تشریح گام به گام ساخت نیروگاه‌های خورشیدی از برنامه‌ریزی و طراحی تا ساخت و بهره‌برداری

ساخت نیروگاه‌های خورشیدی یک فرآیند پیچیده است که شامل چند مرحله مهم از برنامه‌ریزی تا بهره‌برداری می‌شود. در ادامه، مراحل ساخت نیروگاه خورشیدی را به صورت جامع ارائه میدهیم:

 

  • برنامه‌ریزی نیروگاه خورشیدی:

برای احداث نیروگاه خورشیدی نیاز به برنامه ریزی دقیق است که باید مولفه های زیر را در آن لحاظ کنیم.

الف. تعیین مکان زمین نیروگاه خورشیدی:

نخستین گام در برنامه‌ریزی ساخت نیروگاه خورشیدی، انتخاب مکان مناسب برای زمین نیروگاه خورشیدی است. عواملی مانند تابش خورشید، دما، شیب زمین، ارتفاع از سطح دریا و نوع ساختار زیستی زمین باید مورد بررسی قرار گیرند تا بالاترین راندمان را از نیروگاه خورشیدی داشته باشیم.

– انجام تحلیل‌های سامانه اطلاعات جغرافیایی (GIS) برای بهینه‌سازی موقعیت فیزیکی نیروگاه یکی از اقدامات شرکت آرا نیرو برای انتخاب بهترین گزینه برای زمین نیروگاه خورشیدی میباشد.

مکان ایده‌آل برای نیروگاه خورشیدی نیاز به ویژگی‌های مشخصی دارد که می‌تواند به بهینه‌ترین عملکرد و بهره‌وری از انرژی خورشیدی منجر شود. در زیر، مشخصات کامل‌تری از یک مکان ایده‌آل برای نیروگاه خورشیدی آورده شده است:

 

۱. موقعیت جغرافیایی:

الف. عرض جغرافیایی:

– مکان با عرض جغرافیایی بالا (بین ۰-۲۰ درجه)، به ویژه در نزدیکی استوا، برای بهره‌وری بیشتر از تابش خورشیدی انتخاب می‌شود که البته در ایران مطابق با بررسی های دقیق و تجربیات کاری شرکت آرا نیرو فلات مرکزی ایران بهترین موقعیت برای احداث نیروگاه خورشیدی میباشد.

 

ب. تاثیر شیب زمین در مکان نیروگاه خورشیدی:

– زمین با شیب کم تا متوسط به منظور جلوگیری از سایه‌افکنی و افزایش زمان تابش مستقیم خورشید راهگشا خواهد بود. البته در مواردی که شیب زمین قابل اصلاح باشد تیم آرا نیرو با روش کوبش و خاکبرداری و خاکریزی اقدام به اصلاح شیب زمین میکند.

 

۲. تاثیر شرایط هواشناسی در علمکرد نیروگاه خورشیدی :

الف. روزهای آفتابی:

– منطقه با تعداد روزهای آفتابی سالانه بالا، برای افزایش تولید انرژی نیروگاه خورشیدی از اهمیت بالایی برخوردار است و تیم آرا نیرو استان های های سمنان، همدان، فارس، یزد، کرمان را از استان های دارای اولویت نیروگاه خورشیدی میداند.

 

ب. دمای محیط:

– دماهای مناسب (معمولاً بین ۲۵-۳۵ درجه سانتی‌گراد) برای بهینه‌سازی عملکرد پنل‌های خورشیدی از اهمیت بالایی برخوردار است. چراکه با بالاتر رفتن دما از میزان راندمان نیروگاه خورشیدی کاسته خواهد شد.

 

ج. نقطه شروع یخ‌زدگی:

– مکان با نقطه شروع یخ‌زدگی ملایم به منظور کاهش خطرات یخ‌زدگی بر روی پنل‌ها از مولفه های قابل اهمیت در شهرهای سردسیر به شمار می آید.

 

۳. تابش خورشید:

الف. تابش مستقیم:

– منطقه ای با نرخ بالاتر از تابش مستقیم خورشید برای افزایش تولید انرژی دارای اولویت است که فلات مرکزی ایران شامل این ویژگی میباشد.

 

ب. تابش پراکنده:

– تابش پراکنده خورشید مناسب به منظور حفظ تعادل حرارتی و افزایش پایداری تولید انرژی در طول روز یکی از مولفه هایی است که کمتر مورد توجه قرار گرفته است. باید در نظر بگیریم با وجود تکنولوژی های جدید در پنل های خورشیدی که اثر سایه را کاهش داده و از تکنولوژی های پنل های دوطرفه بهره برده است، در نظر گرفتن اثر تابش پراکنده قابل چشم پوشی نخواهد بود.

۴. خاک و زمین‌شناسی:

الف. نوع خاک:

– خاک مناسب با نفوذپذیری خوب و انعطاف‌پذیری کافی برای نصب ستون‌ها و حفر چاه‌ها جهت آماده سازی زمین نیروگاه خورشیدی از اهمیت بالایی برخوردار است.

 

ب. ساختار زمین:

– زمین با ساختار مناسب جهت نصب پایه‌ها و سازها بدون نیاز به تغییرات زیاد میتواند هزینه های تمام شده نیروگاه خورشیدی را کاهش دهد.

 

۵. دسترسی به شبکه برق سراسری:

 

الف. نزدیکی نیروگاه خورشیدی به خطوط برق و پست برق منطقه ای:

– انتخاب مکان در نزدیکی به خطوط انتقال برق سراسری یا پست برق منطقه ای برای اتصال به شبکه برق به صورت کارآمد میتواند هزینه های اتصال به شبکه نیروگاه خورشیدی را به میزان قابل توجهی کاهش دهد و البته مانع از اتلاف انرژی نیروگاه خورشیدی شود و به تبع آن به افزایش درامد نیروگاه کمک کند.

 

۶. محافل اجتماعی و حقوقی:

الف. حمایت محلی:

– حمایت اجتماعی و محلی برای افزایش امکانات نیروگاه و حل اختلافات محیطی از اهمیت بالایی برخوردار است. یک مثال برای درک بهتر این موضوع تجربه شرکت آرا نیرو در پروژه 10 مگاواتی یزد است که به دلیل عدم توجیه افراد محلی در مورد ویژگی های نیروگاه خورشیدی برای مقطعی احداث پروژه به تعویق افتاد که با تشکیل جلسات متعدد همراه با دهیاری منطقه و توجیه افراد محلی پذیرش لازم برای احداث نیروگاه محقق شد.

 

ب. مجوزها و مقررات محلی برای احداث نیروگاه خورشیدی:

– مطالعات دقیق در مورد مجوزها و مقررات محلی و ملی برای اطمینان از پایداری حقوقی پروژه از اهمیت بالایی برخوردار است. کمااینکه شرکت آرا نیرو با موارد زیادی مواجه شده که کارفرما و سرمایه گذار در مقطع دریافت مجوزات به بن بست رسیده بودن فقط به دلیل اینکه زمین نیروگاه را منطبق با قوانین و مقررات محلی انتخاب نکرده بودند.

 

۷. مسائل محیطی:

الف. تأثیرات زیست‌محیطی:

– ارزیابی دقیق تأثیرات زیست‌محیطی و اجرای اقدامات لازم و تعدیل محیطی میتواند ما را در دریافت مجوز محیط زیست که از اساسی ترین مجوزات لازم برای احداث نیروگاه خورشیدی است یاری دهد که با مشاوره با تیم متخصص آرانیرو این مهم در دسترس خواهد بود.

 

همه این موارد به عنوان یک تجمیع از شرایط ایده‌آل در نظر گرفته می‌شوند تا بهترین مکان برای احداث نیروگاه خورشیدی را تعیین کنیم تا عملکرد بهینه نیروگاه خورشیدی را ایجاد نماییم.

نیروگاه خورشیدی آرانیرو araniroo - تشریح گام به گام ساخت نیروگاه‌های خورشیدی از برنامه‌ریزی و طراحی تا ساخت و بهره‌برداری

ب. مطالعات فنی-اقتصادی نیروگاه خورشیدی:

در اجرای مطالعات دقیق فنی-اقتصادی درخصوص ابعاد نیروگاه، توان تولید نیروگاه خورشیدی، هزینه‌ها و بازگشت سرمایه براورد می‌شود.

مطالعات فنی-اقتصادی نیروگاه خورشیدی شامل موارد زیر میشود:

– انجام مطالعات دقیق بر اساس توان تولید مورد انتظار، هزینه‌های سرمایه‌گذاری، هزینه‌های نگهداری و نظارت بر نیروگاه خورشیدی.

– ارزیابی فناوری‌های خورشیدی مناسب با توجه به شرایط مکانی پروژه.

 

مطالعات فنی-اقتصادی یکی از گام‌های حیاتی در فرآیند برنامه‌ریزی و ساخت نیروگاه‌های خورشیدی است که با هدف ارزیابی و تحلیل دقیق تکنیکال و اقتصادی پروژه انجام می‌شود. این مطالعات به منظور اطمینان از اجرای موفقیت‌آمیز پروژه و بهره‌وری بهینه از سرمایه‌گذاری‌ها صورت می‌گیرد. در زیر، جزئیات بیشتری از مراحل مطالعات فنی-اقتصادی در ساخت نیروگاه خورشیدی آورده شده است:

 

۱. ارزیابی توان تولید:

الف. شناخت نیازهای انرژی در منطقه تحت بررسی:

– انجام مطالعات دقیق برای شناسایی نیازهای انرژی منطقه و توان تولید مورد انتظار میتواند ما را در ارزیابی اقتصادی نیروگاه خورشیدی و ریسک سرمایه گذاری در آینده یاری دهد. طبیعتا احداث نیروگاه خورشیدی در مناطقی چون شهرهای صنعتی و شهرک های صنعتی که دارای تقاضا بالای برق هستن میتواند ما را در فروش برق نیروگاه خورشیدی در سال های بهره برداری با میزان درامد بالاتر کمک کند.

 

ب. انتخاب تکنولوژی:

– ارزیابی تکنولوژی‌های مختلف نیروگاه‌های خورشیدی مانند فتوولتائیک PV، یا سیستم های مبتنی بر گرمایش خورشیدیCSP) ) و انتخاب بهترین گزینه با توجه به شرایط محلی باعث توجیه پذیری طرح منطبق بر نرخ تولید بالاتر و میزان درامد بیشتر نیروگاه خورشیدی خواهد بود.

 

۲. تحلیل هزینه‌های ساخت و احداث نیروگاه خورشیدی:

الف. هزینه‌های سرمایه‌ای:

– تخمین هزینه‌های احداث، نصب و راه‌اندازی تجهیزات و زیرساخت‌های نیروگاه خورشیدی.

ب. هزینه‌های عملیات و نگهداری نیروگاه خورشیدی:

– محاسبه هزینه‌های نگهداری و عملیات به منظور برآورد هزینه‌های سالانه بهره‌برداری از نیروگاه خورشیدی که البته بسیار ناچیز میباشد.

ج. تخمین هزینه‌های سوخت و نیرو:

– بررسی هزینه‌های مرتبط با سوخت یا نیروی لازم برای عملیات نیروگاه خورشیدی.

 

۳. بازده سرمایه:

الف. بازگشت سرمایه (ROI)

– محاسبه دقیق بازگشت سرمایه و تخصیص زمانی این بازگشت در سررسید سرمایه‌گذاری یک شاخص اساسی در طرح توجیهی نیروگاه خورشیدی میباشد.

 

ب. ارزیابی اقتصادی:

– تحلیل شاخص‌های اقتصادی مانند ارزش خالص حال NPV و نرخ بازده داخلی IRR جهت ارزیابی اقتصادی پروژه قابل اهمیت میباشد.

 

۴. اثرات محیطی:

 

الف. تحلیل چرخه حیات محصول (LCA) :

– انجام تحلیل چرخه حیات محصول برای بررسی اثرات محیطی از زمان تولید تا دوره بهره‌برداری نیز از اهمیت بالایی در محاسبات اقتصادی نیروگاه خورشیدی برخوردار است چچراکه طول عمر مفید پنل های خورشیدی بالای 30 سال است و تولید کننده ها دست کم 25 سال گارانتی تعویض برای آن درنظر میگیرند.

 

ب. پایداری اجتماعی ناشی از احداث نیروگاه خورشیدی:

– بررسی تأثیرات اجتماعی مثبت و منفی پروژه و ایجاد راهکارهای بهبود یکی از شاخص های اثرگذار در طرح اقتصادی پروژه میباشد.

 

۵. ریسک‌ها و مدیریت آن در ساخت نیروگاه خورشیدی:

الف. شناسایی ریسک‌ها:

– تشخیص و شناسایی ریسک‌های مرتبط با عملکرد فنی، اقتصادی، و محیطی نیروگاه خورشیدی.

 

ب. مدیریت ریسک:

– طراحی استراتژی‌ها و راهکارهای مدیریتی برای کاهش و مدیریت بهینه ریسک‌های نیر.گاه خورشیدی.

 

تیم آرا نیرو با انجام این تحقیقات و تحلیل‌ها، به تصمیم‌گیری بهینه در مورد ادامه یا تغییر جهت پروژه و همچنین مشخص نمودن بهترین شرایط سرمایه‌گذاری کمک می‌کند. این مرحله اطمینان حاصل می‌کند که پروژه نیروگاه خورشیدی نه تنها از نظر تکنیکی بلکه از نظر اقتصادی نیز موفق و پایدار باشد.

تجهیز نیروگاه خورشیدی آرانیرو  - تشریح گام به گام ساخت نیروگاه‌های خورشیدی از برنامه‌ریزی و طراحی تا ساخت و بهره‌برداری

ج. مجوزهای لازم برای احداث نیروگاه خورشیدی:

بدست آوردن مجوزهای لازم از مراجع مختلف، از جمله محیط ‌زیست، منابع طبیعی، ساتبا، شرکت توزیع برق منطقه ای، و در صورت لزوم مجوز از جهاد کشاورزی و یا شهرسازی جزء مراحل اساسی برنامه‌ریزی ساخت نیروگاه خورشیدی است.

با توجه به اهمیت بالای احداث نیروگاه خورشیدی و رشد سریع این صنعت در ایران، تأمین مجوزات لازم از اهمیت ویژه‌ای برخوردار است. در این زمینه، به مجوزات ضروری که برای احداث نیروگاه خورشیدی متصل به شبکه در ایران لازم است، توجه خواهیم کرد:

 

۱. مجوزهای محیطی:

مجوز ارزیابی تأثیرات زیست‌محیطی  (EIA)

– اخذ مجوز ارزیابی تأثیرات زیست‌محیطی از سازمان حفاظت محیط زیست.

 

 

۲. مجوزهای بنیادین:

الف. مجوز احداث:

– تقاضای مجوز احداث از سازمان انرژی های تجدیدپذیر و بهره وری برق ایران(ساتبا).

 

ب. مجوز تأسیس:

– دریافت مجوز رسمی تأسیس از ساتبا.

 

۳. مجوزهای انرژی و برق:

– مجوز اتصال به شبکه:

– اخذ مجوز اتصال به شبکه برق از شرکت برق منطقه ای.

 

۴. مجوزهای اجتماعی و مشارکت محلی:

الف. مجوز مشارکت محلی:

– برقراری توافقات و درخواست مجوز مشارکت محلی از اداره کل امور برنامه‌ریزی استان.

ب. مجوز مشاوره با اجتماع:

– برگزاری جلسات مشاوره با جامعه محلی و درخواست مجوزهای مربوطه.

 

۵. مجوزهای فنی و اجرایی:

الف. مجوز طراحی و اتصال به شبکه:

– تقدیم درخواست مجوز طراحی به سازمان ساتبا.

ب. مجوز ساخت:

– اخذ مجوزهای لازم برای شروع فعالیت‌های ساخت از سازمان منابع طبیعی یا شهرک های صنعتی یا شهرک های خورشیدی.

 

۶. مجوزهای ایمنی و بهداشت:

الف. مجوز ایمنی و بهداشت شغلی:

– تقاضای مجوز ایمنی و بهداشت شغلی از سازمان تامین اجتماعی کشور.

 

۷. مجوزهای مالی و بانکی برای دریافت تسهیلات:

 

الف. مجوز سرمایه‌گذاری:

– دریافت مجوز سرمایه‌گذاری از سازمان برنامه و بودجه کشور.

ب. مجوزهای بانکی:

– بررسی و تأیید مجوزهای بانکی از بانک مرکزی جمهوری اسلامی ایران.

 

۸. مجوزهای اطفاء حریق:

الف. مجوز اطفاء حریق:

– اخذ مجوز اطفاء حریق از سازمان آتش‌نشانی شهرداری مربوطه.

 

۹. تصاویر محلی:

الف. مجوز تصاویر ماهواره‌ای:

– درخواست و دریافت مجوز تصاویر ماهواره‌ای از سازمان نقشه‌برداری کشور.

 

با رعایت و تأمین این مجوزات، احداث نیروگاه خورشیدی در ایران با روند قانونی و بهره‌وری بیشتر امکان‌پذیر خواهد بود. تأمین این مجوزات نقطه کلیدی در جهت اجرای موفق پروژه نیروگاه خورشیدی متصل به شبکه است.

آرانیرو تجهیز نیروگاه خورشیدی - تشریح گام به گام ساخت نیروگاه‌های خورشیدی از برنامه‌ریزی و طراحی تا ساخت و بهره‌برداری

  • طراحی نیروگاه خورشیدی فتوولتائیک:

طراحی مهندسی نیروگاه خورشیدی شامل موارد زیر میباشد:

 

الف. طراحی مهندسی نیروگاه خورشیدی:

تخصیص نیروی مهندسی برای طراحی دقیق الکتریکال و مکانیکال نیروگاه خورشیدی از جمله مراحل مهم در این حوزه است.

 

ب. تهیه تجهیزات نیروگاه خورشیدی:

انتخاب و خرید تجهیزات نیروگاه از جمله پنل‌های خورشیدی، اینورترها، و سیستم‌های ترانسفورماتور و انتقال انرژی به شبکه برق سراسری و دیگر تجهیزات شامل استراکچر و کابل و اتصالات و تابلو های حفاظتی نیروگاه خورشیدی در سمت DC و AC  صورت می‌گیرد.

 

  • ساخت نیروگاه خورشیدی:

تجهیز کارگاه نیروگاه خورشیدی شامل فنسینگ زمین نیروگاه و تسطیح و کانال کشی زمین نیروگاه خورشیدی و اجرای سیستم های روشنایی و نظارت تصویری و ساختمان های مربوطه که به شرح زیر میباشد.

 

الف. حفاری و زیرساخت:

شامل حفاری چاه‌های ارت و کانال های کابل های خورشیدی و دیگر کابل ها، نصب ستون‌ها و ساخت سازه برای نصب پنل‌های خورشیدی.

 

ب. نصب تجهیزات:

نصب پنل‌های خورشیدی، اینورتر و سیستم‌های حفاظتی و اتصال به شبکه نیروگاه خورشیدی.

 

ج. تست و راه‌اندازی:

اجرای آزمون‌ها و تست‌های لازم جهت اطمینان از صحت عملکرد نیروگاه خورشیدی.

 

  • بهره‌برداری نیروگاه خورشیدی فتوولتائیک :

 

الف. اتصال نیروگاه خورشیدی به شبکه برق سراسری:

ارتباط نیروگاه خورشیدی با شبکه برق سراسری و اتصال به آن از طریق پست پاساژ.

 

ب. نظارت و نگهداری نیروگاه خورشیدی :

تدابیر لازم برای نگهداری و نظارت دائمی بر نیروگاه به منظور حفظ بهره‌وری و عملکرد بهینه نیروگاه خورشیدی.

 

ج. گزارش‌دهی و پیشرفت نیروگاه خورشیدی :

ارائه گزارش‌های دوره‌ای و پیشرفت‌ها به مراجع مربوطه و ارتقاء عملکرد با توجه به بازخوردها از طریق بازدیدهای دوره ای و بررسی منظم سیستم مانیتورینگ نیروگاه خورشیدی.

 

این پروسه به عنوان یک راهنمای کلی برای ساخت نیروگاه‌های خورشیدی مورد استفاده قرار می‌گیرد. البته، هر پروژه نیازها و چالش‌های خاص خود را دارد و نیاز به تنظیمات خاص خود که در هر یک از مراحل، تیم متخصص آرا نیرو آن را در نیروگاه خورشیدی موردنظر اعمال خواهد کرد.

نویسنده: مهدی پارساوند

فرصت محدود احداث نیروگاه خورشیدی در میان نوسانات ارز و افزایش هزینه های ساخت و ساز

 

معرفی

با توجه به احتمال افزایش نرخ ارز و افزایش قیمت جهانی تجهیزات نیروگاه و به تبع آن افزایش هزینه‌های ساخت و ساز نسبت به نرخ‌ جدید خرید تضمینی برق که خیلی دیر توسط وزارت نیرو ابلاغ شد، فرصت محدودی برای ساخت یک نیروگاه خورشیدی خواهیم داشت که این مقاله به اختصار به پیچیدگی‌های استفاده از این فرصت محدود می‌پردازد و پتانسیل‌های موجود در میان عدم قطعیت‌های اقتصادی را بررسی می‌کند.

 

آیا نوسانات ارزی تغییر دهنده بازی خواهد بود؟

رمزگشایی تأثیر نوسانات ارز بر سرمایه گذاری های نیروگاهی کار پیچیده ای نیست. به رابطه بین نوسانات ارز و سرمایه گذاری های نیروگاه خورشیدی توجه کنید. کشف کنید که چگونه کاهش ارزش پولی می تواند امکان سنجی و سودآوری سرمایه گذاری نیروگاه خورشیدی شما را تحت تاثیر قرار دهد.

نگاهی دقیق تر به چشم انداز مالی یک چالش را نشان می دهد و آن چیزی نیست جز افزایش هزینه های ساخت و ساز. درک واقعیت های اقتصادی و استراتژی برای غلبه بر موانع ناشی از افزایش هزینه ها در توسعه نیروگاه خورشیدی امری غیرقابل چشم پوشی است.

