energy Agency (IEA)

• BP Statistical Review of World Energy

• The Organization of the Petroleum Exporting Countries (OPEC)

• The Arab Electric Power Generation Company (AEPGC)

• Enerdata

• Iraq Ministry of Electricity

روش‌شناسی جدید برای شناسایی زمین مناسب برای agrivoltaic یا کشاورزی-فتوولتائیک

به گزارش آرا نیرو، محققان در سوئد روش جدیدی را برای شناسایی سطوح مناسب برای پروژه های agrivoltaic در کشور خود ترسیم کرده اند. آنها دریافتند که تقریباً 8.6٪ (تقریباً 38485 کیلومتر مربع) از زمین آن‌ها پتانسیل میزبانی از تاسیسات agrivoltaic را دارد.

یک گروه بین المللی از محققان روشی را برای شناسایی و طبقه بندی مناطق مناسب برای نصب سیستم های agrivoltaic ایجاد کرده اند.
پیترو کامپانا یکی از نویسندگان این مقاله به مجله pv گفت: “این یکی از اولین مطالعات منتشر شده در مورد ترکیب رویکردهای سیستم های اطلاعات جغرافیایی (GIS) و تکنیک های تصمیم گیری چند معیاره (MCDM) برای شناسایی و طبقه بندی مناسب ترین منطقه برای سیستم های agrivoltaic است.”

این مطالعه نشان داد که تقریباً 8.6٪  (حدود 38485 کیلومتر مربع) از زمین در سوئد برای سیستم های agrivoltaic مناسب است.
محققان با استفاده از سیستم‌های agrivoltaic عمودی با ماژول‌های دو وجهی، ظرفیت کل پتانسیل نصب شده را برای مناطق طبقه‌بندی شده به عنوان “عالی”، “بسیار خوب” و “خوب” حدود 1.2 PWh تعیین کردند، در حالی که کل ظرفیت نصب شده در قلمرو “عالی” و “بسیار خوب” با حدود 207 تراوات ساعت است. هر دو قلمرو، مجموع ظرفیت تولید بسیار بالاتری نسبت به مصرف واقعی برق در سراسر کشور در سال 2021 دارند و همچنین از بالاترین سطح مصرف برق پیش‌بینی‌شده برای سوئد در سال 2050 فراتر می‌روند.

به گزارش آرا نیرو، این گروه از یک رویکرد پنج مرحله‌ای GIS-MCDM استفاده کرد که در آن GIS تجزیه و تحلیل مبتنی بر مکان را با تجسم و پردازش داده‌های جغرافیایی انجام داد و الگوریتم MCDM برای محاسبه وزن معیارهای ارزیابی مختلف استفاده شد. نقشه‌های جغرافیایی که طبقه‌بندی مناسب برای هر یک از معیارها و همچنین نقشه تناسب نهایی را نشان می‌دهند، از طریق ابزار ArcGIS Pro پردازش شدند.
کامپانا گفت: در مقایسه با گزارش JRC در مورد پتانسیل‌های سیستم‌های agrivoltaic در اروپا که از داده‌های آماری استفاده می‌کند، ما از جدیدترین محصول Corine Land Cover (CLC2018) استفاده کرده‌ایم که از آنجا می‌توانیم مناطقی را که از نظر فیزیکی استفاده می‌شود یا می‌توان به عنوان کشاورزی استفاده کرد، تخمین زد.

تجزیه و تحلیل نشان داد که مناطقی که به عنوان مراتع طبقه بندی می شوند می توانند حدود 80 تراوات ساعت در سال را تأمین کنند “در حالی که 90٪ از پتانسیل علوفه مراتع ملی را حفظ می کنند.” محققان فرض کردند که سازه های تاسیسات خورشیدی عمودی باعث کاهش 10 درصدی سطح محصول موثر می شود. علیرغم کاهش محصول در عرض‌های جغرافیایی بالا، این تیم اشاره کرد که سیستم‌های agrivoltaic پتانسیل تقویت مالی برای کشاورزان را دارند.
یافته‌های آن‌ها در گزارش «پتانسیل‌های سیستم‌های Agrivoltaic در سوئد: تحلیل چند معیاره به کمک geospatial» که در Applied Energy منتشر شده است، موجود است.
نویسندگان شامل محققانی از دانشگاه نفت و مواد معدنی پادشاه فهد عربستان سعودی، دانشگاه کافرشیخ مصر، دانشگاه کاتولیکا دل ساکرو کوئوره ایتالیا، و دانشگاه مالاردالن سوئد، دانشگاه اوپسالا، و موسسه هواشناسی و هیدرولوژی سوئد بودند.
منبع: مجله PV