نقش دولت در ابلاغ نرخ خرید تضمینی برق و باز کردن فرصت ها با نرخ های حمایتی ایفا شد هرچند خیلی دیر ولی اکنون توپ در زمین سرمایه گذاران است.

araniroo نیروگاه خورشیدی - فرصت محدود احداث نیروگاه خورشیدی در میان نوسانات ارز و افزایش هزینه های ساخت و ساز

استفاده از فرصت و برنامه ریزی استراتژیک ایجاد مسیری برای موفقیت در میان چالش ها است.

با داشتن بینشی در مورد نوسانات ارز، هزینه های ساخت و ساز و حمایت دولت، وقت آن است که یک برنامه استراتژیک را ترسیم کنیم.

از کارشناسان صنعت در مورد غلبه بر موانع، مشاوره عملی دریافت کنید. از برنامه ریزی مالی گرفته تا اجرای پروژه، این نکات برای کارآفرینان نیروگاه خورشیدی ارزشمند است. در پاسخ به این سوال که آیا انرژی خورشیدی می تواند یک سرمایه گذاری قابل اعتماد در شرایط اقتصادی فعلی باشد باید گفت: بله، کاملا. علیرغم نوسانات ارز و افزایش هزینه های ساخت و ساز، ثبات ارائه شده توسط نرخ های خرید تحت حمایت دولت، انرژی خورشیدی را به یک سرمایه گذاری مناسب و مطمئن تبدیل می کند. حمایت دولت در موفقیت سرمایه گذاری نیروگاه خورشیدی تاثیرگذار است و نرخ‌های خرید تضمینی برق با حمایت دولت، پایه‌ای پایدار را فراهم می‌کند، جریان درآمد ثابتی را تضمین می‌کند و عدم اطمینان مالی را به حداقل می‌رساند.

یک برنامه استراتژیک موفق شامل تحقیقات بازار کامل، پیش بینی مالی، ارزیابی ریسک و نقشه راه روشن برای اجرای پروژه است در نتیجه شروع سفر برای ایجاد یک نیروگاه خورشیدی در میان نوسانات ارز و چالش های هزینه ساخت بدون شک چالش برانگیز است. با این حال، مسلح به دانش، برنامه ریزی استراتژیک و حمایت دولت، این فرصت محدود می تواند به یک سرمایه گذاری پر رونق و پایدار منجر شود. از لحظه استفاده کنید و به آینده ای سبزتر و پایدارتر کمک کنید.

نویسنده: مهدی پارساوند

چکیده مقاله:

در فرآیند خصوصی سازی بازار انرژی یا به عبارت دیگر بازار آزاد برق می توان از پتانسیل مالی بخش خصوصی برای توسعه زیرساخت ها و فناوری بهره مند شد تا تعهدات مالی دولت در این زمینه کاهش یابد. ارائه تعریف درستی از بازار آزاد انرژی ما را ضمن آگاهی از ضرورت خصوصی سازی به بهره گیری از نتایج تجربیات کشورهای موفق در بازار آزاد برق ترغیب میکند. ضمن آگاهی از معایب و تبعات منفی بازار برق دولتی منطبق بر تجربه حال حاضر کشور، راهکارهای لازم جهت الگوبرداری از مدلسازی موجود و بومی سازی الگوها، مبتنی بر شرایط خصوصی ایران امری بدیهی به نظر میرسد.

 

هدف

در این نوشته با تأکید بر اهمیت خصوصی‌سازی انرژی و بازار آزاد انرژی، جنبه‌های حیاتی بازار برق را بررسی می کنیم و مزایا و چالش های بالقوه این تحول را کشف می کنیم.

در چشم انداز همیشه در حال تحول تولید و توزیع انرژی، مفهوم بازار انرژی آزاد و خصوصی شده جذابیت قابل توجهی پیدا کرده است. این تغییر پارادایم نوید بهره وری، نوآوری و دسترسی بیشتر در حوزه برق را می دهد. در این مقاله، ما عمیقاً به پیچیدگی‌های این چشم‌انداز تحول‌آفرین می‌پردازیم، اهمیت آن را برجسته می‌کنیم و به نگرانی‌های کلیدی می‌پردازیم. با ما دراین مقاله همراه باشید تا ضرورت تجدید ساختار بازار برق را درک کنید.

 

درک بازار فعلی برق ایران

ساختار موجود بازار برق یک تعامل پیچیده بین نهادهای دولتی و خصوصی است. این شامل تولید، انتقال، و توزیع است که هر کدام توسط چارچوب های نظارتی متمایز اداره می شود. این سیستم پیچیده اغلب منجر به ناکارآمدی و موانع نوآوری می شود. آزادسازی بازار مستلزم شکستن انحصارات و تقویت رقابت سالم است. با دادن مجوز به تعداد بیشتری از بازیکنان برای مشارکت در تولید و توزیع برق، میتوانیم شاهد نوآوری، مقرون به صرفه بودن و بهبود کیفیت خدمات باشیم. بازار آزاد انرژی، راه را برای افزایش ادغام منابع انرژی تجدیدپذیر هموار می کند. این تغییر در پرداختن به نگرانی های زیست محیطی و کاهش وابستگی به سوخت های فسیلی بسیار مهم است. بازار آزاد، صنعت انرژی را به یک صنعت سرمایه پذیر تبدیل میکند و همچون صنعت توریسم، سرمایه گذاری داوطلبانه را به سمت این بازار سرریز میکند. وجود یک بازار یکسویه و دولتی در ایران امروز منجر به شکست مشوق های سرمایه گذاری در حوزه انرژی به خصوص انرژی های تجدیدپذیر از جمله نیروگاه های خورشیدی شده است، حال آنکه سرمایه گذاری خصوصی کاتالیزوری برای پیشرفت در همه عرصه هاست. باز کردن بازار برق به روی سرمایه گذاران خصوصی، ضمن تزریق سرمایه و تخصص مورد نیاز منجر به توسعه فناوری های پیشرفته، شبکه های هوشمند و راه حل های ذخیره انرژی کارآمد میشود و به نوسازی، پیشرفت تکنولوژیکی و توسعه زیرساخت ها می انجامد.

 

مزایای بازار برق آزاد - خصوصی‌سازی انرژی و بازار آزاد برق با رویکرد مدلسازی بازار برق ایران

مزایای خصوصی سازی انرژی

  1. خصوصی سازی انرژی منجر به افزایش رقابت می شود و قیمت ها را برای مصرف کنندگان کاهش داده و با تشویق نوآوری خدمات کارآمدتر و قابل اعتمادتری را به همراه خواهد داشت. 
  2. از دیگر مزایا خصوصی سازی انرژی می توان به اشتغال زایی آن اشاره کرد، از آنجایی که بخش خصوصی در نوسازی زیرساخت ها و پذیرش فناوری های جدید سرمایه گذاری می کند، در بخش های مختلف از جمله انرژی های تجدیدپذیر، مدیریت شبکه و توسعه فناوری شغل ایجاد می کند. 
  3. از مزایای بالقوه بازار انرژی خصوصی شده می توان به تسریع انتقال منابع تولید برق به منابع انرژی تجدیدپذیر اشاره کرد که انتشار کربن و اثرات زیست محیطی را کاهش دهد. 
  4. یکی از مزایای اصلی بازار آزاد انرژی حضور فعال گروه های حمایت از مصرف کننده، همراه با فرآیندهای نظارتی شفاف، جهت اطمینان از رسیدگی به نگرانی های مصرف کنندگان است. مصرف کنندگان می توانند اطمینان حاصل کنند که در بازار انرژی خصوصی شده صدای خود را دارند.

 

چالش های بازار برق خصوصی - خصوصی‌سازی انرژی و بازار آزاد برق با رویکرد مدلسازی بازار برق ایران

چالش های خصوصی سازی انرژی و راهکارهای غلبه بر آن

چالش ها

در حالی که خصوصی سازی انرژی نویدبخش توسعه صنعت برق است، اما بدون چالش نیست. پرداختن به این نگرانی‌ها برای تضمین یک انتقال آرام بسیار مهم است. با وجود مزایا و فوایدی که خصوصی‌سازی صنعت انرژی به همراه دارد، همچنان با چالش‌هایی نیز همراه است که می‌توان به آن‌ها اشاره کرد. در ادامه، به برخی از این چالش‌ها می پردازم:

 

  1. قانونگذاری و نظارت مناسب: یکی از مهمترین چالش‌های خصوصی‌سازی انرژی، ایجاد قوانین و مقررات مناسب برای این صنعت است. باید یک تعادل مناسب بین آزادی بازار و حفاظت از حقوق مصرف‌کنندگان و محیط زیست ایجاد شود. ایجاد تعادل مناسب در مقررات زدایی با نظارت لازم بسیار مهم است. یک چارچوب نظارتی به خوبی تعریف شده از دستکاری بازار جلوگیری می کند و در عین حال امکان رقابت سالم را فراهم می کند.
  2. تضمین دسترسی و قیمت منصفانه: یکی از مخاطراتی که ممکن است در خصوصی‌سازی به وجود آید، این است که بخشی از جامعه از دسترسی به انرژی محروم شود یا قیمت‌های بالایی برای آن‌ها ایجاد شود. باید اطمینان حاصل شود که همه افراد به انرژی نیازمند دسترسی داشته باشند و قیمت‌ها منصفانه باشند. اطمینان از دسترسی و مقرون به صرفه بودن به معنی تلاش برای این امر که تضمین شود که خصوصی سازی منجر به محرومیت یا قیمت های گزاف برای مصرف کنندگان نمی شود. دسترسی و مقرون به صرفه بودن باید در خط مقدم این تحول باقی بماند.
  3. موازنه بین سود تجاری و منافع عمومی: شرکت‌های خصوصی ممکن است تمایل داشته باشند تا فقط به منافع تجاری خود توجه کنند و از منافع عمومی بگذرند. بنابراین، لازم است که نظارت مناسب بر این شرکت‌ها صورت گیرد تا منافع عمومی نیز حفظ شود.
  4. حفاظت از محیط زیست: خصوصی‌سازی ممکن است منجر به تمرکز بیشتر بر سود و کاهش توجه به مسائل محیط زیستی شود. لازم است که سیاست‌ها و مقررات مناسب برای حفاظت از محیط زیست در نظر گرفته شود. اگر بخواهم نمونه ای از این سیاست های حمایتی در جهت حفاظت از محیط زیست را مطرح کنم باید به تقویت زیرساخت های موجود جهت راه اندازی نیروگاه های تجدیدپذیر همچون نیروگاه خورشیدی به خصوص نیروگاه فتوولتائیک و نیروگاه بادی اشاره کرد که از قضا در کشور ما ایران پتانسیل بالایی در حوزه منابع تجدیدپذیر وجود دارد.
  5. مدیریت کنترل منابع ملی: خصوصی‌سازی منجر به انتقال مالکیت از دولت به بخش خصوصی می‌شود. بنابراین، لازم است که منابع ملی به بهترین نحو مدیریت شوند تا منافع کشور حفظ شود.
  6. مقابله با احتمالات و فشارهای اقتصادی: در شرایط اقتصادی نامساعد، شرکت‌های خصوصی ممکن است با فشارهای اقتصادی مواجه شوند. لازم است که برنامه‌ها و استراتژی‌های مناسب برای مقابله با این وضعیت‌ها در نظر گرفته شود.
  7. پایداری و استقرار در بلندمدت: فرآیند خصوصی‌سازی نیازمند برنامه‌ریزی دقیق و استراتژی‌های مطلوب برای حفظ پایداری و استقرار در بلندمدت است. این شامل استراتژی‌های اقتصادی، محیط زیستی و اجتماعی می‌شود.
  8. تأمین منابع مالی: برای اجرای موفقیت‌آمیز خصوصی‌سازی، نیاز به تأمین منابع مالی کافی است. این شامل سرمایه‌گذاری‌ها، تسهیلات مالی و منابع دیگر مالی می‌شود.
  9. مقابله با تغییرات فناوری: فناوری در صنعت انرژی به سرعت در حال تغییر است. برای اجتناب از منسوخ شدن و بروزرسانی فناوری‌ها، نیازمندی‌های فنی و فناوری باید به دقت مورد بررسی قرار گیرند.
  10. مدیریت ریسک‌ها و بحران‌ها: صنعت انرژی ممکن است با ریسک‌ها و بحران‌های مختلف مواجه شود، از جمله حوادث طبیعی و مشکلات امنیتی. برنامه‌ها و استراتژی‌های مدیریت ریسک باید در نظر گرفته شوند.

 

 

Electricity Market Model - خصوصی‌سازی انرژی و بازار آزاد برق با رویکرد مدلسازی بازار برق ایران
راهکارها

با رسیدگی به این چالش‌ها و ایجاد راهکارهای مناسب، می‌توان خصوصی‌سازی صنعت انرژی را به یک فرصت بزرگ برای بهبود عملکرد و افزایش کارایی در این صنعت تبدیل کرد. برای مواجهه با چالش‌های خصوصی‌سازی صنعت انرژی، رویکرد کلی می‌تواند شامل موارد زیر باشد:

 

  1. توسعه و اجرای قوانین و مقررات منطقی و منصفانه: ایجاد قوانین و مقرراتی که تعادل مناسبی بین آزادی بازار و حفاظت از منافع عمومی و محیط زیست را فراهم کنند، بسیار حائز اهمیت است. مقررات دولتی برای تضمین رقابت عادلانه و جلوگیری از اقدامات انحصاری ضروری است. قوانین تعامل را تعیین می کند و آزادی بازار را با حمایت از مصرف کننده متعادل می کند.
  2. تضمین دسترسی عادلانه به انرژی: اطمینان حاصل کردن از اینکه همه افراد به انرژی مورد نیازشان دسترسی دارند و قیمت‌ها برای همگان مناسب است، بسیار مهم است.
  3. توسعه زیرساخت‌ها و فناوری‌ها: سرمایه‌گذاری در توسعه زیرساخت‌های مرتبط با انرژی و به‌روزرسانی فناوری‌ها به منظور افزایش بهره‌وری و بهبود کارایی اجتناب‌ناپذیر است که البته در فرایند خصوصی سازی بازار انرژی میتواند از پتانسیل های مالی بخش خصوصی در جهت توسعه زیرساخت و فناوری بهره مند شد و از تعهدات مالی دولت در این حوزه کم کرد.
  4. تشکیل نظارت موثر: برنامه‌ها و سیاست‌های نظارت بر شرکت‌های خصوصی باید به گونه‌ای باشد که منافع عمومی و محیط زیست محافظت شود.
  5. ترکیب مناسب منافع عمومی و تجاری: توجه همزمان به منافع عمومی و تجاری و معماری مکانیزم‌ها و سیاست‌های مناسب برای تضمین کنترل و تعادل بین این دو، بسیار حائز اهمیت است.
  6. توسعه راهبردها برای مدیریت ریسک: شناسایی و مدیریت بهینه ریسک‌های مرتبط با عملیات صنعت انرژی از اهمیت بالایی برخوردار است.

به طور کلی، رویکردی که ترکیبی از قوانین مناسب، نظارت کارآمد، سرمایه‌گذاری استراتژیک و توجه به منافع عمومی و تجاری باشد، می‌تواند به موفقیت در خصوصی‌سازی صنعت انرژی کمک کند. کمااینکه نمونه هایی از طرح های خصوصی سازی موفق انرژی وجود دارد که میتوان به عنوان الگو از آن ها بهره گرفت. چندین کشور از جمله بریتانیا، آلمان، فنلاند، امریکا، استرالیا و ترکیه خصوصی سازی انرژی را با موفقیت اجرا کرده اند. این تلاش ها به بهبود کارایی و نوآوری در بازارهای انرژی مربوطه منجر شده است که در اینجا شرح مختصری از مثال‌های موفقیت‌آمیز از فرآیند خصوصی‌سازی صنعت انرژی در این کشورها را برای شما می‌آورم:

یکی از مثال‌های موفق خصوصی‌سازی صنعت انرژی در بریتانیا است. با اجرای این سیاست‌ها، شرکت‌های خصوصی وارد بازار شدند و رقابت بین آن‌ها فعال شد. این رقابت منجر به افزایش کارایی در تولید و توزیع انرژی شد. همچنین، با کاهش هزینه‌ها در نتیجه این رقابت، هزینه‌های انرژی برای مصرف‌کنندگان نیز کاهش یافت.

در استرالیا، با اجرای خصوصی‌سازی در بخش انرژی، شرکت‌های خصوصی به توسعه فناوری‌های پیشرفته در زمینه تولید و مدیریت انرژی پرداختند. این منجر به ارتقاء عملکرد انرژی و افزایش کارایی در این صنعت شد. همچنین، نوآوری‌های جدید در زمینه استفاده از منابع انرژی پاک و توسعه فناوری‌های حمل و نقل انرژی به وقوع پیوست.

در ترکیه با بهره گیری از تجربه دست کم سه کشور اروپایی که در بالا نام برده شد با خصوصی‌سازی بخش‌های مختلف صنعت انرژی، توانسته‌اند به کاهش هزینه‌ها و بهبود عملکرد در زمینه تولید و انتقال انرژی بپردازند. همچنین، این فرآیند به توسعه فناوری‌های جدید در زمینه تولید انرژی از منابع تجدیدپذیر کمک کرده است.

البته بومی سازی الگوهای موجود جز لاینفک پیاده سازی بازار آزاد انرژی در ایران است که میتوان با بررسی تجربیات بین‌المللی و تحلیل وضعیت فعلی بازار برق ایران از لحاظ ساختار، نظام قیمت‌گذاری، نقاط ضعف و قوت و مشکلات موجود با بررسی دقیق و جامع وضعیت فعلی بازار برق ایران به یک مدل مطلوب از بازار آزاد و تدوین مقررات مرتبط با تولید، توزیع، انتقال و مصرف انرژی رسید که بیشترین تطابق با وضعیت و نیازهای ایران را دارد .

جهت اطمینان از بهترین مدل بومی شده از بازار آزاد در ایران میتوان آن را در مقیاس کوچک آزمایش و اجرا کرد و نتایج آن را مورد ارزیابی قرار داد. این اجراها به عنوان آزمون‌های نهایی قبل از اجرای کامل و بزرگ‌مقیاس مورد استفاده قرار می‌گیرند که پس از تایید کارکرد موفق در مقیاس کوچک، مدل سازی شده در سطح کشور اجرا می‌شود، ضمن اینکه سیستم نظارتی بر روند اجرا و عملکرد بازار آزاد انرژی باید ایجاد شود و تغییرات و بهبودهای لازم به منظور بهبود مستمر اعمال شوند تا تمامی شاخص ها جهت بومی سازی ساختار بازار در نظر گرفته شوند که شامل تعیین کننده‌هایی است که نحوه و ترتیب ارتباطات و تعاملات میان مشتریان، تولیدکنندگان، توزیع‌کنندگان و انتقال‌دهندگان را مشخص می‌کند. از مدل قیمت گذاری گرفته تا مقرراتی که کارکرد بازار را تنظیم میکنند و پشتیبانی از توسعه فناوری شامل ارتقاء فناوری‌های مرتبط با تولید، انتقال و مصرف برق تا فراهم کردن بهره‌وری و کیفیت بالاتر با توسعه زیرساخت‌ها که توانایی انتقال و توزیع برق تولیدی را به کاربران در سراسر کشور فراهم کنند و برای جلوگیری از حوادث و اتفاقات ناخواسته، مدیریت ریسک و امنیت سیستم‌ها را تامین کنند.

 

مدلسازی بازار برق ایران - خصوصی‌سازی انرژی و بازار آزاد برق با رویکرد مدلسازی بازار برق ایران
مدلسازی بازار برق ایران

با توجه به شاخص‌های اشاره شده در پاراگراف بالا، بومی سازی بازار برق در ایران باید با دقت و مطالعه دقیقی از شرایط و نیازهای محلی صورت پذیرد تا مدل دقیق با کمترین خطا ساخته شود که میتواند ترکیبی از مدل های موجود در دنیا باشد که از جمله مدل‌های متداول بازار خصوصی برق میتوان به موارد زیر اشاره کرد:

 

  1. مدل بازار انرژی Energy-Only Market))

   در این مدل، قیمت برق توسط ارائه‌کنندگان، تولیدکننده و تقاضاکنندگان مشخص می‌شود. این مدل بر پایه تعادل بین عرضه و تقاضا کار می‌کند و هزینه برق مستقیماً به قیمتی که از بازار دریافت می‌کنند پرداخت می‌شوند.

  1. مدل بازار دوحالته (Two-Settlement Market)

   در این مدل، بازار برق به دو بخش تقسیم می‌شود: بازار انرژی و بازار قراردادهای آینده (فوروارد). در بازار انرژی، تبادل برق در زمان واقعی صورت می‌گیرد و در بازار قراردادهای آینده، قراردادهای خرید و فروش برق در زمان‌های آینده منعقد می‌شوند.

  1. مدل بازار آزاد (Free Market)

   در این مدل، شرکت‌های تولیدکننده برق و توزیع‌کننده مستقل از هم عمل می‌کنند و قیمت برق توسط بازار تعیین می‌شود. این مدل از منافع رقابتی و افزایش کارایی در بازار برق حمایت می‌کند.

  1. مدل بازار ترکیبی (Hybrid Market)

   این مدل ترکیبی از مدل‌های مختلف است که در آن عناصر از مدل‌های مختلف با هم ترکیب شده‌اند. مثلاً ممکن است در این مدل هم بازار انرژی وجود داشته باشد و هم بازار قراردادهای آینده.

  1. مدل خرید تضمینی (Power Purchase Agreement – PPA)

   در این مدل، یک توافق بین تولیدکننده و خریدار (معمولاً یک سازمان یا صنعتگر) برای فروش برق بر اساس یک نرخ مشخص امضا می‌شود. این مدل بیشتر در پروژه‌های نیروگاه‌های برق خورشیدی و بادی استفاده می‌شود.

 

 

صورت های مختلف انرژی - خصوصی‌سازی انرژی و بازار آزاد برق با رویکرد مدلسازی بازار برق ایران
نتیجه

تحول به سمت بازار آزاد و خصوصی شده انرژی صرفاً یک تغییر پارادایم نیست. این جهشی به سوی آینده ای پایدارتر، کارامدتر و نوآورانه تر است. با از بین بردن انحصارات و توانمندسازی بخش خصوصی در صنعت انرژی، ما راه توسعه را روشن تر و هموارتر می کنیم. ضروری است که ما در این انتقال با تمرکز دقیق بر مقررات، مقرون به صرفه بودن و رفاه مصرف کننده حرکت کنیم. از مدل های موجود بازارهای آزاد انرژی الگوبرداری کنیم که البته هرکدام از این مدل‌ها ویژگی‌ها و مزایا و معایب خاص خود را دارند و بسته به شرایط و نیازهای هر کشور یا منطقه، انتخاب می‌شوند. این مراحل یک روش بومی سازی بازار آزاد انرژی در دنیا با مدلسازی بازار برق ایران را شامل می‌شود. برای هر مرحله، تخصص و دانش فنی لازم برای اجرا وجود دارد و تیم‌های متخصص مورد نیاز هستند که ما با هم می توانیم مسیری را به سوی بازار انرژی پویاتر روشن کنیم.

نویسنده: مهدی پارساوند

طرح کلی مقاله:

مقدمه ای بر ایستگاه های شارژ وسایل نقلیه الکتریکی (EV).

اهمیت انرژی های تجدیدپذیر در شارژ EV

انرژی خورشیدی به عنوان منبع انرژی پایدار

ادغام انرژی خورشیدی با ایستگاه های شارژ EV

مزایای ایستگاه های شارژ EV با انرژی خورشیدی

مقرون به صرفه بودن و صرفه جویی طولانی مدت

اثرات زیست محیطی و کاهش ردپای کربن

قابلیت اطمینان و استقلال شبکه

پیشرفت های تکنولوژیکی در ایستگاه های شارژ خورشیدی

ابتکارات و مشوق های دولت

چالش ها و راه حل ها در اجرای ایستگاه های شارژ خورشیدی

مطالعات موردی نصب های موفق

چشم اندازها و نوآوری های آینده

دیدگاه مصرف کننده و پذیرش شارژ EV با انرژی خورشیدی

10449773 813 - آینده سبز: ایستگاه‌های شارژ خورشیدی برای ماشین‌های برقی

ایستگاه‌های شارژ نیروگاه خورشیدی برای ماشین‌های برقی

 

نتیجه

از آنجایی که جهان از راه حل های پایدار استقبال می کند، تلاقی وسایل نقلیه الکتریکی  (EVs)و منابع انرژی تجدیدپذیر به عنوان یک چراغ امید ظاهر شده است. در این مقاله، به مفهوم انقلابی ایستگاه‌های شارژ وسایل نقلیه الکتریکی با انرژی‌های تجدیدپذیر، به‌ویژه انرژی خورشیدی می‌پردازیم.

 

مقدمه ای بر ایستگاه های شارژ وسایل نقلیه الکتریکی (EV)

ایستگاه‌های شارژ EV زیرساخت‌های محوری هستند که شارژ مجدد خودروهای الکتریکی را تسهیل می‌کنند. به طور سنتی، این ایستگاه ها بر برق تامین شده از شبکه متکی بوده اند. با این حال، تغییر به سمت منابع انرژی تجدیدپذیر مانند انرژی خورشیدی، نحوه درک و استفاده ما از این ایستگاه ها را متحول می کند. اکنون 15 ایستگاه شارژ خودرو برقی در تهران راه‌اندازی شده است که البته در حال حاضر به برق شبکه متصل است که هدف گذاری وزارت نیرو توسعه این ایستگاه ها برمبنای نیروگاه های تجدیدپذیر صورت گرفته است.

 

اهمیت انرژی های تجدیدپذیر در شارژ EV

منابع انرژی تجدید پذیر نقش حیاتی در کاهش اتکای ما به سوخت های فسیلی و مهار انتشارات مضر دارند. با استفاده از نیروی خورشید، نه تنها ردپای کربن خود را کاهش می دهیم، بلکه راه را برای آینده ای پایدار هموار می کنیم.

 

 

انرژی خورشیدی به عنوان منبع انرژی پایدار

انرژی خورشیدی منبع انرژی پاک و فراوانی است که از خورشید به دست می آید. از طریق پانل‌های فتوولتائیک، نور خورشید به برق تبدیل می‌شود و جایگزینی تجدیدپذیر و سازگار با محیط زیست برای روش‌های تولید انرژی معمولی است.

 

ادغام انرژی خورشیدی با ایستگاه های شارژ EV

ادغام انرژی خورشیدی با ایستگاه های شارژ EV شامل نصب پنل های خورشیدی در محل یا نزدیک محل ایستگاه است. این پنل ها نور خورشید را جذب می کنند و آن را به الکتریسیته تبدیل می کنند که سپس برای شارژ خودروهای الکتریکی استفاده میشود.

 

مزایای ایستگاه های شارژ EV با انرژی خورشیدی

مقرون به صرفه بودن و صرفه جویی طولانی مدت

ایستگاه های شارژ EV با انرژی خورشیدی صرفه جویی قابل توجهی در هزینه ها در طول زمان ارائه می دهند. هنگامی که نصب اولیه کامل شد، خورشید منبع رایگان و فراوانی از انرژی را فراهم می کند که هزینه های عملیاتی را کاهش می دهد و مزایای مالی بلندمدت را ارائه می دهد.

 

اثرات زیست محیطی و کاهش ردپای کربن

این ایستگاه های شارژ با تکیه بر انرژی خورشیدی، انتشار گازهای گلخانه ای را به شدت کاهش می دهند. انتقال به منابع انرژی تجدیدپذیر در مبارزه با تغییرات آب و هوایی و حفظ محیط زیست برای نسل های آینده بسیار مهم است.

 

قابلیت اطمینان و استقلال شبکه

ایستگاه های انرژی خورشیدی برای تامین انرژی خود به طور کامل به شبکه وابسته نیستند. این بدان معنی است که آنها می توانند به طور مستقل عمل کنند و منبع قابل اعتمادی از برق را حتی در هنگام قطع شدن شبکه یا شرایط اضطراری فراهم کنند.

 

پیشرفت های تکنولوژیکی در ایستگاه های شارژ خورشیدی

پیشرفت‌های تکنولوژیکی اخیر، کارایی و عملکرد پنل‌های خورشیدی را افزایش داده و آنها را به گزینه‌ای مناسب‌تر برای تامین انرژی ایستگاه‌های شارژ EV تبدیل کرده است. راه‌حل‌های ذخیره‌سازی انرژی بهبودیافته، بدون توجه به شرایط آب‌وهوایی، منبع تغذیه ثابت را تضمین می‌کنند.

 

ابتکارات و مشوق های دولت

دولت ها در سراسر جهان اهمیت راه حل های حمل و نقل پایدار را تشخیص می دهند. مشوق‌های مختلف، اعتبارات مالیاتی، و یارانه‌ها برای تشویق به پذیرش ایستگاه‌های شارژ EV با انرژی خورشیدی ارائه می‌شوند که باعث تسریع بیشتر در تکثیر آنها می‌شود.

 

چالش ها و راه حل ها در اجرای ایستگاه های شارژ خورشیدی

در حالی که مزایای آن قابل توجه است، چالش هایی مانند هزینه های سرمایه گذاری اولیه و ملاحظات جغرافیایی وجود دارد. با این حال، مدل های نوآورانه تامین مالی و پیشرفت در فناوری خورشیدی به تدریج بر این موانع غلبه می کنند.

مطالعات موردی نصب های موفق

بررسی نمونه‌های واقعی ایستگاه‌های شارژ EV با انرژی خورشیدی، بینش‌های ارزشمندی را در مورد امکان‌سنجی و مزایای آن‌ها ارائه می‌کند. ما چند مطالعه موردی قابل توجه را برجسته می کنیم که تأثیر مثبت این رویکرد نوآورانه را نشان می دهد.

 

چشم اندازها و نوآوری های آینده

آینده ایستگاه های شارژ EV با انرژی خورشیدی، با تحقیق و توسعه مداوم با هدف به حداکثر رساندن کارایی و دسترسی، امیدوارکننده به نظر می رسد. فناوری‌های جدید، مانند راه‌حل‌های ذخیره‌سازی انرژی پیشرفته و یکپارچه‌سازی شبکه هوشمند، پتانسیل ایجاد انقلابی در صنعت را دارند.

 

دیدگاه مصرف کننده و پذیرش شارژ EV با انرژی خورشیدی

درک دیدگاه مصرف کننده در ایجاد پذیرش گسترده بسیار مهم است. ما نگرش‌ها و انگیزه‌های مصرف‌کنندگان را نسبت به ایستگاه‌های شارژ EV با انرژی خورشیدی بررسی می‌کنیم و عواملی را که بر انتخاب زیرساخت شارژ آنها تأثیر می‌گذارند، روشن می‌کنیم.

unnamed 3 1 - آینده سبز: ایستگاه‌های شارژ خورشیدی برای ماشین‌های برقی

ایستگاه‌های شارژ خورشیدی برای ماشین‌های برقی

نتیجه :

در نتیجه، ادغام انرژی خورشیدی با ایستگاه های شارژ EV نقطه عطفی در انتقال به سمت حمل و نقل پایدار است. با استفاده از نیروی خورشید، ما نه تنها اثرات زیست محیطی خود را کاهش می دهیم، بلکه راه را برای آینده ای پاک تر و سبزتر هموار می کنیم. پذیرش گسترده ایستگاه های شارژ EV با انرژی خورشیدی نه تنها امکان پذیر است، بلکه برای فردای پایدار ضروری است.

 

سوالات متداول منحصر به فرد

ایستگاه های شارژ EV با انرژی خورشیدی در شب یا در روزهای ابری چگونه کار می کنند؟

این ایستگاه‌ها اغلب از راه‌حل‌های ذخیره‌سازی انرژی، مانند باتری‌ها، برای ذخیره انرژی اضافی تولید شده در دوره‌های آفتابی برای استفاده در شرایط کم نور استفاده می‌کنند.

 

مشوق های مالی برای نصب ایستگاه های شارژ EV با انرژی خورشیدی چیست؟

دولت‌ها و سازمان‌ها ممکن است اعتبارات مالیاتی، کمک‌های بلاعوض یا یارانه‌ها را برای جبران هزینه‌های اولیه نصب و ترویج پذیرش این فناوری سازگار با محیط زیست ارائه دهند.

 

آیا می توان ایستگاه های شارژ خورشیدی را در مناطق شهری با فضای محدود نصب کرد؟

بله، پیشرفت‌ها در فناوری پنل‌های خورشیدی و تکنیک‌های نصب نوآورانه امکان ادغام انرژی خورشیدی در محیط‌های شهری با محدودیت‌های فضا را فراهم می‌کند.

ایستگاه های شارژ EV با انرژی خورشیدی چگونه به کاهش آلودگی هوا کمک می کنند؟

این ایستگاه‌ها با تکیه بر انرژی خورشیدی پاک، انتشار گازهای گلخانه‌ای مرتبط با روش‌های سنتی شارژ مبتنی بر سوخت فسیلی را حذف می‌کنند و در نتیجه به بهبود کیفیت هوا کمک می‌کنند.

 

سیاست دولت چه نقشی در گسترش ایستگاه های شارژ خورشیدی دارد؟

سیاست‌های دولت، از جمله اهداف انرژی‌های تجدیدپذیر و مشوق‌های مالی، نقش مهمی در تشویق توسعه و استقرار زیرساخت‌های شارژ EV با انرژی خورشیدی دارند که امیدواریم با تداوم حمایت وزارت نیرو این مهم در ایران به طور کامل اجرایی شود.

درآمدزایی نیروگاه‌های خورشیدی بستگی به عوامل مختلفی دارد از جمله موقعیت جغرافیایی نیروگاه، ظرفیت نیروگاه، راندمان تولید، هزینه‌های نصب و نگهداری، تعداد ساعات تابش آفتاب در منطقه و قیمت برق در بازار محلی وابسته است. همچنین، تکنولوژی استفاده شده در تجهیزات نیروگاه نیز تأثیر زیادی بر درآمدزایی آن دارد.

به طور کلی، نیروگاه‌های خورشیدی می‌توانند درآمدهای قابل توجهی تولید کنند، به ویژه در مناطقی که تابش آفتاب بالا و هزینه فروش برق نیز مناسب است. با توجه به پیشرفت تکنولوژی و کاهش هزینه‌های نصب، نیروگاه‌های خورشیدی به صورت گسترده‌تری در سراسر جهان راه‌اندازی می‌شوند.

در بسیاری از موارد، نیروگاه‌های خورشیدی به صورت قراردادهای خرید برق بلندمدت (Power Purchase Agreements)   عمل می‌کنند، که در آن یک شرکت یا دولت با نیروگاه قرارداد خرید برق منعقد کرده و برق تولیدی را خریداری می‌کند. قیمت برق در این قراردادها معمولاً بر اساس توافق بین طرفین تعیین می‌شود. بنابراین، درآمد زایی نیروگاه‌های خورشیدی می‌تواند متفاوت باشد و بسته به شرایط محلی و قراردادهای برق مورد استفاده، تغییر کند که در ایران توسط دولت به سه صورت خریداری میشود: حالت اول قرارداد خرید برق تضمینی 20 ساله با نرخ خرید 1750 تومان برای هرکیلووات تا ظرفیت 20 کیلووات و 1650 تومان برای ظرفیت های بالاتر از 20 کیلووات تا 3 مگاوات با وجود احداث نیروگاه خورشیدی در زمین شخصی و در فرمت دیگر عقد قرارداد دلاری با پایه 7 سنت دلار به مدت 6 سال و در فرمت سوم فروش برق در بورس انرژی که به مالکان نیروگاه خورشیدی این امکان را میدهد برق تولیدی خود را در بورس به قیمت درخواستی از طرف مشتریان برق عرضه نمایند که البته در این حالت مالک نیروگاه خورشیدی قرارداد PPA یا قرارداد خرید برق تضمینی نخواهد داشت.

مطالعه دقیق‌تری درباره شرایط محلی، هزینه‌ها و درآمدهای نیروگاه‌های خورشیدی در منطقه مورد نظر شما و مشاوره با اشخاص متخصص و متخصصان صنعت مربوطه، می‌تواند بهترین پاسخ را در خصوص میزان درآمد زایی نیروگاه‌های خورشیدی در آن منطقه ارائه دهد.

x 0 0 0 14103287 800 - میزان درآمد نیروگاه‌های خورشیدی و عوامل وابسته آن

نیروگاه‌های خورشیدی به عنوان یکی از منابع تولید انرژی پاک و قابل تجدید، درآمد قابل توجهی برای مالکان و سرمایه‌گذاران خود ایجاد کرده‌اند. اما میزان درآمد زایی نیروگاه‌های خورشیدی به عوامل مختلفی بستگی دارد، از جمله:

ظرفیت نصب و توان نیروگاه: میزان تولید برق از نیروگاه خورشیدی به توان نصب شده و ظرفیت آن بستگی دارد. نیروگاه‌های خورشیدی می‌توانند از چند کیلووات تا چند مگاوات ظرفیت داشته باشند. هرچه توان نیروگاه بیشتر باشد، تولید برق و درآمد آن نیز افزایش می‌یابد.

راندمان نیروگاه: راندمان نیروگاه خورشیدی نشان دهنده میزان بهره‌وری و تبدیل انرژی خورشید به برق است. هرچه راندمان بالاتر باشد، تولید برق بیشتر و درآمد بالاتری نیز تحقق می‌یابد.

منطقه جغرافیایی: شرایط آب و هوایی و میزان تابش خورشید در منطقه جغرافیایی می‌تواند تاثیر زیادی بر درآمد نیروگاه خورشیدی داشته باشد. مناطقی که در آنها تابش خورشیدی بیشتر است، قادر به تولید برق بیشتری هستند و درآمد نیروگاه بالاتر خواهد بود.

قراردادهای خرید برق: در برخی مناطق، مالکان نیروگاه خورشیدی می‌توانند با برق خود را به شبکه برق متصل کنند و برای این برق تولید شده قرارداد خرید برق بسته شود. در این صورت، قیمت خرید برق و مدت زمان قرارداد بر اساس توافقات مابین مالکان نیروگاه و مراجع مربوطه تعیین خواهد شد و به این ترتیب، درآمد نیروگاه مشخص می‌شود.

سیاست‌های دولتی و حوزه‌های مالیاتی: سیاست‌ها و قوانین دولتی و حوزه‌های مالیاتی نیز می‌تواند تأثیر بزرگی بر درآمد نیروگاه خورشیدی داشته باشد. برخی دولت‌ها تسهیلات و تخفیفات مالیاتی را برای مالکان نیروگاه‌های خورشیدی فراهم می‌کنند تا این صنعت را تشویق به رشد و توسعه کنند.

لازم به ذکر است شرکت آرا نیرو این امکان رو برای مشتریان خود فراهم نموده است تا با تسهیلات بانکی بتوانند با شرایط پرداخت هزینه های خرید تجهیزات را پرداخت نمایند.

به طور کلی، میزان درآمد زایی نیروگاه‌های خورشیدی به عوامل متعددی بستگی دارد و به طور مستقیم و براساس عوامل فوق قابل تعیین نیست. اما با توجه به رشد رو به افزایش این صنعت و پتانسیل بالای تولید برق خورشیدی، می‌توان درآمد قابل توجهی را انتظار داشت.

x 0 0 0 14007395 800 - میزان درآمد نیروگاه‌های خورشیدی و عوامل وابسته آن

درآمدزایی از نیروگاه خورشیدی معمولاً به دو روش انجام می‌شود: تولید و فروش برق و استفاده از سیستم‌های حمایتی مالی.

تولید و فروش برق: در این روش، نیروگاه خورشیدی از طریق تبدیل انرژی خورشید به برق، برق را تولید می‌کند و آن را به شبکه برق ارسال می‌کند. در بسیاری از کشورها، اپراتور نیروگاه خورشیدی برق تولید شده را به شبکه برق محلی متصل می‌کند و با شرکت برق محلی یا شرکت توزیع برق قرارداد برق فروش می‌کند. در این حالت، درآمدزایی اصلی از فروش برق به عنوان یک تولید کننده برق است. اپراتور نیروگاه خورشیدی بر اساس قراردادهای برق فروش، پرداختی معین برای هر واحد برق تولید شده دریافت می‌کند. درآمد زایی بیشتر از نیروگاه خورشیدی وابسته به قیمت برق، سیاست‌های حمایتی دولت، ظرفیت تولید نیروگاه و عملکرد بهینه آن است.

سیستم‌های حمایتی مالی: برخی کشورها و دولت‌ها سیستم‌های حمایتی مالی را برای تشویق سرمایه‌گذاری در نیروگاه‌های خورشیدی ایجاد کرده‌اند. این سیستم‌ها شامل تسهیلات و امتیازهای مالی متنوعی می‌شوند که به صورت مستقیم یا غیرمستقیم به اپراتور نیروگاه خورشیدی ارائه می‌شود. مثال‌هایی از این سیستم‌ها عبارتند از: تعلیق مالیات بر ارزش افزوده برای تجهیزات نیروگاه، سبسیدی مستقیم برای تولید برق از منابع خورشیدی، خرید برق با قیمت تضمین شده توسط دولت، قراردادهای طولانی‌مدت برای فروش برق به دولت یا شرکت‌های دولتی، و برنامه‌های حمایتی مالی دیگر.

به طور کلی، درآمدزایی از نیروگاه خورشیدی بستگی به عوامل متعددی دارد که شامل قوانین و مقررات محلی، سیاست‌های دولت، قیمت برق، هزینه‌های نیروگاه و کارایی عملکرد آن می‌شود. همچنین، شرایط محلی میزان تابش خورشید و تقاضای برق نیز بر درآمدزایی تأثیرگذار است

 

 

 

.

مقدمه – توضیح وضعیت فعلی محیط زیست و نیاز به منابع انرژی پایدار – مروری کوتاه بر نقش خورشیدی نیروگاه ها در پرداختن به این مسائل

II.

مزایای نیروگاه های خورشیدی – کاهش انتشار گازهای گلخانه ای – کاهش وابستگی به سوخت های فسیلی – افزایش استقلال انرژی – پتانسیل ایجاد اشتغال و رشد اقتصادی

III.

نحوه کار نیروگاه های خورشیدی – توضیح اصول اولیه تولید انرژی خورشیدی – بحث در مورد انواع نیروگاه های خورشیدی و ویژگی های منحصر به فرد آنها

نیروگاه های خورشیدی و محیط زیست – بحث در مورد اثرات زیست محیطی نیروگاه های خورشیدی، از جمله نگرانی های کاربری زمین و حیات وحش – توضیح چگونگی طراحی نیروگاه های خورشیدی برای به حداقل رساندن اثرات منفی و ارتقای تنوع زیستی

V.

مطالعات موردی: نیروگاه های خورشیدی موفق – بحث درباره نیروگاه های خورشیدی موفق در سراسر جهان، از جمله تأثیر آنها بر محیط زیست و جوامع محلی – به عنوان مثال می توان به پروژه انرژی خورشیدی کاموتی در هند، مزرعه خورشیدی توپاز در کالیفرنیا و نیروگاه خورشیدی نور ابوظبی در امارات متحده عربی اشاره کرد.

VI.

چالش ها و راه حل ها – بحث در مورد چالش های پیش روی توسعه نیروگاه خورشیدی، از جمله موانع هزینه و نظارتی – توضیح راه حل های بالقوه، مانند مشوق های دولتی و پیشرفت های تکنولوژیکی

 

VII.

نتیجه گیری – خلاصه ای از نقش نیروگاه های خورشیدی در بازسازی زمین – تشویق به حمایت از توسعه انرژی پایدار و پذیرش پتانسیل نیروگاه های خورشیدی برای ایجاد سیاره ای پاک تر و سالم تر.

 

وضعیت کنونی محیط زیست با تغییرات آب و هوا، آلودگی هوا و سایر مسائل زیست محیطی که بر روی سیاره تأثیر می گذارد، باعث نگرانی است. نیاز به منابع انرژی پایدار به طور فزاینده ای ضروری شده است زیرا ما به دنبال کاهش وابستگی خود به سوخت های فسیلی و کاهش تأثیر تغییرات آب و هوایی هستیم. نیروگاه های خورشیدی با ارائه یک منبع انرژی پاک و تجدیدپذیر نقش مهمی در رسیدگی به این مسائل ایفا می کنند. نیروگاه های خورشیدی با بهره گیری از نیروی خورشید که یک منبع انرژی بی حد و حصر است، الکتریسیته تولید می کنند. برخلاف سوخت‌های فسیلی، انرژی خورشیدی باعث انتشار گازهای گلخانه‌ای نمی‌شود که به تغییرات اقلیمی و آلودگی هوا کمک می‌کند. نیروگاه‌های خورشیدی علاوه بر کاهش ردپای کربن، می‌توانند به افزایش استقلال انرژی و رشد اقتصادی کمک کنند. با سرمایه گذاری در انرژی خورشیدی، کشورها می توانند وابستگی خود به سوخت های فسیلی وارداتی را کاهش دهند و مشاغل جدیدی در بخش انرژی های تجدیدپذیر ایجاد کنند. به طور کلی، نیروگاه های خورشیدی بخش مهمی از راه حل برای چالش های زیست محیطی هستند که امروزه با آن روبرو هستیم. با استقبال از منابع انرژی پایدار مانند انرژی خورشیدی، می‌توانیم در مسیر سیاره‌ای پاک‌تر و سالم‌تر برای نسل‌های آینده تلاش کنیم.

ARANIROO SOLAR PANEL 01 - یک طرح کلی در مورد نقش نیروگاه های خورشیدی در بازسازی زمین:

 

بله، اینها برخی از مزایای کلیدی نیروگاه های خورشیدی هستند. در اینجا جزئیات بیشتری در مورد هر یک از این مزایا وجود دارد:

 

  1. کاهش انتشار گازهای گلخانه ای: نیروگاه های خورشیدی بدون تولید گازهای گلخانه ای برق تولید می کنند. این بدان معنی است که آنها می توانند به کاهش میزان دی اکسید کربن و سایر آلاینده های منتشر شده در جو کمک کنند، که می تواند به کاهش اثرات تغییرات آب و هوایی کمک کند.

 

  1. کاهش وابستگی به سوخت های فسیلی: نیروگاه های خورشیدی برای تولید برق به هیچ گونه سوخت فسیلی نیاز ندارند. این بدان معنی است که آنها می توانند به کاهش وابستگی ما به منابع تجدید ناپذیر مانند زغال سنگ، نفت و گاز طبیعی کمک کنند که محدود هستند و به تغییرات آب و هوایی کمک می کنند.

 

  1. افزایش استقلال انرژی: نیروگاه های خورشیدی می توانند با تولید برق محلی به افزایش استقلال انرژی کمک کنند. این بدان معناست که جوامع و کشورها می توانند کمتر به منابع انرژی وارداتی تکیه کنند و کنترل بیشتری بر تامین انرژی خود داشته باشند.

 

  1. پتانسیل ایجاد اشتغال و رشد اقتصادی: توسعه و بهره برداری از نیروگاه های خورشیدی می تواند باعث ایجاد اشتغال و تحریک رشد اقتصادی شود. این به این دلیل است که نیروگاه های خورشیدی به طیف وسیعی از کارگران ماهر، از مهندس و تکنسین گرفته تا کارگران ساختمانی و مدیران پروژه، نیاز دارند. علاوه بر این، نیروگاه های خورشیدی می توانند سرمایه گذاری را جذب کرده و از طریق مالیات و سایر جریان های درآمدی به اقتصاد محلی کمک کنند.

 

 

چکیده: رشد سریع صنعت در انرژی خورشیدی نشان دهنده علاقه به انرژی های تجدید پذیر است. اهمیت برق شبکه های هوشمند حاصل از نیروگاه ها، تشخیص زودهنگام خطا یا ناهنجای در سیستم‌های فتوولتائیک (PV) را ضروری می سازد تا با کاهش اتلاف یا هدررفت پتانسل انرژی خورشیدی بتوانیم نیروگاه های خورشیدی بهینه در دوره بهره برداری داشته باشیم.

از این نظر، استفاده دقیق از آخرین و به‌روزترین  فناوری هوش مصنوعی ضروری است تا به موقع ناهنجاری های مختلف سیستم افشا شود. این مقاله با ارزیابی این موضوع به آن می پردازد.

عملکرد طرح‌های مختلف هوش مصنوعی و استفاده از آن‌ها برای تشخیص ناهنجاری‌ها، قطعات فتوولتائیک طرح‌های زیر ارزیابی می‌شوند:

AutoEncoder Long Short-Term Memory (AE-LSTM), Facebook-Prophet, and Isolation Forest

این مدل ها می توانند رفتارهای واقعی سالم و غیرعادی سیستم PV را شناسایی کنند، نتایج ما بینش روشنی برای شکل گیری یک راه حل ارائه می دهد. راه حل آگاهانه، به ویژه با مبادلات تجربی برای چنین فضای پیچیده ای، در این صنعت راه گشا خواهد بود.

کلمات کلیدی: تشخیص ناهنجاری. فراگیری ماشین؛ تجزیه و تحلیل سری زمانی؛ همبستگی

10araniroo.irخورشیدی.png pyranometer field use min - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

مقدمه

در دهه گذشته، توسعه و گسترش سریع انرژی های تجدید پذیر از جمله نیروگاه ها صورت گرفته است. انتظار می‌رود توسعه‌ و توانایی تولید انرژی پاک و مقرون به صرفه و ایجاد رشد اقتصادی باعث پیشرفت ما شود. در نتیجه، چالش های تولید انرژی خورشیدی اخیرا توجه قابل توجهی را به خود جلب کرده است. یک نگرانی پیشرو، شناسایی و بومی سازی الگوهای غیرعادی در نیروگاه های خورشیدی است و تکنیک های داده محور به تشخیص و پیشگیری از چنین ناهنجاری هایی کمک زیادی میکند.

سیستم های هوش منطقی می توانند ثابت کنند تجهیزات فتوولتائیک (PV)  در بسیاری از موارد کارآمد است، که با استفاده از شبکه های عصبی کانولوشن برای پیاده سازی هوش مصنوعی قابل پیاده سازی است.(شبکه عصبی کانولوشنال کلاسی از شبکه عصبی مصنوعی است که بیشتر برای تجزیه و تحلیل تصاویر بصری استفاده میشود).

عملکرد مقیاس پذیر و منسجم سیستم های خورشیدی PV به ابزارهای پیشرفته برای نظارت نیاز دارد، تکامل دینامیکی پارامترهای سیستم و انتشار هشدارهایی در مورد ناهنجاری ها به تصمیم گیرندگان و نظارت آنلاین سیستم های PV از نظر فنی برای کمک به اپراتورها مفید است. شکست در شناسایی خطاهای فاجعه بار در آرایه های فتوولتائیک (PV)  براین اساس کاهش می یابد. توان تولید شده و عدم کنترل حفاظتی، در واقع خطرات آتش سوزی را ایجاد می کند که ابتدا ناهنجاری درنمای بیرونی پنل های خورشیدی ظاهر می شود، اگر دارندگان پنل زودتر از وجود ناهنجاری ها مطلع شوند، آنها می توانند ناهنجاری ها را از بین ببرند تا از کمبود توان بیشتر جلوگیری کنند. بنابراین، سرعت و روش‌های تشخیص ناهنجاری برای بهبود قابلیت اطمینان و ایمنی و عملکرد سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) مهم هستند.

نیروگاه های خورشیدی PV معمولاً در نتیجه اشکال مختلف ناهنجاری ها به اندازه کافی اجرا نمی شوند. این ناهنجاری ها یا داخلی یا خارجی هستند. خطاها در سیستم خورشیدی PV بوجود می آیند و باعث می شوند تولید در روز صفر شود. خطاهای رایج عبارتند از خرابی در یک قطعه، جداسازی سیستم، خاموش شدن اینورتر، سایه اندازی و نقطه حداکثر توان اینورتر. عوامل خارجی مانند سایه، رطوبت، گرد و غبار و دما به عنوان ناهنجاری های خارجی قابل توجهی در نظر گرفته می شوند که سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) را تحت تاثیر قرار می دهند و تولید برق آن را تضعیف می کنند.

چندین ابتکارعمل برای رسیدگی به ناهنجاری قبلی پیشنهاد شده است.

کاربرد شبکه عصبی مصنوعی(ANN)  در مدل‌سازی دستگاه‌های خورشیدی بررسی می‌شود، که در مقایسه با تجربه مطالعات انجام شده، به آزمایش های تجربی کمتری برای تعیین اتصالات ورودی/خروجی نیاز دارد، بنابراین باعث صرفه جویی در زمان و کاهش هزینه های مالی می شود. یک حافظه کوتاه مدت طولانی طرح شبکه عصبی (LSTM) برای پیش‌بینی بازده عکس‌های خورشیدی استفاده می‌شود. هوش مصنوعی می تواند آمارهای دریافتی، در یک بازه زمانی مشخص را برای شکل گیری الگوهای کنترل به کار گیرد. به همین ترتیب، طرح‌های مبتنی بر هوش مصنوعی مانند مدل LSTM و بهینه‌ساز شعله پروانه برای پیش‌بینی بازده دستگاه‌های تقطیر آب خورشیدی. LSTM بهینه شده بهتر از طرح LSTM مستقل عمل کرد.

کاربرد روش‌های یادگیری عمیق (DL) را در زمینه‌های مختلف بازبینی کردند، از جمله تولید برق از توربین های بادی و پنل های خورشیدی، پزشکی، کشاورزی و داده کاوی.

موارد مهم مقاله به شرح زیر است:

  1. بررسی سه مدل شناخته شده تشخیص ناهنجاری: Autoencoder LSTM (AE-LSTM)، پیام رسان فیسبوک ، و محدوه ایزوله سازی. آزمون های مقایسه ای انجام شد: بررسی دقت و عملکرد این مدل ها با بهینه سازی هایپرپارامترها
  2. تعریف و طبقه بندی عوامل داخلی و خارجی که باعث ایجاد ناهنجاری در نیروگاه فتوولتاییک میشوند، بررسی تاثیر آنها بر دقت مدل و مطالعه اثر همبستگی و تاثیر آن در تشخیص ناهنجاری ها.

در ادامه این مقاله، بخش 2 پیشینه مقاله و مرتبط را مورد بحث قرار می دهد و بخش 3 الگوریتم های یادگیری ماشین استفاده شده را مشخص می کند. بخش 4 مجموعه داده های جمع آوری شده را مشخص می کند و بخش 5 خروجی ها و پارامترهای آزمایشی را نشان می دهد.

در پایان، ما نتایج خود را جمع آوری می کنیم و برخی از جهت گیری های آینده را در بخش 6 ارائه می دهیم.

  1. Related Work

چندین روش تکنیک های تشخیص ناهنجاری در نیروگاه های فتوولتائیک (PV) را بررسی کرده اند. به عنوان مثال، روش های متعددی را برای افشا و مقایسه دسته بندی ناهنجاری های حاوی مدل میانگین متحرک یکپارچه رگرسیون خودکار (ARIMA)، شبکه‌های عصبی، ماشین‌های بردار پشتیبان و طبقه‌بندی  k-نزدیک‌ترین همسایه‌ها.

طرحی برای چیدمان سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) این مدل برای پیش بینی تولید برق AC پیاده سازی شده است. ساخته شده بر روی ANN، که تولید برق AC را با استفاده از تابش خورشیدی و دمای داده های پانل سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) یک تکنیک جدید برای تشخیص ناهنجاری پیشنهاد شده است.

در پردازش تصویر حرارتی با ابزار SVM که ویژگی ها را به عنوان عنصر معیوب و انواع غیر معیوب طبقه بندی می کند.

یک تکنیک تشخیص ناهنجاری مبتنی بر مدل بخش DC و سایه لحظه ای از سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) برای بازرسی پیشنهاد شده است. در ابتدا، یک مدل بر اساس یک دیود برای تشریح ماهیت معمولی سیستم PV نظارت شده و تشکیل شده است. باقیمانده برای تشخیص عیب در مرحله بعد، یک فرآیند ماشین بردار پشتیبانی یک کلاس SVM)) به باقیمانده ها که با مدل در حال اجرا برای افشای خطا شروع می شود، اجرا می شود. روشی بدون حسگر برای آشکارسازی خطاهای هر پنل از آرایه های خورشیدی روش مدل محور SunDown بر تعاملات بین توان خروجی پنل ها تأثیر می گذارد. تولید توان توسط پنل های مجاور برای تشخیص نابرابری ها از تولید پیش بینی شده بررسی میشود.

این مدل می‌تواند خطاهای همزمان را در بسیاری از پنل‌ها مدیریت کند و ناهنجاری‌ها را برای تصمیم‌گیری ممکن طبقه‌بندی کند؛ منابعی از جمله برف، برگ ها، زباله ها و خرابی های الکتریکی.

ابزار جدیدی به نام ISDIPV) ) ارائه شده است که قادر به تشخیص ناهنجاری ها است و عیب یابی آنها در نیروگاه خورشیدی PV  شامل سه عملیات اساسی است: مواردی برای جمع آوری داده ها، تشخیص ناهنجاری و تشخیص ارائه شده، تفاوت در عملکرد منظم دو شکل از روش های مدل سازی اجرا شده است.

برای توصیف عملکرد معمولی پیش بینی شده: توابع انتقال خطی (LTF) و مدل های شبکه های عصبی ساخته شده بر روی رسپترون های چند لایه (MLP)  یک پاسخ داده محور برای تشخیص و طبقه بندی ناهنجاری کافی ارائه کرد که جریان های آرایه های سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) را به عنوان نشانه هایی برای افشا و طبقه بندی ناهنجاری های سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) اعمال کرد. رویکرد تشخیص ناهنجاری پیشنهادی از تکنیک‌های هوش مصنوعی بدون نظارت استفاده می‌کند. این رویکرد شامل دو مرحله، به ویژه تشخیص سیستم هوشمند محلی  (LCAD) و تشخیص ناهنجاری هوشمند در بستر جهانی (GCAD). شناسایی ناهنجاری های مربوط به مصرف سوخت ایستگاه های پایه و

داده های ثبت شده با استفاده از ژنراتور به عنوان مبدأ قدرت. ناهنجاری ها شناسایی شده از طریق یادگیری الگوهای مصرف سوخت با استفاده از چهار روش طبقه بندی: ماشین‌های بردار پشتیبانی (SVM)، k-نزدیک‌ترین همسایگان (KNN)، رگرسیون لجستیک (LR)  و پرسپترون چند لایه (MLP)  نتایج نشان داد که MLP بیشترین کارایی را در این زمینه دارد.

8araniroo.irخورشیدی.png solar panel - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

 

تفسیر اندازه گیری

یک تکنیک جدید برای نظارت بر سیستم های نیروگاه خورشیدی فتوولتاییک PV با تشخیص ناهنجاری ها ارائه شده است. با استفاده از “k-نزدیکترین همسایگان  (kNN) و “ماشین بردار پشتیبانی یک کلاس OCSVM)) الگوریتم های خودآموز به طور قابل توجهی تلاش اندازه گیری را کاهش داده و پشتیبانی می کنند که از پایش قابل اعتماد خطاها از الگوریتم k- نزدیکترین همسایه استفاده کردند و یک پرسپترون چند لایه برای پردازش داده ها از یک حسگر DC و تشخیص اختلاف جریان الکتریکی یک المان و تشخیص بدون حسگر پیشنهاد شده است. که توسط کاهش سریع جریان محصور شده توسط دو نقطه حداکثر توان کنترل می شود. شبیه سازی نمونه برداری ردیابی شده (MPPT) در نیروگاه های خورشیدیPV  برای اعتبار سنجی اجرا شد.

امکان تعیین ناهنجاری ها در برابر موارد نوسانی، صرف نظر از درجه اختلاف و تابش یک چارچوب با تشخیص ناهنجاری سلول های خورشیدی مونو کریستالی پیشنهاد شده است.

این چارچوب دو مرحله دارد: در مرحله اولیه، یک شبکه مولد غیرهماهنگ (GAN) برای ساخت یک مدل تشخیص ناهنجاری استفاده می شود. این مدل امکان تشخیص ترکیبات غیر طبیعی که فقط از نمونه های غیر معیوب برای تمرین استفاده می کنند.

شبکه کانولوشن

یک طرح تحلیلی برای بررسی آنلاین ویدیوی خام تصویربرداری از سطح پنل های نیروگاه خورشیدی ارائه شده است. جریان های ترموگرافی هوایی این طرح ترکیبی از پردازش تصویر و آمار است. روش های هوش مصنوعی طرح ارائه شده به اجزا قدرتمند بستگی دارد. تجزیه و تحلیل (RPCA)، که بر روی تصاویر سطح پنل های نیروگاه خورشیدی PV برای تشخیص و محصور کردن همزمان استفاده می شود از ناهنجاری ها علاوه بر RPCA، روش‌های پس از پردازش نیز برای آن پیشنهاد شده‌اند. کاهش نویز تصویر و تقسیم بندی مدل های متمایز برای نیروگاه انتخاب می شوند. بررسی داده های این مدلهای خطی، مدلهای مبتنی بر مجاورت، مدل‌ها، مجموعه‌های ناهنجاری و شبکه‌های عصبی که بالاترین نرخ تشخیص را دارند، احتمالات هستند.

SolarClique، یک روش مبتنی بر داده، برای تشخیص ناهنجاری ها درتولید برق تاسیسات نیروگاه خورشیدی است که این روش به هیچ دستگاه سنسوری نیاز ندارد. برای تشخیص خطا/ناهنجاری در عوض، منحصراً به نتیجه مونتاژ آرایه نیاز دارد

و آرایه های نزدیک برای تشخیص ناهنجاری عملیاتی به کار گرفته میشوند.

یک تکنیک دیگر تشخیص ناهنجاری استفاده از یک مدل یادگیری نیمه نظارتی برای از پیش تعیین کردن نرخ تولید با اطلاع از میزان تابش خورشید پیشنهاد شده است. شرایط پنل های خورشیدی برای شرایطی که پنل خورشیدی نمی تواند برق تولید کند مورد آنالیز قرار میگیرد. در نتیجه خراب شدن تجهیزات این روش از مدل خوشه بندی برای اعمال منظم فیلتراسیون و مدل شبکه عصبی، Autoencoder، برای ایجاد طبقه بندی ناهنجاری یا خطا ها استفاده می کند.

یک طرح کلی، بدون نظارت و صرفا مقیاس پذیر برای تشخیص ناهنجاری ها و خطاهای نیروگاه خورشیدی ارائه شده است.

در داده ها در قالب یک بازه زمانی که می توانند به صورت آفلاین و آنلاین اجرا شوند. این طرح از یک مدل بازسازی به دنبال رمزگذار خودکار متغیر تشکیل شده است. رمزگذار و رمزگشا هر دو پارامتری هستند که با شبکه های عصبی دامنه دار برای تشخیص در بازه زمانی داده های دریافتی نتایج را بررسی کرده و نشان می‌دهد که مدل می‌تواند شرایط غیرعادی را با استفاده از معیارهای ترمیم احتمالی مانند ناهنجاری تشخیص دهد.

مدل رویکرد تشخیص ناهنجاری یا خطاهای بالقوه (به عنوان مثال، ولتاژ بالا/پایین) مجموعه ای با مدل های رگرسیون غیر خطی و آمار و ارقام ناهنجاری پس از مطالعه همبستگی که برای تشخیص نفوذ فیزیکی اقتباس شده است.

این الگوریتم بر داده های ورودی، شکل ناهنجاری ها، داده های خروجی و دانش متکی است.

6araniroo.irخورشیدی Thermographie Solar - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

 

  1. مواد و روش ها: الگوریتم های ML

تکنیک ها و روش های مختلف مورد استفاده در این مقاله در این بخش مورد بحث قرار می گیرد.

یعنی، ما با الگوریتم‌های ML نور بیشتری را مورد استفاده قرار دادیم AutoEncoder Long Short-

روش تحقیق معماری های این الگوریتم به شدت مورد بحث قرار می گیرند و درک کاملی از آن ایجاد می کنند.

3.1. AutoEncoder حافظه کوتاه مدت /بلند مدت (AE-LSTM)

AutoEncoder (AE) یک ANN بدون نظارت است. دارای سه ساختار متقارن است: لایه ها: ورودی پنهان و یک لایه خروجی (بازسازی) . دارای فرآیندهای رمزگذاری و رمزگشایی داخلی است. رمزگذاری از ورودی شروع می شود لایه پنهان، در حالی که رمزگشایی لایه پنهان را به لایه خروجی هدایت می کند. AE شایستگی یادگیری موثر داده ها بدون برچسب برای پیش بینی از بردار ورودی را دارد. شکل 1ساختار AE را نشان می دهد.

1araniroo.irخورشیدی 258x300 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 1. The AutoEncoder (AE) model.

 

فرآیند رمزگذاری به شرح زیر است:

H = f1(Wi . X + bi)              (1)

 

که Wi و bi پارامترهای وزن و بایاس در بین ورودی و لایه پنهان هستند.

X ورودی اولیه، H نمایش میانی داده های اولیه و f1 است.

تابع فعال سازی به عنوان مثال، ReLU، لجستیک (Sigmoid)  و (TanH)  به همین ترتیب، رمزگشایی فرآیند به صورت زیر بیان میشود:

 

Xˆ = f2(Wh . H + bh)             (2)

 

که در آن Wh و bh وزن ها و پارامترهای بایاس بین مخفی و خروجی هستند.

bX خروجی است که از داده های ورودی بازسازی می شود.

AE آموزش داده شده با هدف به حداقل رساندن اختلاف بین خروجی bX و the بردار ورودی X از طریق مربع خطا همچنین به نام خطای بازسازی.

 

2araniroo.irخورشیدی 300x193 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 2. Long Short-Term Memory (LSTM) unit.

 

  1. داده های جمع آوری شده

داده های مورد استفاده در دو نیروگاه خورشیدی در هند جمع آوری شد (نیروگاه 1 نزدیک گاندیکوتا، آندرا، و نیروگاه 2 در نزدیکی ناسیک، ماهاراشترا) در مدت 34 روز، هر کدام با فواصل 15 دقیقه ای هر نیروگاه شامل 22 حسگر متصل به هر اینورتر بود و سطوح تولید نیروگاه برای اندازه گیری نرخ تولید (یک عامل داخلی که می تواند باعث ناهنجاری ها شود)، مانند توان های AC وDC  در سطح اینورتر نیروگاه، اندازه گیری شد. تابش، دمای محیط و ماژول (آن عوامل خارجی که می توانند ناهنجاری ایجاد کنند) داده های اندازه گیری شده آب و هوا که منتشر شده.

3araniroo.irخورشیدی 244x300 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 3. Correlation matrix computing the linear correlation among the characteristic elements for power plants 1 and 2.

 

 نتایج و بحث

این بخش ارزیابی تجربی انجام شده برای اعتبار سنجی و ارزیابی را توضیح می دهد.

شرح کاملی از تنظیمات آزمایشی ارائه شده است. ما یافته ها و نتایج خود را با جزئیات تجزیه و تحلیل می کنیم.

سیستم های نیروگاه خورشیدی PV  ممکن است انواع مختلفی از ناهنجاری ها را داشته باشند. برای مقایسه مناسب بین الگوریتم‌های تشخیص ناهنجاری، آزمایش‌هایی برای بررسی اثر انجام شد. عوامل داخلی و خارجی و همچنین اثر همبستگی بر روی داده های همه اینورترها با بررسی دیتاهای سنسورهای این دو نیروگاه با مقایسه AC تولید شده انجام شد. توان اینورتر و نرخ تابش نیروگاه شماره 1 ، در شکل 4 نشان داده شده است.

قابل توجه است که در دوره های 7 و 14 خرداد (ژوئن) افت برق متناوب داشته است.

این اخطار می تواند نشان دهنده خرابی در سطح اینورتر باشد.

4araniroo.irخورشیدی 1030x477 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 4. Signal comparison between AC, DC Power, Irradiation, and the Module Temperature signals from inverter number 12.

 

تعداد سیگنال های خطا یا ناهنجاری 13 عدد است که در تاریخ  7 و 14 خرداد (ژوئن) برعکس، برای سایر اینورترها مانند اینورتر شماره 12، افتی وجود نداشت. همانطور که در تولید برق AC، در شکل 5 نشان داده شده است.

 

5araniroo.irخورشیدی 1030x501 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیکFigure 5. Signal comparison between AC, DC Power, Irradiation, and the Module Temperature signals from inverter number 12.

  1. نتیجه گیری

تشخیص خطا یا ناهنجاری در نیروگاه های خورشیدی مدرن، استفاده از رویکردهای داده محوربرای کاهش زمان های خرابی و افزایش کارایی حیاتی است. در این مقاله، سه عملکرد مدل ها مبتنی بر هوش مصنوعی برای مدلی که می تواند مورد تجزیه و تحلیل قرار گرفت، نشان داده شد که میتواند به طور دقیق خطاها یا ناهنجاری های موجود در سیستم نیروگاه خورشیدی فتوولتائیک (PV)  را تعیین کند. همبستگی ضرایب بین پارامترهای ویژگی داخلی و خارجی نیروگاه تعیین شد و برای تجزیه و تحلیل کارایی مدل های هوش مصنوعی در تشخیص ناهنجاری ها استفاده می شود.

AE-LSTM ناهنجاری ها و سیگنال سالم را با موفقیت شناسایی کرد. در آینده بررسی تکنیک‌های کاهش ناهنجاری، هوشمند می‌شود که روند هوش مصنوعی، یعنی هوش مرکزی، در نیروگاه های انرژی خورشیدی هوشمند در مقیاس بزرگ به کار گرفته خواهد شد.

 

نویسندگان مقاله چاپ شده در مجله MDPI:

Mariam Ibrahim

Ahmad Alsheikh

Feras M. Awaysheh

Mohammad Dahman Alshehri

فهرست مطالب

باتری LiFePO4 چیست؟

باتری LiFePO4 چگونه کار می کند؟

باتری های LiFePO4 برای چه مواردی استفاده می شوند؟

باتری LTO چیست؟

باتری LTO چگونه کار می کند؟

باتری های LTO برای چه استفاده می شوند؟

تفاوت بین باتری LTO و LiFePO4

باتری LTO در مقابل  LiFePO4 – مزایا و معایب

کدام بهتر است – باتری LTO در مقابل LiFePO4

تصمیم نهایی

 

 

هر دو باتری LTO و LiFePO4 لیتیومی هستند، بنابراین آیا آنها مشابه هستند یا تفاوت هایی دارند؟ تفاوت های زیادی وجود دارد. این مقاله تفاوت بین شان و مزایا و معایب باتری LTO و LiFePO4 و اینکه کدام یک ارزش خرید بیشتری دارد را توضیح می دهد.

Screen Shot 2022 03 22 at 5.14.13 PM - مزایا و معایب باتری LTO در مقابل LiFePO4

باطری

باتری LiFePO4 چیست؟

LiFePO4 نوعی باتری مبتنی بر لیتیوم است و نام کامل آن فسفات آهن لیتیوم (لیتیوم آهن فسفات) است. باتری LiFePO4 به دلیل چرخه عمیق خود مشهور است، ولتاژ آن 3.2 ولت است، LiFePO4 با چگالی بالا، چگالی انرژی بالاتر از 250 وات ساعت در لیتر، انرژی ویژه بیشتر از 130 وات ساعت / کیلوگرم مشخص می شود، بنابراین، باتری های LiFePO4 نسبتا سبک هستند و به طور گسترده در حمل و نقل استفاده می شوند. وسایل نقلیه، دستگاه های قابل حمل، پشتیبان باتری خانه و غیره.

 

باتری LiFePO4 چگونه کار می کند؟

هر باتری دارای دو جمع کننده جریان، یک آند و یک کاتد، و همچنین یک جداکننده، الکترولیت و مایع است. هر الکترود (آند و کاتد) حاوی یون لیتیوم است. الکترولیت به عنوان یک محیط عمل میکند که از طریق آن یون های لیتیوم با بار مثبت توسط جداکننده از آند به کاتد منتقل می شوند.

هر زمان که یون های لیتیوم مهاجرت می کنند، الکترون ها را در آند آزاد می کنند. این یک ولتاژ در کلکتور مثبت تولید می کند. هنگامی که دستگاهی را در پریز برق قرار می دهید، الکتریسیته از کلکتور مثبت به دستگاه شارژ شده و به کلکتور منفی برمی گردد. یون های لیتیوم در طول شارژ و تخلیه بین الکترودهای مثبت و منفی به عقب و جلو مهاجرت می کنند.

 

باتری های LiFePO4 برای چه مواردی استفاده می شوند؟

  • با در نظر گرفتن قابلیت‌های باتری‌های LTO در مقابل LiFePO4، LiFePO4 برنده می‌شود زیرا قابل حمل‌تر است و عمر چرخه‌ای طولانی‌تری دارد. اینها آنها را برای قایق های کوچک و موتورهای کایاک عالی می کند.

 

  • باتری های LiFePO4 جایگزین باتری های اسید سرب و NiMh در تجهیزات ارتباطات رادیویی، و جایگزین بسیاری از کاربری های شما می شوند.
  • در دوچرخه های الکترونیکی و اسکوترهای الکترونیکی نیز استفاده می شود.
  • در مناطق بدون برق، باتری های LiFePO4 با اینورتر و مبدل می توانند چندین بار الکتریکی را تامین کنند. می توانند برق لوازم خانگی را در زمان قطع برق تامین کند.

 

باتری LTO چیست؟

لیتیوم-تیتانات-اکسید(LTO)  به عنوان یک ماده الکترود منفی برای باتری های لیتیوم-یون جدید، به دلیل خواص بسیار عالی خود توجه ها را به خود جلب کرده است. باتری LTO نوعی تیتانات لیتیوم است که به عنوان ماده الکترود منفی باتری لیتیوم یونی استفاده می شود و می تواند با مواد الکترود مثبت مانند منگنات لیتیوم، مواد سه تایی یا فسفات آهن لیتیوم ترکیب شود تا یک لیتیوم 2.4 ولت یا 1.9 ولت ایجاد کند. باتری ثانویه یونی باتری LTO دارای بالاترین انرژی ویژه 90 وات ساعت بر کیلوگرم است، اما از مزیت ایمنی بالا برخوردار است. این باتری سریعتر شارژ می شود زیرا آند فضای بیشتری برای جذب جریان دارد.

 

باتری LTO چگونه کار می کند؟

باتری LTO مانند باتری لیتیوم یونی از یک آند، یک کاتد و یک الکترود تشکیل شده است. هر یک از این سه جزء در تامین انرژی گجت نقش دارند. فرآیند یون های لیتیوم از الکترود مثبت به ماده ساختار اسپینل لیتیوم تیتانات الکترود منفی در حال شارژ شدن است، در حالی که تخلیه حرکت در جهت مخالف، عقب و جلو است و شارژ و دشارژ باتری و منبع تغذیه به سمت بار را کامل می کند.

 

باتری های LTO برای چه استفاده می شوند؟

باتری لیتیوم تیتانیوم دارای کاربردهای عملی در صنعت و تنظیمات پزشکی متعدد است. کاربردهای دیگر آن عبارتند از:

  • ایستگاه های پایه ارتباطی، بیمارستان ها، امور مالی، مخابرات و سیستم های قدرت پشتیبان حیاتی سیستم.
  • در برنامه های حمل و نقل مانند وسایل نقلیه الکتریکی و ایستگاه های شارژ، اتوبوس های توریستی، قایق های تفریحی عملکرد خوبی دارد.
  • علاوه بر این، مصرف‌کنندگان می‌توانند از این باتری‌های لیتیومی در طیف گسترده‌ای از اسباب‌بازی‌ها، اسباب‌بازی‌ها، هدفون‌های بی‌سیم، لوازم خانگی کوچک و بزرگ، ابزارهای برقی دستی و خودروهای الکتریکی استفاده کنند.

 

تفاوت بین باتری LTO و LiFePO4

ما به طور خاص باتری LTO و LiFePO4 را از پنج نقطه مهم انتخاب باتری مقایسه می کنیم، بنابراین بیایید تفاوت های اصلی باتری LTO و LiFePO4 را بررسی کنیم:

 

تفاوت سطح انرژی در LTO در مقابل LiFePO4

باتری های LTO و LiFePO4 از نظر انرژی بسیار متفاوت هستند. توان ویژه باتری LiFePO4 1400-2400 وات بر کیلوگرم و باتری لیتیوم تیتانات 750 وات بر کیلوگرم است.

علاوه بر انرژی ویژه در مقایسه LTO در مقابل LiFePO4، باتری لیتیوم آهن فسفات بهتر است. آنها برای برنامه های کاربردی با سیستم های تعبیه شده یا زمان های اجرا طولانی دوام زیادی دارند.

 

اکسید لیتیوم تیتانات به دلیل افزایش چگالی انرژی به ویژه در شرایط دمای بالا ناپایدار است. چرخه عمر باتری LTO بیش از 4000 چرخه است، اما میزان خود تخلیه آن 2-10٪ در ماه است، نرخ خود تخلیه باتری LiFePO4 تنها 1-3.5٪ است.

 

ذخیره سازی طولانی مدت در LTO در مقابل LiFePO4

هنگام تصمیم گیری در مورد شیمی برای ذخیره باتری، بسیار مهم است که باتری را پیدا کنید که بتواند شارژ خود را برای مدت زمان طولانی حفظ کند. در عوض، پس از بیش از یک سال استفاده، باتری همچنان باید تقریباً به خوبی زمانی که نو بود شارژ شود.

بنابراین، در باتری های LTO در مقابل LiFePO4، چه فسفات آهن لیتیوم یا لیتیوم تیتانیوم را انتخاب کنید، ماده ای دریافت خواهید کرد که می تواند شارژ شما را برای مدت طولانی حفظ کند. لیتیوم فسفات آهن 350 روز ماندگاری دارد. لیتیوم تیتانیوم 300 روز دوام می آورد. از منظر نرخ خود تخلیه، باتری LiFePO4 نیازی به شارژ مکرر ندارد.

 

تفاوت هزینه در باتری LTO در مقابل LiFePO4

وقتی قیمت باتری های LTO را در مقابل LiFePO4 مقایسه می کنیم، LiFePO4 برتر است، در عین اینکه ویژگی های برتری نسبت به سایر باتری ها دارد با قیمتی مناسب تر در بازارهای جهانی عرضه میشود و در مقایسه با باتری LTO، مقرون به صرفه و کارآمد است. به طور قابل توجهی، باتری LTO دارای برچسب قیمت بالاتری است که آن را در نقطه ضعف قرار می دهد.

 

تفاوت وزن در LTO در مقابل LiFePO4

اگر به باتری‌های  LTO در مقابل  LiFePO4 در کنار هم نگاه کنیم، مشخص می‌شود که باتری‌های فسفات آهن لیتیوم قابل حمل‌تر و سبک‌تر هستند، به دلیل چگالی انرژی LTO در مقابل LiFePO4، فسفات آهن لیتیوم 220-250 Wh/L است در حالی که باتری LTO فقط 130Wh/L وزن آن 50 درصد سبک تر از باتری های لیتیوم تیتانات است. بنابراین، اگر یک باتری قابل حمل می خواهید، روی LiFePO4 سرمایه گذاری کنید زیرا طراحی سبک وزن دارد.

کدام بهتر است ؟ باتری LTO در مقابل LiFePO4

بیایید در مورد باتری LTO در مقابل LiFePO4 بحث کنیم که از نظر ایمنی، طبیعت دوستدار محیط زیست و موارد دیگر کدام بهتر است، بهترین گزینه از نظر همه ویژگی ها کدام است؟ پس بیایید با مقایسه هر دوی آنها متوجه شویم.

از منظر ایمنی، لیتیوم تیتانات به دلیل پتانسیل تعادل بالایی که دارد از ایمنی خوبی برخوردار است و روی الکترود منفی دندریت لیتیوم تشکیل نمی دهد. عملکرد چرخه خوب است، تعداد روزهای ماندگاری شارژ بیشتر از باتری LiFePO4 است و کار در محیط دمای پایین تحت تأثیر قرار نمیگیرد. این به ویژه برای اتوبوس های انرژی جدید و تجهیزات ذخیره انرژی در مقیاس بزرگ مناسب است.

اما در LTO در مقابل LiFePO4، رقابت LTO دشوار است، چگالی انرژی کم و هزینه بسیار بالا است، قوام نسبتا ضعیف است، و سهم بازار هنوز کوچک است.

تصمیم نهایی

در پایان مقایسه بین باتری های LTO و LiFePO4، هیچ باتری از همه نظر بی نقص نیست، هر نوع باتری به طور مداوم در حال بهینه سازی است. در حال حاضر فسفات آهن لیتیوم بیشترین استفاده را دارد. از نظر عملکرد باتری و تجربه کاربر، باتری فسفات آهن لیتیوم (LiFePO4) به دلیل چگالی انرژی بالا، فاقد اثر باتری تنبل(Memory effect)، عملکرد عالی در دمای بالا و مدیریت هزینه بهتر، همیشه باتری اصلی بوده است.

 

 

 

ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺳﺒﺰوار و ﯾﺰد ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ 10 درﺻﺪ از ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮار

ﻣﻘﺎﻟﻪي ﺣﺎﺿـﺮ ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار و ﯾﺰد را ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ ده درﺻﺪ از
ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮارﻫﺎي اﯾﻦ دو ﺷﻬﺮﺳﺘﺎن ﺑﺮرﺳﯽ ﻣﯽﮐﻨﺪ. از ﻧﺮم اﻓﺰار ﮐﺎﻣﻔﺎر ﺑﺮاي ﻣﻄﺎﻟﻌﺎت اﻣﮑﺎن ﺳـﻨﺠﯽ اﺳـﺘﻔﺎده ﺷـﺪه اﺳـﺖ. ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎه در دو ﺷـﻬﺮﺳﺘﺎن اﻗﺘﺼﺎدي

ﺑﻪ ﺗﺮﺗﯿﺐ 36,39 و 37,67 درﺻﺪ

ارزﯾﺎﺑﯽ ﺷـﺪه اﺳﺖ. ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﻧﯿﺮوﮔﺎهﻫﺎي 14,5 و 42,5 ﻣﮕﺎواﺗﯽ ﺳﺒﺰوار و ﯾﺰد
ﺑﻮده و دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﺑﺮاي ﭘﺮوژهﻫﺎي ﻣﻮرد ﻧﻈﺮ 6,4 و 6,17 ﺳﺎل ﺑﺮآورد ﺷﺪه اﺳﺖ.

1 ﻣﻘﺪﻣﻪ

در ﺳﺎلﻫﺎي اﺧﯿﺮ، ﺑﺎ ﺗﻮﺳﻌﻪ ﺳﺮﯾﻊ ﺟﺎﻣﻌﻪ و اﻗﺘﺼﺎد، ﻧﯿﺎز ﺑﺸﺮ ﺑﻪ اﻧﺮژي ﺑﻪ ﻃﻮر ﭼﺸﻤﮕﯿﺮي اﻓﺰاﯾﺶ ﯾﺎﻓﺘﻪ اﺳﺖ . ﺑﻪ دﻟﯿﻞ ﮐﺎﻫﺶ ﻣﻨﺎﺑﻊ ﻓﺴﯿﻠﯽ در اﺛﺮ اﻓﺰاﯾﺶ ﻣﺼﺮف اﻧﺮژي و ﻫﻢ ﭼﻨﯿﻦ ﻣﺴﺎﺋﻞ زﯾﺴﺖ ﻣﺤﯿﻄﯽ ، اﺳﺘﻔﺎده از ﻣﻨﺎﺑﻊ اﻧﺮژي ﺗﺠﺪﯾﺪﮐﺸﻮر اﯾﺮان ﺑﺎ داﺷﺘﻦ ﻣﯿﺎﻧﮕﯿﻦ 300 روز آﻓﺘﺎﺑﯽ در ﺳﺎل ، ﭘﺘﺎﻧﺴﯿﻞ ﺑﺴﯿﺎر ﺧﻮﺑﯽ ﺑﺮاي ﺑﻬﺮهﮔﯿﺮي از اﻧﺮژي ﺧﻮرﺷﯿﺪي را داراﺳﺖ. ﯾﮑﯽ از ﻣﻬﻢﺗﺮﯾﻦ ﻣﺰاﯾﺎي ﺳﯿﺴﺘﻢﻫﺎي ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ، ﻗﺎﺑﻠﯿﺖ اﺳﺘﻔﺎده ﺑﻪ ﺻﻮرت ﻣﺘﺼﻞ ﺑﻪ ﺷﺒﮑﻪ و ﻣﺴﺘﻘﻞ از ﺷﺒﮑﻪ اﺳﺖ[1] . در ﮔﺰارش ﺣﺎﺿﺮ، ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎهﻫﺎي ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺳﺒﺰوار و ﯾﺰد ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ ده درﺻﺪ از ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮارﻫﺎي اﯾﻦ دو ﺷﻬﺮﺳﺘﺎن ، ﻣﻮرد ارزﯾﺎﺑﯽ ﻣﺎﻟﯽ ﻗﺮار ﺧﻮاﻫﺪ ﮔﺮﻓﺖ.

اﻧﺘﺨﺎب ﺻﺤﯿﺢ ﻣﺎژول، اﯾﻨﻮرﺗﺮ، ﻇﺮﻓﯿﺖ و ﭼﯿﺪﻣﺎن، ﺳﺒﺐ اﻓﺰاﯾﺶ ﺑﻬﺮهوري ﻧﯿﺮوﮔﺎه و ﮐﺎﻫﺶ ﻫﺰﯾﻨﻪ ﺗﻤﺎمﺷﺪه ﻣﯽﮔﺮدد. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﻮﻗﻌﯿﺖ ﺟﻐﺮاﻓﯿﺎﯾﯽ ﻣﺤﻞ اﺣﺪاث ﻧﯿﺮوﮔﺎه، آراﯾﺶ آراﯾﻪﻫﺎي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ، ﺳﻄﺢ اﺷﻐﺎل ﺷﺪه و ﺟﻠﻮﮔﯿﺮي از ﺳﺎﯾﻪ اﻓﮑﻨﯽ ﻣﺎژولﻫﺎ ﺑﺮ روي ﻫﻢ، زاوﯾﻪي ﺑﻬﯿﻨﻪ ﭘﻨﻞﻫﺎ ﻗﺎﺑﻞ اﺳﺘﺨﺮاج اﺳﺖ[2].ﺑﻌﺪ از اﻧﺘﺨﺎب ﻣﺪل ﻣﺎژول و ﻣﺒﺪل، ﻗﯿﻤﺖ و ﺗﻌﺪاد ﭘﻨﻞﻫﺎي ﻣﻮرد ﻧﯿﺎز، ﺗﻮان ﺧﺮوﺟﯽ ﻧﯿﺮوﮔﺎه، ﻣﺴﺎﺣﺖ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎز،ﻫﺰﯾﻨﻪﻫﺎي ﺟﺎﻧﺒﯽ و …، ﺑﺮرﺳﯽ اﻗﺘﺼﺎدي ﺻﻮرت ﻣﯽﮔﯿﺮد.

2 ﻣﻮﻗﻌﯿﺖ ﺟﻐﺮاﻓﯿﺎﯾﯽ و ﺷﺮاﯾﻂ اﻗﻠﯿﻤﯽ ﻣﻨﻄﻘﻪ

ارﺗﻔﺎﻋﺎت اﻃﺮاف ﻣﺤﻞ اﺣﺪاث و آﻧﺎﻟﯿﺰ ﺳﺎﯾﻪاﻧﺪازي دور در اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ از اﻫﻤﯿﺖ زﯾﺎدي ﺑﺮﺧﻮردار اﺳﺖ. [2]ﻣﯿﺰان ﺗﺎﺑﺶ ﺧﻮرﺷﯿﺪ ﮐﻪ ﺑﻪ ﺳﻄﺢ ﻣﺎژولﻫﺎي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﻣﯽﺗﺎﺑﺪ، ﻧﻘﺶ ﮐﻠﯿﺪي در ﻋﻤﻠﮑﺮد ﻓﻨﯽ و اﻗﺘﺼﺎدي ﻧﯿﺮوﮔﺎهﺧﻮرﺷﯿﺪي اﯾﻔﺎ ﻣﯽﮐﻨﺪ.

ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار:

ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار ﯾﮑﯽ از ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺑﺰرگ اﺳﺘﺎن ﺧﺮاﺳﺎن رﺿﻮي اﺳﺖ. ﻣﺮﮐﺰ اﯾﻦ ﺷﻬﺮﺳﺘﺎن، ﺷﻬﺮ ﺳﺒﺰوار اﺳﺖ. اﯾﻦﺷﻬﺮﺳﺘﺎن ﺑﺎ ﻣﺴﺎﺣﺖ 16,038 ﮐﯿﻠﻮﻣﺘﺮ ﻣﺮﺑﻊ در ﻣﺨﺘﺼﺎت 13 درﺟﻪ ﺷﺮﻗﯽ و 36 درﺟﻪ ﺷﻤﺎﻟﯽ ﻗﺮار دارد. ﻗﺴﻤﺖ ﺷﻤﺎﻟﯽ وﺷﺮﻗﯽ اﯾﻦ ﺷﻬﺮﺳﺘﺎن ﮐﻮﻫﺴﺘﺎﻧﯽ و داراي اﻗﻠﯿﻢ ﻣﻌﺘﺪل و در ﻗﺴﻤﺖﻫﺎي ﺟﻠﮕﻪاي ﺑﺎ ﻫﻮاي ﮔﺮم ﻫﻤﺮاه اﺳﺖ. ﺑﺨﺶ ﻣﺮﮐﺰي ﺳﺒﺰوار ﺑﺎ ﻣﻘﺪار 90,201,150 و ﺑﺨﺶ ﺷﺸﺘﻤﺪ ﺑﺎ 66,910,770 وات ﺑﺮ ﻣﺘﺮﻣﺮﺑﻊ، ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﯿﺸﺘﺮﯾﻦ وﮐﻤﺘﺮﯾﻦ ﻣﯿﺰان ﺗﺎﺑﺶ ﮐﻞ را دارﻧﺪ. [3] ﻧﺘﯿﺠﻪي ﻣﻄﺎﻟﻌﻪاي ﮐﻪ در ﺳﺎل 2017 اﻧﺠﺎم ﺷﺪه اﺳﺖ، ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ 95,82 درﺻﺪ از ﺳﻄﺢ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار داراي ﭘﺘﺎﻧﺴﯿﻞ ﻋﺎﻟﯽ، 4,01 درﺻﺪ داراي ﭘﺘﺎﻧﺴﯿﻞ ﺧﯿﻠﯽ ﺧﻮب و 0,15 درﺻﺪ داراي ﭘﺘﺎﻧﺴﯿﻞ ﺧﻮب ﻫﺴﺘﻨﺪ .

ﺷﻬﺮﺳﺘﺎن ﯾﺰد:

ﺷﻬﺮ ﯾﺰد، در 630 ﮐﯿﻠﻮﻣﺘﺮي ﺟﻨﻮب ﺷﺮﻗﯽ ﺗﻬﺮان، ﺑﯿﻦ دو ﺑﯿﺎﺑﺎن دﺷﺖ ﮐﻮﯾﺮ و دﺷﺖ ﻟﻮت و روي ﮐﻤﺮﺑﻨﺪ زرد ﺗﺎﺑﺸﯽ ﻗﺮار دارد ﮐﻪ ﯾﮑﯽ از داغﺗﺮﯾﻦ ﻣﮑﺎن ﻫﺎي ﺟﻬﺎن اﺳﺖ. آب و ﻫﻮاي ﮔﺮم و ﺧﺸﮏ در ﯾﺰد ﺑﺮاي ﺗﻮﻟﯿﺪ اﻧﺮژي ﺧﻮرﺷﯿﺪي ﻣﻨﺎﺳﺐ اﺳﺖ.

ﺑﺮاﺳﺎس ﺑﺮآوردﻫﺎي اﻧﺠﺎم ﺷﺪه، اﻧﺮژي ﺗﺎﺑﺸﯽ ورودي ﺑﻪ ﯾﺰد در ﺣﺪود 7,787 ﻣﮕﺎژول ﺑﺮ ﻣﺘﺮ ﻣﺮﺑﻊ اﺳﺖ[5].

1 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ :1 ﭘﺘﺎﻧﺴﯿﻞ ﺗﺎﺑﺶ ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﺑﺮ ﺳﻄﺢ اﯾﺮان [4]

 

.3 ﻃﺮاﺣﯽ

ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ دادهﻫﺎي ﺑﻪدﺳﺖ آﻣﺪه از ﺷﻬﺮﺳﺘﺎنﻫﺎ و ﻣﺎژول ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ، ﺗﻌﺪاد ﻣﺎژول، اﯾﻨﻮرﺗﺮ و ﻣﺴﺎﺣﺖ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎزﻣﺤﺎﺳﺒﻪ ﻣﯽﮔﺮدد. ﺳﭙﺲ ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي ﻃﺮح ﺻﻮرت ﻣﯽﮔﯿﺮد.

ﺟﺪول :1 ﻣﺸﺨﺼﻪﻫﺎي ﻋﻤﻮﻣﯽ ﺷﻬﺮﺳﺘﺎنﻫﺎ

 

ﻧﺎم ﺷﻬﺮ ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻻﻧﻪ[4] ﺑﺮق ﻣﺼﺮﻓﯽ ﺧﺎﻧﻮار در

ﺳﺎل )ﻣﮕﺎوات[6,7](

ﻣﯿﺎﻧﮕﯿﻦ ﻗﯿﻤﺖ زﻣﯿﻦ ﺑﺮاي

اﺣﺪاث)ﻫﺰار ﺗﻮﻣﺎن[8](

ﺳﺒﺰوار 1,750 220,000 12-10
ﯾﺰد 1,890 700,000 20

 

ﺟﺪول 2 : ﻣﺸﺨﺼﺎت ﭘﻨﻞ و ﻣﺒﺪل )اﯾﻨﻮرﺗﺮ[9](

 

ﻧﺎم ﻣﺤﺼﻮل ﻣﺪل ﺷﺮﮐﺖ ﺗﻮﻟﯿﺪ

ﮐﻨﻨﺪه

ﻣﺤﺪوده ﺗﻮان اﺑﻌﺎد(mm3) ﻗﯿﻤﺖ

($/Wp)

ﺑﺎزده

(%)

ﻣﺎژول NS-250-290p6 Polycrown

solar tech

250-290Wp 35*992*1640 0,1165 18
ﻣﺒﺪل اﯾﻨﻮرﺗﺮ CNS330 Constant

technology

160-250KW 0,0391 92

ﻣﻌﺎدﻻت ﺣﺎﮐﻢ :

ﺑﻪ ﻣﻨﻈﻮر ﻃﺮاﺣﯽ ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﻓﺮﺿﯿﺎت زﯾﺮ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ :

  • ﻫﺪف ﺗﺎﻣﯿﻦ 10 درﺻﺪ اﻧﺮژي اﻟﮑﺘﺮﯾﮑﯽ ﻣﺼﺮﻓﯽ ﺧﺎﻧﻮار ﻣﯽ ﺑﺎﺷﺪ.
  • ﻣﺠﻤﻮع ﺧﻄﺎي ﺳﺎزﻧﺪه، دﻣﺎ، ﮔﺮد و ﻗﺒﺎر ﻣﺎژول ﻫﺎ 10 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺑﻪ ﻣﻨﻈﻮر ﻣﺸﺨﺺ ﻧﻤﻮدن ﻣﺎﮐﺰﯾﻤﻢ اﻧﺮژي ﻣﻮرد ﻧﯿﺎز، ﺗﺎﺛﯿﺮ ﺗﻠﻔﺎت 5 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺗﻮان ﺗﻮﻟﯿﺪي ﻣﺎژولﻫﺎ 250 وات در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.

 

𝑃   =              𝑀

𝑇      (1 − 0.05) ∗ 𝜂𝜂𝑖𝑖𝑛𝑣

(۱)

 

ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﯿﺎﻧﮕﺮ اﻧﺮژي ﮐﻞ، ﺗﻮان ﮐﻞ و ﺑﺎزده ﻣﺒﺪل ﻫﺴﺘﻨﺪ. ﻣﻘﺪار ﮐﻞ اﻧﺮژي ﮐﻪ ﺑﺎﯾﺪ

𝜂𝜂𝑖𝑖𝑛𝑣

در ﻣﻌﺎدﻟﻪ (1)، 𝑀 ، 𝑃𝑇 و

ﺳﺎﻻﻧﻪ ﺗﺎﻣﯿﻦ ﺷﻮد از ﺗﻘﺴﯿﻢ اﻧﺮژي ﻣﻮرد ﻧﯿﺎز ﺑﺮ ﺑﺎزده ﻣﺒﺪل و ﺿﺮﯾﺐ ﺗﻠﻔﺎت ﺑﺪﺳﺖ ﻣﯽ آﯾﺪ.

𝑃𝑚 = 250 ∗ (1 − 0.1)

𝑃𝑚 = 250 ∗ (1 − 0.1) (۲)

 

ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار ﺗﻮان ﺗﻮﻟﯿﺪي ﯾﮏ ﻣﺎژول اﺳﺖ.

در ﻣﻌﺎدﻟﻪ (2)، 𝑃

𝑁    = 𝑃 ∗ 1,000,000

𝑚        𝑇     𝐴𝑌𝑆 ∗ 𝑃𝑚

(۳)

ﺑﻪ ﺗﺮﺗﯿﺐ ﻧﺸﺎن دﻫﻨﺪهي ﺗﻌﺪاد ﻣﺎژولﻫﺎ، ﺗﻮان ﮐﻞ، ﻣﺘﻮﺳﻂ ﺗﺎﺑﺶ ﺳﺎﻟﯿﺎﻧﻪ و

در ﻣﻌﺎدﻟﻪ (3)، 𝑁𝑚، 𝑃𝑇، 𝐴𝑌𝑆 و 𝑃

ﺗﻮان ﻣﺎژول ﻫﺴﺘﻨﺪ. ﺗﻌﺪاد ﻣﺎژولﻫﺎ، ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻮان ﮐﻞ، ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻟﯿﺎﻧﻪ و ﺗﻮان ﺗﻮﻟﯿﺪي ﻫﺮ ﻣﺎژول ﺑﻪدﺳﺖ ﻣﯽآﯾﺪ.ﭘﺲ از ﺑﻪدﺳﺖ آوردن ﺗﻌﺪاد ﻣﺎژولﻫﺎي ﻣﻮرد ﻧﯿﺎز ﺑﺮاي ﺗﺎﻣﯿﻦ اﻧﺮژي، ﺑﺎﯾﺪ ﺗﻌﺪاد ﻣﺒﺪلﻫﺎ و ﭼﯿﺪﻣﺎن ﻣﺎژولﻫﺎ را ﻣﺸﺨﺺ ﻧﻤﻮد.ﺑﺎﯾﺪ ﺗﻮﺟﻪ ﺷﻮد در ﭼﯿﺪﻣﺎن ﻣﺎژولﻫﺎ، ﺗﻮان ورودي ﺑﻪ ﻣﺒﺪل از ﺗﻮان ﻧﺎﻣﯽ آن ﺑﯿﺸﺘﺮ ﻧﺸﻮد ، ﻟﺬا ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ  160kw ﺑﻪ ﻋﻨﻮان ﺗﻮان ﻧﺎﻣﯽ ﻣﺒﺪل ، ﻣﯽﺗﻮان ﺗﻌﺪاد 23 ﻣﺎژول را ﺑﻪ ﺻﻮرت رﺷﺘﻪاي و 27 رﺷﺘﻪ را ﺑﻪ ﺻﻮرت ﻣﻮازي ﺑﻪ ﻫﻢ اﺗﺼﺎلداد و ﺧﺮوﺟﯽ را ﺑﻪ ورودي ﯾﮏ ﻣﺒﺪل ﻣﺘﺼﻞ ﻧﻤﻮد. ﺑﻪ اﯾﻦ ﺗﺮﺗﯿﺐ ﺑﺮآﯾﻨﺪ ﺗﻮان ورودي ﺑﻪ ﻣﺒﺪل ﺑﺮاﺑﺮkw 155ﺧﻮاﻫﺪ ﺑﻮد ﮐﻪﮐﻤﺘﺮ از ﺗﻮان ﻧﺎﻣﯽ ﻣﺒﺪل اﺳﺖ[10]. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻌﺪاد ﻣﺎژولﻫﺎ و ﭼﯿﺪﻣﺎن آنﻫﺎ ﺑﺮاي اﺗﺼﺎل ﺑﻪ ﯾﮏ ﻣﺒﺪل ﻣﯽﺗﻮان ﺗﻌﺪاد ﮐﻞ ﻣﺒﺪل ﻣﻮرد ﻧﯿﺎز را از ﺗﻌﺪاد ﮐﻞ ﻣﺎژولﻫﺎ ﺑﻪدﺳﺖ آورد. 𝑁𝑚 و 𝑁𝑖𝑖𝑛𝑣 ﻧﺸﺎن دﻫﻨﺪهي ﺗﻌﺪاد ﮐﻞ ﻣﺎژولﻫﺎ و ﻣﺒﺪلﻫﺎ ﻫﺴﺘﻨﺪ.

𝑁𝑖𝑖𝑛𝑣 = 𝑁𝑚/(23 ∗ 27) (۴)

ﯾﮑﯽ از ﻣﻮارد ﻗﺎﺑﻞ ﺗﻮﺟﻪ، ﺗﻘﺴﯿﻢ ﮐﺮدن ﺗﻮان ﺗﻮﻟﯿﺪي ﻧﯿﺮوﮔﺎه ﺑﻪ ﭼﻨﺪ ﺑﺨﺶ ﺑﺮاي ﺳﻬﻮﻟﺖ در ﺗﻌﻤﯿﺮ و ﻧﮕﻪ داري و ﺗﻮﻟﯿﺪ اﻟﮑﺘﺮﯾﺴﯿﺘﻪ ﺑﻪ ﻫﻨﮕﺎم ﺗﻌﻮﯾﺾ اﺳﺖ. ﺑﻪ اﯾﻦ ﻣﻨﻈﻮر ﻧﯿﺮوﮔﺎه را ﺑﻪ ﺑﺨﺶ ﻫﺎي ﯾﮏ ﻣﮕﺎواﺗﯽ ﺗﻘﺴﯿﻢ ﻣﯽ ﮐﻨﯿﻢ.ﺑﻪ ﻃﻮري ﮐﻪ ﻫﺮ ﻗﺴﻤﺖ ﻣﺠﺰا از ﺳﺎﯾﺮ ﻗﺴﻤﺖﻫﺎ ﺑﺎﺷﺪ.   ﺑﺮاي ﭼﯿﺪﻣﺎن ﮐﻞ ﻣﺎژولﻫﺎ و ﻣﺤﺎﺳﺒﻪ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎز، ﺑﺎﯾﺪ زاوﯾﻪ ﻣﻨﺎﺳﺐ ﻗﺮارﮔﯿﺮي ﻣﺎژول و ﻓﺎﺻﻠﻪ ﻫﺮ رﺷﺘﻪ ﺑﺎ رﺷﺘﻪ ﻣﻘﺎﺑﻞ ﻣﺸﺨﺺ ﺷﻮد. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﭘﮋوﻫﺶﻫﺎي اﻧﺠﺎم ﺷﺪه، [11] ﺑﻬﺘﺮﯾﻦ زاوﯾﻪ 22 درﺟﻪ اﺳﺖ ﮐﻪ ﺑﺮ اﺳﺎس اﺑﻌﺎد ﻣﺎژول، زاوﯾﻪ ﺗﺎﺑﺶ در آن ﻣﻨﻄﻘﻪ و ﭼﯿﺪﻣﺎن ﺗﮏ ﻃﺒﻘﻪ ﻣﺎژولﻫﺎ ﻧﯿﺎز اﺳﺖ ﻫﺮ رﺷﺘﻪ ﻣﺎژول ﺣﺪود 3 ﻣﺘﺮ از رﺷﺘﻪ ﻣﺎژول ﻗﺒﻞ از ﺧﻮد ﻓﺎﺻﻠﻪ داﺷﺘﻪ ﺑﺎﺷﺪ ﺗﺎ از ﺳﺎﯾﻪ اﻓﺘﺎدن ﺻﻔﺤﺎت ﺑﺮ روي ﻫﻢ ﺟﻠﻮﮔﯿﺮي ﮔﺮدد . ﺑﺎ اﯾﻦ اوﺻﺎف و ﺗﻌﺪاد ﻣﺎژول در ﻫﺮ رﺷﺘﻪ و ﺗﻌﺪاد رﺷﺘﻪ ﻫﺎ، ﻣﯽﺗﻮان ﻣﺴﺎﺣﺖ ﻣﻮرد ﻧﯿﺎز ﺑﺮاي اﺣﺪاث ﻧﯿﺮوﮔﺎه را ﻣﺤﺎﺳﺒﻪ ﮐﺮد.

ﺟﻨﺒﻪﻫﺎي اﻗﺘﺼﺎدي :

ﯾﮑﯽ از ﻣﻬﻢﺗﺮﯾﻦ ﺟﻨﺒﻪﻫﺎي اﺣﺪاث ﻧﯿﺮوﮔﺎهﻫﺎ، ﺟﺪا از اﻫﻤﯿﺖ اﺳﺘﻔﺎده از اﻧﺮژيﻫﺎي ﺗﺠﺪﯾﺪﭘﺬﯾﺮ ،ﻧﯿﺎز ﮐﺸﻮر ﺑﻪ ﺗﻮﻟﯿﺪ ﺑﺮق و، ﺟﻨﺒﻪﻫﺎي اﻗﺘﺼﺎدي آنﻫﺎ ﻧﻈﯿﺮ زﻣﺎن ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﯾﺎ ﻧﺮخ ﺳﻮد ﺳﺎﻟﯿﺎﻧﻪ اﺳﺖ.

ﻓﺮﺿﯿﺎت :

  • ﻧﺮخ ﺗﻮرم 25 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﻗﯿﻤﺖ دﻻر 23,000 و ﻗﯿﻤﺖ ﯾﻮرو 30,000 ﺗﻮﻣﺎن در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺗﻌﺮﻓﻪ ﻓﺮوش ﺑﺮق 890 ﺗﻮﻣﺎن ﺑﻪ ازاي ﻫﺮ ﮐﯿﻠﻮوات ﺳﺎﻋﺖ اﺳﺖ[12].
  • وام ﺑﻠﻨﺪ ﻣﺪت ﻣﯽﺗﻮاﻧﺪ از ﺑﺎﻧﮏﻫﺎي دوﻟﺘﯽ ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻧﺮخ ﻧﺎﻣﯽ ﺗﻮرم داﺧﻠﯽ ﮔﺮﻓﺘﻪ ﺷﻮد.
  • زﻣﺎن ﺳﺎﺧﺖ دو ﺳﺎل و زﻣﺎن ﺑﻬﺮه ﺑﺮداري 15 ﺳﺎل در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﻧﺮخ ﺗﻌﻤﯿﺮ و ﻧﮕﻪ داري $/KWh 0,001454 در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ[13].

ﺑﺎﯾﺪ ﺑﻪ اﯾﻦ ﻧﮑﺘﻪ ﺗﻮﺟﻪ ﺷﻮد ﮐﻪ ﻫﺰﯾﻨﻪ ﮐﻞ ﭘﻨﻞﻫﺎ 60 درﺻﺪ از ﻫﺰﯾﻨﻪ ﮐﻞ اﺣﺪاث ﻧﯿﺮوﮔﺎه را ﺷﺎﻣﻞ ﻣﯽﺷﻮد و ﻣﺎﺑﻘﯽﻫﺰﯾﻨﻪﻫﺎ ﺷﺎﻣﻞ ﻫﺰﯾﻨﻪ ﻣﺒﺪل، دﺳﺖ ﻣﺰد و ﺳﯿﻢ ﮐﺸﯽ و … ﻣﯽ ﺑﺎﺷﺪ[10].از ﻧﺮم اﻓﺰار COMFAR ﺑﺮاي اﻣﮑﺎنﺳﻨﺠﯽ و ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي ﭘﺮوژه اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ.

.4 ﻧﺘﺎﯾﺞ

وژه وار:

ﭘﺮوژهي ﺳﺎﺧﺖ ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﺳﺒﺰوار، از ﻧﻈﺮ اﻗﺘﺼﺎدي ارزﯾﺎﺑﯽ ﺷﺪه اﺳﺖ. ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ36,39 درﺻﺪ ﺑﺮآورد ﺷﺪه اﺳﺖ ﮐﻪ در 6,4 ﺳﺎل رخ ﻣﯽدﻫﺪ .

2 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ :2ﻧﻤﻮدار ﮐﻞ ﻓﺮوش و ﻫﺰﯾﻨﻪﻫﺎي ﺗﻮﻟﯿﺪ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

ﺷﮑﻞﻫﺎي 2 و 6 راﺑﻄﻪي ﺑﯿﻦ ﻓﺮوش، ﺗﻮﻟﯿﺪ و ﻫﺰﯾﻨﻪﻫﺎي ﺑﺎزارﯾﺎﺑﯽ را ﻧﺸﺎن ﻣﯽدﻫﻨﺪ ﮐﻪ ﺑﯿﺎﻧﮕﺮ ﺗﻮاﻧﺎﯾﯽ ﭘﺮوژه در ﺗﺒﺪﯾﻞﻓﺮوش ﺑﻪ ﺳﻮد ﭘﺲ از در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻫﺰﯾﻨﻪﻫﺎي ﻋﻤﻠﯿﺎﺗﯽ اﺳﺖ.

3 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 3 :ﻧﻤﻮدار ﺟﺮﯾﺎن ﺧﺎﻟﺺ ﺳﺮﻣﺎﯾﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

 

ﺟﺮﯾﺎنﻫﺎي ﻣﺎﻟﯽ ﺷﮑﻞﻫﺎي 3 و 7، ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار ، زﻣﺎنﺑﻨﺪي ﻣﻨﺎﺑﻊ ﻣﺎﻟﯽ اراﺋﻪ ﺷﺪه ﺑﺮاي ﭘﺮوژه و ﺗﻌﻬﺪات ﻣﺎﻟﯽ در ﻃﻮلاﻓﻖ ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﺷﺪه اﺳﺖ .

4 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

 

ﺷﮑﻞ 4 : ﻧﻤﻮدار ﺟﺮﯾﺎن ﻧﻘﺪي  ﺑﺮاي ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﻣﺎﻟﯽ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

ﺟﺮﯾﺎن ﻧﻘﺪي ﺳﺎﻻﻧﻪ ﺷﮑﻞﻫﺎي 4 و 8، ﻣﺎزاد ﯾﺎ ﮐﺴﺮي ﺑﻮدﺟﻪ ﺣﺎﺻﻞ از اﺳﺘﻔﺎدهي ﺗﻤﺎم ﻣﻨﺎﺑﻊ  و ﺑﻮدﺟﻪي ﭘﺮوژه اﺳﺖ. ﻣﺎزاد ﺑﻮدﺟﻪ در ﻫﺮ دوره ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار در دﺳﺘﺮس ﺑﺮاي آﺗﯽ اﺳﺖ. ﮐﺴﺮي ﺑﻮدﺟﻪ در ﻫﺮ دوره ، ﺑﯿﺎﻧﮕﺮ ﻣﯿﺰان ﺑﻮدﺟﻪاي اﺳﺖ ﮐﻪ ﺑﺎﯾﺪاز ﺳﺮﻣﺎﯾﻪﻫﺎي ﻣﻮﺟﻮد ﯾﺎ ﺳﺎﯾﺮ ﻣﻨﺎﺑﻊ ﺧﺎرﺟﯽ ﺗﺎﻣﯿﻦ ﺷﻮد .

 

5 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 5 : ﻧﻤﻮدار ﺧﺎﻟﺺ ارزش ﻓﻌﻠﯽ ﺗﺠﻤﻌﯽ-دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ

 

در ﺷﮑﻞﻫﺎي 5 و 9، دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ ﻧﺸﺎن داده ﺷﺪه اﺳﺖ ﮐﻪ ﺑﯿﺎﻧﮕﺮ دورهاي اﺳﺖ ﮐﻪ در آن ﮐﻞ ﻫﺰﯾﻨﻪﻫﺎيﭘﺮوژه ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺣﻔﻆ ارزش ﭘﻮﻟﯽ، ﺑﺎزﻣﯽﮔﺮدد .

ﭘﺮوژه ﯾﺰد:

ﭘﺮوژهي ﺳﺎﺧﺖ ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﯾﺰد، اﻗﺘﺼﺎدي ارزﯾﺎﺑﯽ ﺷﺪه اﺳﺖ .  ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ 37,67 درﺻﺪ ﺑﺮآورد ﺷﺪه اﺳﺖ ﮐﻪ در6,17 ﺳﺎل رخ ﻣﯽدﻫﺪ.

6 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

 

ﺷﮑﻞ :6ﻧﻤﻮدار ﮐﻞ ﻓﺮوش و ﻫﺰﯾﻨﻪﻫﺎي ﺗﻮﻟﯿﺪ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

 

 

 

7 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 7 :ﻧﻤﻮدار ﺟﺮﯾﺎن ﺧﺎﻟﺺ ﺳﺮﻣﺎﯾﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

8 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 8 : ﻧﻤﻮدار ﺟﺮﯾﺎن ﻧﻘﺪي  ﺑﺮاي ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﻣﺎﻟﯽ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

9 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 9 : ﻧﻤﻮدار ﺧﺎﻟﺺ ارزش ﻓﻌﻠﯽ ﺗﺠﻤﻌﯽدوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

 

ﺑﺎ ﺑﻪ ﮐﺎرﮔﯿﺮي ﻣﻌﺎدﻻت و داده ﻫﺎي اوﻟﯿﻪ داده ﺷﺪه در ﺑﺨﺶ ﻗﺒﻞ ﻗﺎدر ﺑﻪ ﻃﺮاﺣﯽ ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﺧﻮاﻫﯿﻢ ﺑﻮد ﮐﻪﺗﻌﺪاد ﻣﺎژول ، ﻣﺴﺎﺣﺖ زﻣﯿﻦ ، ﺗﻌﺪاد اﯾﻨﻮرﺗﺮ و ﻫﻤﭽﻨﯿﻦ ﻫﺰﯾﻨﻪ ﮐﻞ و ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ  در ﺟﺪول زﯾﺮ ﺑﺮاي دو ﺷﻬﺮ ﯾﺰد و ﺳﺒﺰوار آورده ﺷﺪه اﺳﺖ.

 

ﺟﺪول 3 : ﻣﻘﺎدﯾﺮ ﺣﺎﺻﻞ از ﻃﺮاﺣﯽ

 

ﻧﺎم ﺷﻬﺮ ﺗﻮان ﻧﺎﻣﯽ ﻧﯿﺮوﮔﺎه(MW) ﺗﻌﺪاد ﻣﺎژول ﺗﻌﺪاد ﻣﺒﺪل ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ

ﺳﺎﻟﯿﺎﻧﻪ

ﻣﺴﺎﺣﺖ زﻣﯿﻦ

(m2)

ﻫﺰﯾﻨﻪ ﮐﻞ )ﻣﯿﻠﯿﺎرد

ﺗﻮﻣﺎن(

ﻧﺮخ ﺑﺎزﮔﺸﺖ

ﺳﺮﻣﺎﯾﻪ

ﺳﺒﺰوار 14,5 63820 103 1750 105000 114,257 36,39
ﯾﺰد 42,5 188340 304 1890 310000 341,582 37,67

 

.5 ﻧﺘﯿﺠﻪ ﮔﯿﺮي

 

  • ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﭘﺮوژهي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﯾﺰد ﻧﺴﺒﺖ ﺑﻪ ﺳﺒﺰوار ﺑﯿﺸﺘﺮ اﺳﺖ و ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ در زﻣﺎن ﮐﻮﺗﺎهﺗﺮي رخ ﻣﯽدﻫﺪ.
  • ﺑﻪ دﻟﯿﻞ ﺗﻔﺎوت اﻧﺮژي ﻣﺼﺮﻓﯽ دو ﺷﻬﺮﺳﺘﺎن ﺗﻮان ﻧﺎﻣﯽ ﻧﯿﺮوﮔﺎه و ﺑﻪ ﻃﺒﻊ آن ﻫﺰﯾﻨﻪ اوﻟﯿﻪ ﻣﺘﻔﺎوت دارﻧﺪ. از ﻃﺮﻓﯽ ﺑﻪ دﻟﯿﻞ ﺑﯿﺸﺘﺮ ﺑﻮدن ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﯾﺰد ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﺑﯿﺸﺘﺮ ازﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار اﺳﺖ.

.6 ﻣﺮاﺟﻊ

 

۱.   ﭘﮋوﻫﺸﮕﺎه ﻧﯿﺮو، راﻫﻨﻤﺎي ﻃﺮاﺣﯽ ﺳﯿﺴﺘﻢﻫﺎي ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ اﻧﺮژي اﻟﮑﺘﺮﯾﮑﯽ ﺑﻪ ﺗﻔﮑﯿﮏ اﻗﻠﯿﻢ و ﮐﺎرﺑﺮي،

ﻣﻌﺎوﻧﺖ ﻧﻈﺎرت راﻫﺒﺮدي، 1393

۲.   ﻣﻨﺼﻒ، ﻋﻠﯿﺮﺿﺎ؛ ﮐﺎوه ﺣﺒﯿﺒﯽ ﺳﺮاﺳﮑﺎﻧﺮود ؛ اﻣﯿﺮ ﮐﯿﻮان ﻣﻤﺘﺎز، 1394، ﺑﺮرﺳﯽ اﻣﮑﺎنﺳﻨﺠﯽ اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ 6

ﻣﮕﺎواﺗﯽ در ﺷﻬﺮﺳﺘﺎن ﺑﺴﺘﮏ اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن، ﻣﺠﻤﻮﻋﻪ ﻣﻘﺎﻻت ﻫﻔﺘﻤﯿﻦ ﮐﻨﻔﺮاﻧﺲ ﻣﻠﯽ اﻧﺮژيﻫﺎي ﺗﺠﺪﯾﺪﭘﺬﯾﺮ ۳. زﻧﺪي ، رﺣﻤﺎن؛ ﻣﺤﻤﺪ ﺟﻮاد ﺻﻔﺎﯾﯽ ؛ ﻣﺮﯾﻢ ﺧﺴﺮوﯾﺎن، 1398، ﭘﺘﺎﻧﺴﯿﻞ ﺳﻨﺠﯽ اﺳﺘﻔﺎده از اﻧﺮژي ﺧﻮرﺷﯿﺪي در ﻣﻨﺎﻃﻖ

روﺳﺘﺎﯾﯽ ﻣﻄﺎﻟﻌﻪ ﻣﻮردي: ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار، ﻓﺼﻠﻨﺎﻣﻪ ﺟﻐﺮاﻓﯿﺎ و ﺗﻮﺳﻌﻪ، ﺷﻤﺎره 57، ﺻﻔﺤﺎت 13-14

نویسندگان مقاله: مهندس ﺑﻬﻨﺎم ﮐﯿﺎﻧﯽ، مهندس اﻣﯿﺮرﺿﺎ ﻋﺒﺪي ﻗﺎﺳﻢ ﺧﯿﻠﯽ، مهندس ﺷﯿﻤﺎ ﻧﺠﻔﯽ ﻧﻮﺑﺮ

 

طراحی مفهومی نیروگاه تولید همزمان شامل توربین گاز، انرژی بادی، خورشیدی، زیست توده و سیستم آب شیرین کن

چکیده

از روشهای مقابله با اثرات آلودگی و تغییرات اقلیمی، افزایش راندمان سیکل های نیروگاهی با استفاده از ترکیب انرژی های تجدیدپذیر به عنوان جایگزینی برای سوخت های فسیلی است.  امروزه تکنولوژی های متنوعی در زمینه افزایش بهره روی نیروگاه ها به وسیله ترکیب سوختهای فسیلی با انواع انرژیهای تجدیدپذیر در مقیاس های کوچک ارائه شده است.  یکی از این تکنولوژی ها استفاده از سیکل تولید همزمان برق و حرارت است که مانع از اتلاف حرارت زیاد در سیکل معمولی توربین گاز شده و راندمان کلی نیروگاه را بالا می برد . البته تامین آب شیرین در مناطق گرمسیری ایران نیز از دیگر مشکلات مهم پیش رو است که با توجه به تغییرات آب و هوایی نیازمند توجه روز افزون است . به همین منظور در این پژوهش با بررسی نمونه های واقعی و امکان سنجی های موجود در مقالات و با در نظر گرفتن امکانات موجود در ایران، طراحی ماژولار یک نیروگاه ترکیبی انرژی های تجدیدپذیر با تولید همزمان و آب شیرین کن انجام شده است. در این طراحی یک ماژول توربین گاز برای بخش تولید همزمان برق و حرارت، کلکتورهای خورشیدی با قابلیت افزایش دمای سوخت پیش از ورود به محفظه احتراق و با قابلیت استفاده در سیستم آب شیرین کن تقطیری خورشیدی، به همراه پنل های فتوولتاییک برای استفاده در سیستم آب شیرین کن از نوع اسمز معکوس در نظر گرفته شده است . بخش بادی شامل توربین باد و بخش مکمل زیست توده به همراه گازی ساز برای تولید بیوگاز و تزریق آن به سوخت میباشد. در نهایت، دیاگرام طراحی پیشنهادی در دو شهر کیش و شیراز با بررسی داده های تابش سالیانه خورشید و وزش باد ارائه شده است.

مقدمه

امروزه به علت مشکلات محیط زیستی مرتبط با انتشار گازهای آلاینده و کاهش ذخایر سوختهای فسیلی، منابع تجدیدپذیر انرژی بسیار مورد توجه قرار گرفته اند . انرژی حاصل از باد، خورشید، زمین گرمایی و زیست توده از جمله این منابع هستند که در مقایسه با زغال سنگ، نفت، گاز و سایر سوختهای تجدید ناپذیر، آلودگی بسیار کمتری داشته و منابع پاک انرژی محسوب میشوند و در مقیاس زمانی انسانی نیز به طور طبیعی قابلیت جایگزینی دارند. اما منابع تجدیدپذیر انرژی نیز مشکلاتی از قبیل هزینه اولیه بالا و متناوب بودن انرژی تولیدی دارند . با توجه به پیشرفتهای تکنولوژیک، هزینه ساخت نیروگاه های تجدیدپذیر به طور قابل توجهی کاهش پیدا کرده است اما برای رفع مشکل پیش بینی ناپذیری انرژی های تجدیدپذیر و وابستگی آنها به شرایط محیطی و اقلیمی، راهکارهای متعددی پیشنهاد شده است. یکی از این راهکارها استفاده از سیستم های ترکیبی انرژی های تجدیدپذیر است.

انعطاف پذیری بالای این سیستمهای ترکیبی آنها را برای استفاده در مناطق دوردست نیز مناسب میکند. تولید همزمان یا CHP  شامل تولید همزمان چند نوع انرژی قابل استفاده  )معمولاً مکانیکی و گرمایی(  در یک سیستم یکپارچه است. در تکنولوژی تولید همزمان، حرارت قابل استفاده و انرژی الکتریکی در یک پروسه و با بازدهی بالا به صورت همزمان تولید میشوند . در روشهای معمول 60 درصد انرژی تولید شده به شکل بخار هدر میشود اما در این سیستم، حرارت همزمان با انرژی الکتریکی جذب شده و مورد استفاده قرار میگیرد که این کار باعث افزایش بازدهی سیستم تا 80 درصد میگردد.

یک واحد تولید همزمان شامل اجزا و تجهیزات مختلفی است که نوع آنها تاثیر قابل توجهی در نحوه کارکرد و ظرفیت نیروگاه دارد.  محرکهای اولیه ، تجهیزات بازیافت حرارت ، تجهیزات الکتریکی و تجهیزات کنترلی مهمترین قسمتهای یک نیروگاه تولید همزمان را تشکیل میدهند.  چهار نوع محرک اولیه شامل توربین گاز، توربین بخار، پیل های سوختی و موتورهای رفت و برگشتی در سیستم های تولید همزمان کاربرد دارد. با در نظرگرفتن اهداف طراحی، محرک اولیه از نوع توربین گازی انتخاب میشود . هدف از پژوهش طراحی یک نیروگاه دوستدار محیط زیست است پس باید تا حد امکان آلودگی کمتری ایجاد شود . از سوی دیگر، دسترسی به انرژی های باد و خورشید متغیر با شرایط آب و هوایی است و در مناطق مختلف نیز احتمال دسترسی به حجم بالای زیست توده اندک است. در چنین شرایطی و در زمان پیک بار، گاز به سرعت میتواند وارد مدار شود و کمبود انرژی را برطرف نماید . از دیگر مزایای توربین گازی تعداد تجهیزات کمتر نسبت به توربین بخار و تولید میزان حرارت بالا است که حرارت یا برق تولیدی در انواع سیستمهای آب شیرین کن میتواند مورد استفاده قرار گیرد.

 

مرور برخی نمونه های سیستم های ترکیبی مشابه

در این بخش دو نمونه از نیروگاه های ترکیبی انرژیهای تجدیدپذیر مورد بررسی قرار میگیرند.

نیروگاه بادی تولید همزمان اس سی جانسون     (SC Johnson Waxdale powerplant)

کارخانه تولیدی اس سی جانسون از گاز طبیعی و گاز حاصل از لندفیل ها برای نیروگاه تولید همزمان خود استفاده میکند. استفاده از گازحاصل از لندفیل که در محلی نزدیک به همان کارخانه تولید میشوند باعث کاهش تولید گازهای گلخانه ای میشود.  این کارخانه شامل دو توربین است که توربین اول با گاز متان حاصل از لندفیل کار میکند و سوخت توربین دوم مخلوطی از گاز طبیعی و گاز لندفیل است. بخشی از گاز لندفیل استفاده نشده در توربین اول میتواند در توربین دوم مورد استفاده قرار گیرد که عموما 5 الی 10 درصد سوخت توربین دوم را تشکیل میدهد . حرارت تولیدی که در یک سیستم معمولی در زمان تولید برق هدر میرود، در این سیستم توسط بازیاب حرارتی تبدیل به بخار فشار بالا میشود که برای گرمایش و فرایندهای تولید کارخانه مورد استفاده قرار میگیرد.

 

Untitled 1 1 - آب شیرین کن خورشیدی و بادی

 

در ابتدا کارخانه فقط شامل یک توربین 3,2 مگاواتی بود که با گاز حاصل از لندفیل که عمدتا از متان تشکیل شده است کار میکرد. در سال 2005 ، یک توربین 3,2 مگاواتی ساخت شرکت سولار با سوخت گاز طبیعی به مجموعه اضافه شد. توربین دوم، نیروگاه تولید همزمان ۴ 6, مگاواتی، بار پایه موردنیاز برای مجموعه کارخانه به مساحت 2,2 میلیون مترمربع فراهم میکند.

مشخصات این دو توربین به شرح جداول زیر است:

توربین دوم

 

توربین اول

 

Solar Centaur 40TM

 

Northern Power Systems

 

نوع
3,2 MW 3,2 MW ظرفیت
گاز طبیعی گاز لندفیل سوخت

 

سال 2012 دو توربین بادی هرکدام با توان 1,5 مگاوات نیز به مجموعه اضافه شدند که منجر شد کارخانه اس سی جانسون بتواند به کمک این مجموعه کل برق موردنیاز خود را در محل تولید کند.

 

طراحی نیروگاه مقیاس کوچک ترکیبی انرژیهای تجدیدپذیر و واحد آب شیرین کن

در اقلیم های گرم و مرطوب به علت نیاز به تجهیزات خنک کننده، الکتریسیته اصلی ترین منبع انرژی موردنیاز است . نواحی دورافتاده در مناطق گرم و مرطوب معضل تامین پایدار برق و تهیه آب شیرین دارند . بسته به نوع فرآیند، از انرژی الکتریکی یا حرارت برای تهیه آب شیرین از دریا استفاده میشود که در صورت تهیه برق اضافی میتوان از سیستم های آب شیرین کن به عنوان روشی برای استفاده از برق اضافی تولید شده و ذخیره آن بصورت آب استفاده کرد.  سیستم های آب شیرین کن عموما به منبعی پیوسته از انرژی و جریانی پیوسته از آب نیازمند هستند.  البته در سیستم اسمز معکوس برخی فرآیندها میتوانند بطور ناپیوسته و نیمه بار کار کنند بدون اینکه به تجهیزات آب شیرین کن آسیبی وارد شود . به دلیل پایین بودن میزان پیک بار و دشواری حمل و نصب تجهیزات بزرگ، فقط توربین های بادی مقیاس کوچک  )بین100 تا 300 کیلووات(  قابلیت نصب در جزیره را دارند . از جمله مواردی که در انتخاب نوع توربین در این منطقه باید مدنظر قرار گیرد مقاومت نسبت به طوفان است و بر همین اساس توربینNW29  با توان 225 کیلووات و سرعت قطع پایین m/s ۴ انتخاب شده است.

 

جدول 2 مشخصات منطقه برای طراحی نیروگاه مقیاس کوچک و تولید برق و آب

Picture1 - آب شیرین کن خورشیدی و بادی

 

فیلتراسیون و نمک زدایی حرارتی دو رویکرد در واحدهای آب شیرین کن هستند که در روش حرارتی میتوان از کلکتورهای خورشیدی جهت استفاده از انرژی خورشید برای تقطیر آب استفاده کرد . از آنجایی که روش حرارتی خورشیدی نیز نیازمند نصب کلکتورهای خورشیدی در مساحتی به اندازه000 ۴ مترمربع از منطقه است، نهایتا این روش از نظر هزینه مناسب این منطقه نمیباشد. زمانی که هزینه برق پایین است MVC  یا روش متراکم سازی مکانیکی بهترین روش برای استفاده در آب شیرین کن است چون هیچ حرارتی را مصرف نمیکند و در قیمت های بالاتر برق، RO بهترین روش خواهد بود . باتوجه به دلایل ذکر شده، برای این جزیره نهایتا روش MVC مناسب است که این فرآیند با ظرفیت نامی 180 / day قادر به تولید 150 / day آب خواهد بود. هزینه ذخیره سازی آب کمتر از ذخیره سازی برق است، بنابراین تولید آب در زمانی که برق اضافی تولید میشود از جمله مزایای نصب سیستم آب شیرین کن است.  در مناطقی با این اقلیم عموما از تانکرها جهت ذخیره آب استفاده میشود که حداکثر ظرفیت 300 مترمکعب را دارا هستند.

 

معرفی ماژول های استفاده شده در طراحی

در این بخش با هدف طراحی ماژولار یک نیروگاه مقیاس کوچک دور از شبکه، ماژول های مختلف براساس تجهیزات موجود در داخل کشور انتخاب میشوند. با توجه به نمونه های بررسی شده، توربین گازی انتخاب شده از نوع Solar Centaur 40TM است که از توربین های گازی موجود در داخل ایران است.  از سایر دلایل انتخاب این توربین قابلیت استفاده از سوخت ترکیبی گاز طبیعی با گاز لندفیل )با بیش از 50 درصد متان ( به میزان حدود 5 الی 10 درصد کل سوخت طبق نمونه کارخانه اس سی جانسون است.

Untitled 2 1 - آب شیرین کن خورشیدی و بادی

 

ماژول توربین بادی

مزایای استفاده از توربین بادی در سیکل تولید همزمان شامل افزایش راندمان و قابلیت اطمینان و تامین منبع انرژی از منابع دوستدار محیط زیست است . با در نظرگرفتن نسبت ظرفیت بخش تولید همزمان به بخش بادی در نمونه های بررسی شده، ظرفیت پیشنهادی حدودی استخراج شده است.  برای مثال در کارخانه اس سی جانسون با داشتن دو توربین گازی 3,5 مگاواتی به منظور تامین کل برق موردنیاز کارخانه دو توربین بادی مجموعا به ظرفیت 3 مگاوات نصب شده است. اما در این طرح پیشنهادی صرفا به ترکیب دو نوع انرژی اکتفا نشده و به همین منظور توان توربین بادی به میزان بسیار کمتری ) 250 کیلووات ( و با توجه به ظرفیت توربین های بادی رایج در کشور انتخاب شده است . با توجه به دلایل ذکر شده توربین بادی 250 کیلوواتی مدل Wind World W3000 که هم اکنون در تعدادی از نیروگاه های کشور استفاده میشود انتخاب شده است . با در نظر گرفتن بار پایه موردنیاز در هر منطقه، میتوان به تعداد لازم از این توربین های بادی در کنار سیستم تولید همزمان و پنل های فتوولتاییک استفاده کرد . از دیگر علل انتخاب این توربین سرعت قطع پایین  2m/s آن است. چون مناطقی که برای طراحی درنظر گرفته شده میانگین سرعت وزش باد بالایی ندارند.

از انرژی الکتریکی حاصل از ماژول بادی میتوان جهت تامین برق مدار استفاده کرد . بطور کلی توربین های بادی حرکت هوا را به انرژی چرخشی تبدیل میکنند تا به کمک آن انرژی مکانیکی تولیدشده را به یک ژنراتور هدایت و انرژی الکتریکی تولید کنند. توربین ها عمدتاً توسط نیروی پسا و یا توسط نیروی برآ رانده میشوند و این نوسانات و تغییرات سرعت باد نیازمند یک سیستم کنترلی است . سیستم های کنترلی قادرند که توان باد موجود را با نیروی الکتریسیته سیستم آب شیرین کن مطابقت داده و اضافه توانی که در اثر سرعت بسیار زیاد باد حاصل میشود را به سیستم آب شیرین کن انتقال دهند و بدین ترتیب عملکرد پایدار ایجاد کنند که به طور معمول از یک سیستم باتری برای ایجاد این عملکرد پایدار استفاده میشود . در صورت تولید برق اضافی نیز میتوان آن را بصورت آب شیرین ذخیره کرد که این نوع ذخیره سازی بسیار راحت تر و کم هزینه تر از ذخیره برق به وسیله تجهیزات ذخیره سازی است و به تامین آب شیرین محل نیز کمک میکند . از انرژی باد میتوان در فناوری های RO و MED استفاده نمود، اما بیشتر کاربردهای آن مختص فناوری RO است . این فناوری کمترین میزان نیاز به انرژی را دارد که می تواند توسط منابع تجدیدپذیر تامین شود.  همچنین فناوری RO احتیاج به فضای کمتری داشته و فرآیند ساخت آن ساده تر است که به علت همین ویژگیها، RO برای نصب در مناطق دورافتاده و محلهایی که تقاضای آب آنها به طور مداوم تغییر میکند مناسب است.

ماژول خورشیدی

برای استفاده از انرژی خورشیدی تکنولوژیهای مختلفی ابداع شده است . از پراستفاده ترین تکنولوژی ها پنل های فتوولتاییک و سیستم های حرارتی خورشیدی شامل متمرکزکننده های خورشیدی  و کلکتورهای خورشیدی هستند . استفاده از تکنولوژی های حرارتی خورشیدی به صورت ترکیبی با سوختهای فسیلی و سایر انرژیها مزایای قابل توجهی به ارمغان می آورد . به علت کاهش هزینه ها و عدم نیاز به ذخیره ساز در نیروگاه های خورشیدی از یک سو و کاهش مصرف سوخت در نیروگاه های فسیلی و کاهش تولید آلاینده ها از سوی دیگر، ترکیب این دو روش گزینه ایده آلی به نظر میرسد.  در این تکنولوژی، دمای سیال در حال حرکت حتی تا 500 درجه سانتیگراد بسته به سیال مورد استفاده افزایش می یابد . در صورت استفاده از روغن حداکثر دمای سیال 390 درجه سانتیگراد و در صورت استفاده از آب یا نمک مذاب 500 درجه سانتیگراد خواهد بود.

کشور ایران دارای پتانسیل عظیمی برای استفاده از انرژی خورشیدی است . ایران با عرض جغرافیایی24  تا 40 درجه ی شمالی در منطقه ی بسیار مناسبی برای دریافت انرژی خورشیدی قرار دارد. تغییرات تابشی در ایران بین 8,2 kWh/  در روز در جنوب شرقی تا 5,4 kWh/    در یک روز نواحی مرکزی ایران متغیر است و طبق محاسبات میزان ساعات تابش مناسب خورشید در ایران بیش از 2800 ساعت در سال است . به همین منظور ضرورت استفاده از این پتانسیل عظیم به کمک تکنولوژی های مختلف خورشیدی احساس میشود.  از جمله محدودیت های فنی موجود در این راه عدم وجود زمین کافی برای نصب کلکتورها یا پنل های خورشیدی است.  جدول زیر رابطه بین توان لازم و مساحت اشغال شده توسط پنل های فتوولتاییک را برحسب پنلهای موجود در بازار ایران )حدود 320 وات( و شرایط تابش در ایران با شبیه سازی توسط نرم افزار PVsyst در شرایط مختلف بیان میکند.

 Picture2 - آب شیرین کن خورشیدی و بادی

 

طبق جدول 3 واضح است که پنل هایی با توان کمتر مساحت بیشتری را اشغال میکنند و رابطه خطی بین توان پنل و زمین اشغالی وجود دارد . برای این طراحی زمین مورد استفاده پنل ها صاف فرض شده است.

ماژول زیست توده

ایران دارای پتانسیل قابل توجهی در زمینه استفاده از زیست توده به عنوان منبع انرژی است . محدودیت مهم در استفاده از زیست توده، حجم بالای سوخت موردنیاز است.  انتقال و سوزاندن این حجم بالا هزینه گزافی داشته و گاها در تامین منبع پایداری از انرژی مشکل ایجاد میشود. در نتیجه انتخاب زیست توده به عنوان سوخت مکمل در کنار سایر بخشها از جمله تولید همزمان و یا انرژیهای تجدیدپذیر مثل باد جهت رفع نوسانات گزینه ایده آلی به شمار میرود.  اما از آنجاکه برای تولید مقدار اندک انرژی حجم بسیار زیادی از زیست توده موردنیاز است درنتیجه توان تولیدی زیست توده را محدود و نقش زیست توده را به عنوان مکمل در نظر می گیریم.  از روشهای استفاده از زیست توده تولید بیوگاز به کمک هاضم بی هوازی است. در حال حاضر در ایران دستگاههای تولید بیوگاز در تهران، شیراز، مشهد، ساوه و اصفهان ساخته شده یا در حال ساخت هستند . از روشهای بهره گیری از زیست توده در طراحی پیشنهادی، تزریق زیست توده به هاضم است تا نهایتا بیوگاز تولید شده 5 الی 10 درصد کل سوخت تزریق شده به محفظه احتراق را تشکیل دهد.  دبی هوای خروجی از کمپرسور در سیکل برایتون با توربین گازی Solar Centaur 40TM  به میزان  18.7 kg/sو دبی مخلوط سوخت و هوای خروجی از توربین 18,9 kg/s است. بنابراین دبی سوخت تزریق شده به محفظه احتراق 0,2 kg/s است که 5 الی 10 درصد آن را می توان به وسیله بیوگاز تامین کرد.  میزان بیوگاز تولید شده بسته به نوع زیست توده متفاوت است.

ماژول آب شیرین کن

امروزه با توجه به تغییرات اقلیمی و کمبود آب شیرین بخصوص در مناطق گرمسیری، تقاضا برای آب شیرین روند صعودی دارد و نمک زدایی و استفاده مجدد از آب، روشی پایدار برای مواجه با بحران بی آبی یه شمار میرود . برای تولید آب شیرین روشهای مختلفی در ترکیب با انرژیهای تجدیدپذیر ابداع شده است . نمک زدایی خورشیدی میتواند به روش مستقیم با استفاده از کلکتورهای خورشیدی و یا به روش غیرمستقیم از جمله تقطیر ناگهانی چند مرحلهای MSF ، فشرده سازی بخار VC که زیرمجموعه روشهای  MVC است ، اسمزمعکوس RO ، تقطیر غشایی MD ، تقطیر چندمرحله ای MEDو الکترودیالیز با کلکتورهای خورشیدی صورت گیرد.  روشهای مستقیم نسبت به روشهای غیر مستقیم به زمین بیشتری نیاز داشته و بازدهی کمتری دارند ولی با این حال در مقیاس کوچک روشهای مستقیم به دلیل سادگی و هزینه عملیاتی کمتر نسبت به سایر روشها مزیت رقابتی دارند.

در میان فناوریهای خورشیدی حرارتی، استخرهای خورشیدی و کلکتورهای سهموی از رایجترین روشها برای شیرین سازی آب شور به شمار میروند.  در آب شیرین کن های خورشیدی فرایند تبخیر مهم ترین قسمت است که توسط کلکتورهای خورشیدی انجام میشود و به همین منظور انتخاب یک کلکتور مناسب بسیار حائز اهمیت است. کلکتورهای سهموی میتوانند در روشها و فناوریهای مختلف شیرین سازی آب مورد استفاده قرار گیرند، ولی در عمل از این روش به دلیل تولید حرارت و همچنین برق، به صورت گسترده در فرآیندهای تقطیر حرارتی استفاده میشود چون ترکیب این روش با فناوریهایی که نیاز به حرارت بالا ندارند ممکن است مفید نباشد . هزینه عملیاتی این روش به صورت مستقیم به میزان حرارت تولیدی بستگی دارد. در میان جاذبهای خورشیدی، استخرها و صفحات تخت از جمله روشهای ارزان و کلکتورهای سهموی از روشهای گران محسوب میشوند.

در جایی که قیمت زمین گران نیست و زمین زیادی در دسترس است، استخر های خورشیدی به دلیل هزینه عملیاتی کم و توانایی ذخیره سازی انرژی به روشهای دیگر ترجیح داده میشوند و به همین دلیل زمانیکه انرژی حرارتی مورد نیاز نیست، تولید برق با استفاده از استخرهای خورشیدی از نظر اقتصادی قابل توجیه است.  به همین صورت زمانیکه زمین گران است و یا به برق و حرارت بالا نیاز است، جاذبهای سهموی به سایر روشها ترجیح داده میشوند.  در نهایت تصمیم گیری و انتخاب روش مناسب به میزان زیادی به شرایط محل مورد نظر بستگی دارد. استفاده از سیستم نمکزدایی تقطیری خورشیدی به علت کمبود فضا به خصوص در محیطهای شهری و حتی در مناطق دورافتاده، باعث ایجاد مشکل شده و حتی استفاده از آن را ناممکن و غیراقتصادی میکند . در آب شیرین کن های خورشیدی انجام عمل تبخیر با راندمان مناسب بسیار مهم میباشد که این عمل توسط کلکتور خورشیدی در سیستم انجام میشود . هزینه آب شیرین کن های RO نیز در طی 15 سال گذشته به میزان قابل توجهی کاهش یافته است و استفاده از این تکنولوژی در ترکیب با انرژی های تجدیدپذیر باعث کاهش بیشتر هزینه ها خواهد شد. نهایتا از میان تکنولوژی های مختلف شیرین سازی آب با انرژی های تجدیدپذیر، درمقیاس کوچک پراستفاده ترین آنها یعنی سیستم اسمزمعکوس انتخاب شده است که قابلیت ترکیب با توربین بادی و پنلهای فتوولتاییک را دارد. در واقع در یک سیستم ترکیبی بادی خورشیدیRO ، انرژی مورد نیاز پمپ فشار سیستم اسمز معکوس، توسط توربین بادی و پنلهای فتوولتاییک تأمین میشود.

 

یافته ها

کشور ایران دارای چندین نوع اقلیم مختلف با آب وهوای متفاوت است و ارائه صرفا یک نوع طراحی پاسخگوی نیاز همه نقاط کشور نیست . به همین منظور و با کمک اطلاعات هواشناسی نقاط مختلف ایران برگرفته از نرمافزار RETScreen Expert ، طراحی ماژولار پیشنهادی برای نیروگاه ترکیبی ارائه شده است.

 

 

طراحی نیروگاه ترکیبی تولید همزمان خورشیدی، زیست توده و آب شیرین کن در شهر شیراز

طبق استانداردهای بین المللی، اگر میانگین انرژی تابشی خورشید در یک روز بالاتر از 3,5 کیلووات ساعت در مترمربع باشد، استفاده از تکنولوژیهای انرژی خورشیدی نظیر کلکتورهای خورشیدی یا فتولتاییک مقرون به صرفه است.  در بسیاری از نقاط ایران، انرژی تابشی خورشید بسیار بالاتر از میانگین بین المللی است و در برخی نواحی حتی ۷ یا 8 کیلووات ساعت بر مترمربع اندازه گیری شده است که نشان دهنده پتانسیل بالای ایران برای استفاده از انرژی خورشیدی است . به طور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود 4.5 کیلووات ساعت در مترمربع در یک روز است که طبق داده های نرم افزار RETScreen Expert ، میانگین انرژی تابشی خورشید در سطح شهر شیراز d)  KWh/(5.48 است و واضح است که این رقم از میانگین کشوری بالاتر است.

Untitled 3 1 - آب شیرین کن خورشیدی و بادی

 

شهر شیراز دارای پتانسیل عظیمی برای استفاده از انرژی خورشیدی و انرژی زیست توده با توجه به زیرساختهای موجود در این شهر از قبیل یک نیروگاه 250 کیلوواتی متشکل از کلکتورهای خورشیدی به همراه یک نیروگاه زیست توده با توان حدودا 1 مگاوات است )سازمان انرژیهای نو ایران  1393 (. نیروگاه زیست توده شیراز از گاز لندفیل پسماندهای شهری برای تولید برق استفاده کرده و با مصرف بیش از ۴ میلیون مترمکعب زیستگاز در یک سال میتواند تا حدود 8 هزار مگاوات برق تولید کند. در کنار این زیرساختهای موجود و به منظور کاهش هزینه احداث میتوان یک نیروگاه ترکیبی تولید همزمان با توربین گاز Solar Centaur 40TM   3,2 مگاواتی راه اندازی کرد که بصورت مکمل از بیوگاز در فرایند احتراق خود و از انرژی خورشیدی در سیکل ترکیبی برای افزایش راندمان و یا سایر کاربردهای حرارتی استفاده میکند.

نیروگاه حرارتی خورشیدی موجود در شیراز با توان 250 کیلووات متشکل از 48 عدد کلکتور در 8ردیف 6 تایی است . طول هر کلکتور 25 متر و دهانه آن 4.3 متر است و مایع استفاده شده روغن با دمای کارکردی  275 درجه سانتیگراد است. میتوان با استفاده از ظرفیت فعلی نیروگاه دمای گاز پیش از ورود به محفظه احتراق را به 390 درجه سانتیگراد رساند که باقی دما تا رسیدن به دمای ورودی توربین گاز توسط محفظه احتراق تامین میگردد. از آنجاییکه زیرساختهای مربوط به کلکتورهای خورشیدی از قبل در این شهر وجود دارند، بنابراین استفاده از سیستم نمکزدای تقطیری خورشیدی به جهت استفاده از حرارت تولید شده توسط کلکتورها و سوزاندن بیوگاز توجیه پذیر است . همچنین در صورت تولید مازاد حرارت میتوان با تصفیه آب و ذخیره آن به نحوی از حرارت تولید شده استفاده کرد.

برای طرح پیشنهادی، 250 کیلووات یعنی کل ظرفیت نیروگاه کلکتور خورشیدی فعلی شیراز در نظر گرفته میشود که با توجه به ابعاد داده شده معادل حدود 5200 مترمربع است.  با توجه به اندازه های داده شده برای پنلهای معمولی فتوولتاییک و به جهت تولید 200 کیلووات برق، حدود 2000 متر مربع زمین در نظر گرفته میشود . به منظور کاهش هزینه و زمین موردنیاز جهت نگهداری از زیست توده، محل نیروگاه تا حد امکان نزدیک به لندفیل و یا نیروگاه فعلی زیست توده شیراز فرض شده است.

برای احداث نیروگاه در شهر شیراز محدودیت فضا در نظر گرفته نشده است . نهایتا میتوان نیروگاه ترکیبی خورشیدی زیست -توده تولید همزمان با اختصاص زمینی به مساحت حداقل7000 مترمربع با دیاگرامی مطابق شکل ۴ با ظرفیت توان حدود 3650 کیلووات احداث کرد که برای رسم دیاگرام از مراجع  Antonio M. and Pantaleo S. M., 2017  ،  Antonio M. and Pantaleo S. M., 2020   و M. Hassan, 2018  استفاده شده است.

 Untitled 4 1 - آب شیرین کن خورشیدی و بادی

 

طراحی نیروگاه تولید همزمان بادی، خورشیدی، زیست توده در کنار آب شیرین کن در جزیره کیش

با توجه به نمودارهای شکل 5 ، این جزیره پتانسیل خوبی برای نصب توربین های بادی در کنار تولید همزمان و سیستم آب شیرین کن جهت تامین برق و حرارت و آب منطقه دارد . علاوه بر این، با استفاده از زیست توده نه تنها مکملی برای تولید انرژی فراهم میشود بلکه مشکل دفع زایدات در جزیره نیز برطرف میگردد . از جهت مناسب بودن برای نصب توربین باد، میانگین سرعت باد در منطقه مطابق شکل زیر 3.1 m/s است. میانگین سرعت باد در ایران 2.4 m/s و میانگین سرعت باد در مزرعه بادی منجیل 3,5 m/s  است بنابراین با مقایسه میتوان دریافت که این جزیره پتانسیل خوبی برای استفاده از انرژی بادی دارد.

 Untitled 5 - آب شیرین کن خورشیدی و بادی

 

از سوی دیگر مشاهده میشود که سرعت باد در ماه های مختلف تغییرات شدیدی ندارد که این مسئله نکته مثبتی برای این منطقه به حساب می آید.  بیشترین سرعت متوسط باد در فصل بهار، یعنی ماههای مارچ و آپریل که حدودا ماههای فروردین و اردیبهشت را شامل میشود مشاهده شده است، اما در سایر ماهها نیز شرایط مناسبی از نظر وزش باد برقرار است.  میانگین انرژی تابشی خورشید نیز در سطح شهر کیش 5.6 KWh/d) است که نشان دهنده پتانسیل موجود برای نصب پنلهای فتوولتاییک است اما فرض میشود که این جزیره فضای کافی برای نصب کلکتورهای خورشیدی را ندارد و به همین دلیل به نصب پنلها با توان کلی 100 کیلووات اکتفا شده است.

Untitled 6 - آب شیرین کن خورشیدی و بادی

 

برای تعیین نوع سیستم آب شیرین کن این نکته باید مورد توجه قرار گیرد که برای تامین آب شیرین در مقیاس کوچک، بهترین گزینه استفاده از روش اسمز معکوس است که برای این روش برق موردنیاز را میتوان به کمک سیکل تولید همزمان و توربین های بادی و پنل های فتوولتاییک بدست آورد . با توجه به فرمول موجود در مرجع  )سازمان انرژیهای نو ایران1393 ) مساحت موردنیاز برای نصب توربین های بادی برابر تعداد توربین ضربدر مربع توان قطر روتور است . توان پنل های خورشیدی  100 کیلووات ساعت و زیست توده نیز فقط به عنوان سوخت مکمل در هنگام نیاز در نظر گرفته شده است . با توجه به محدودیت فضای موجود در جزیره میتوان صرفا با اختصاص زمینی به مساحت حداقل 1900 مترمربع به احداث نیروگاه ترکیبی بادی-خورشیدی، زیست توده تولید همزمان با دیاگرامی مطابق شکل زیر و ظرفیت حدود 3550 کیلووات به کمک مراجع  Antonio M. and Pantaleo S. M., 2017 Antonio M. and Pantaleo S. M., 2020 ( ) Ivan Postnikov, 2018  A. Pe´ rez-Navarro, 2010  پرداخت.

Untitled 7 - آب شیرین کن خورشیدی و بادی

 

بحث و نتیجه گیری

در این پژوهش، با بررسی مقالات متعدد و مستندات و گزارشات پروژه های واقعی به طراحی ماژولار یک نیروگاه ترکیبی با استفاده از انرژی های تجدیدپذیر در کنار یک سیستم تولید همزمان پرداخته شده است. هدف ارائه طرحی پیشنهادی برای کاربردهای آینده بوده و به همین منظور به جای استفاده از به روزترین تکنولوژی ها، به زیرساختها و تجهیزات موجود در داخل کشور اشاره شده است.  برای بررسی سرعت وزش باد و میزان انرژی تابشی خورشید در نقاط مختلف ایران از نرم افزار RETScreen استفاده شده است که برای امکانسنجی پروژه های انرژی به کار میرود.

موارد زیر مهمترین نتایج حاصل از انجام این پژوهش است:

تکنولوژیهای مورد استفاده درترکیب سیستمهای مختلف انرژیهای تجدیدپذیر بسیار متنوع است و کاربردهای فراوانی در مراکز مختلف مسکونی، تجاری و صنعتی دارند و در پژوهش حاضر فقط به معرفی تعداد محدودی از ماژول ها با در نظر گرفتن محدودیت های موجود پرداخته شده است. با بررسی توربین های گازی استفاده شده در سیستمهای تولید همزمان موجود در دنیا و زیرساختهای موجود در ایران، توربین گازی 3,2 مگاواتی Solar Centaur 40TM انتخاب شده است که قابلیت استفاده از گاز لندفیل به میزان محدود را دارا میباشد.

با توجه به فرض استفاده مداوم از سیکل تولید همزمان و توربین گازی، برای استفاده از سایر تکنولوژی ها تا حد امکان سعی شده است که با در نظر گرفتن پارامترهای مختلف از جمله ظرفیت و مساحت، پیشنهادات قابل قبولی برای سیستم ترکیبی ارائه گردد. به همین منظور از توربین بادی و و پنل فتوولتاییک به عنوان مکملی برای تولید برق و استفاده در سیستم آب شیرین کن از نوعRO ، کلکتورهای خورشیدی به منظور تامین حرارت موردنیاز در سیستم آب شیرین کن تقطیری خورشیدی و گرم کردن سوخت پیش از ورود به محفظه احتراق و زیست توده به منظور تولید بیوگاز و تامین بخشی از سوخت موردنیاز و راه حلی برای دفع زایدات استفاده شده است. با توجه به بررسی اطلاعات آب وهوایی سالانه شامل میزان تابش خورشید و سرعت باد در دو منطقه شیراز و کیش، به ترتیب استفاده از نیروگاه ترکیبی تولید همزمان خورشیدی زیست توده به همراه سیستم آب شیرین کن تقطیری خورشیدی و نیروگاه ترکیبی تولید همزمان بادی زیست توده به همراه سیستم آب شیرین کن اسمز معکوس مورد بررسی قرار گرفت و دیاگرام پیشنهادی ارائه شد.

 

نویسندگان مقاله

آقای دکتر علی مددی

خانم مهندس مینا صالحی مرنی