نوشته‌ها

چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

حذف ارز نیمایی برای پنل و اینورتر خورشیدی و همچنین خروج کالاهای مرتبط با نیروگاه‌های خورشیدی از فهرست 750 قلم کالای قابل واردات با ارز نیمایی، چالش‌های متعددی را برای این صنعت در ایران به وجود خواهد آورد.

برخی از این چالش‌ها عبارتند از:
* افزایش قیمت تجهیزات: با حذف ارز نیمایی، قیمت پنل‌ها و اینورترهای خورشیدی به طور قابل توجهی افزایش یافته است. این امر باعث شده تا سرمایه‌گذاری در احداث نیروگاه‌های خورشیدی از صرفه اقتصادی خارج شده و از تمایل بخش خصوصی برای سرمایه‌گذاری در این حوزه کاسته شود.

* کاهش تولید: افزایش قیمت تجهیزات، به طور مستقیم در روند تولید و احداث نیروگاه‌های خورشیدی تاثیر منفی خواهد گذاشت. از آنجایی که قیمت تمام شده تولید برق خورشیدی افزایش میابد، تمایل برای احداث نیروگاه‌های جدید کاهش پیدا خواهد کرد.

* مشکلات تامین تجهیزات: در صورتیکه واردات پنل و اینورتر خورشیدی با ارز نیمایی امکان‌پذیر نباشد،  یافتن و تامین این تجهیزات از طریق واردات با ارز آزاد با دشواری‌های زیادی همراه خواهد شد. این امر علاوه بر افزایش قیمت، به طولانی شدن زمان احداث نیروگاه‌های خورشیدی نیز منجر می‌شود.
با وجود تاکید بر توسعه انرژی‌های تجدیدپذیر،  میبایست حمایت‌های کافی از سوی دولت برای جبران چالش‌های پیش روی این صنعت صورت گیرد. نبود سیاست‌های تشویقی و عدم ارائه تسهیلات مناسب به سرمایه‌گذاران، از جمله موانعی است که بر سر راه توسعه این صنعت در ایران قرار دارد.
علاوه بر این چالش‌ها، موارد زیر نیز می‌توانند به عنوان پیامدهای حذف ارز نیمایی برای صنعت  خورشیدی ایران در نظر گرفته شوند:

* افزایش وابستگی به سوخت‌های فسیلی: با افزایش هزینه تولید برق خورشیدی، تمایل به استفاده از سوخت‌های فسیلی افزایش خواهد یافت. این امر نه تنها مغایر با اهداف توسعه پایدار و حفظ محیط زیست است،  بلکه به تشدید آلودگی هوا و افزایش آلاینده‌های زیست‌محیطی نیز منجر می‌شود.

* از دست رفتن فرصت‌های شغلی: صنعت  خورشیدی در ایران پتانسیل ایجاد اشتغال قابل توجهی را دارد. با توقف روند توسعه این صنعت،  فرصت‌های شغلی زیادی از بین خواهد رفت.

* کاهش تنوع در منابع تولید برق:  حذف ارز نیمایی برای  خورشیدی  تنوع در منابع تولید برق را کاهش خواهد داد و وابستگی کشور به یک منبع خاص انرژی را افزایش می‌دهد. این امر می‌تواند امنیت انرژی کشور را به خطر انداخته و در زمان‌های بحران،  مشکلات عدیده‌ای را به وجود آورد. ضمن اینکه مشکل ناترازی برق کشور قابل حل نخواهد بود مگر با رویکرد حمایتی از نیروگاه های خورشیدی‌.
در نهایت،  لازم است به این نکته توجه شود که حذف ارز نیمایی برای تجهیزات خورشیدی  تنها به ضرر این صنعت نیست،  بلکه پیامدهای منفی آن دامنه‌ گسترده‌تری را شامل می‌شود و می‌تواند به طور کلی بر روند توسعه پایدار ایران تاثیر منفی بگذارد.

 

energy renewable solar panel transmission lines - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

راهکارهای پیشنهادی:

*حفظ ارز نیمایی و البته بهتر از آن تخصیص ارز ترجیحی به تجهیزات نیروگاه خورشیدی؛
نجات کشور از ریسک خاموشی سراسری، به حمایت‌های دولتی از صنعت فتوولتائیک وابسته است. این حمایت ها می‌تواند احداث نیروگاه های خورشیدی در ایران را تسریع کند و علاوه بر حل مشکل ناترازی برق و افزایش قابلیت اطمینان شبکه توزیع برق کشور به اقتصاد کشور کمک شایانی کرده و سبب ارز آوری برای کشور باشد.

* اعطای  تسهیلات و حمایت‌های مالی به سرمایه‌گذاران در این حوزه:  ارائه وام‌های کم‌بهره،  تخفیف در مالیات و عوارض گمرکی،  و همچنین ارائه یارانه‌های حمایتی از جمله اقداماتی هستند که می‌توانند برای جبران افزایش قیمت تجهیزات و تشویق سرمایه‌گذاری در این صنعت  مفید باشند.

* تدوین قوانین و مقررات حمایتی:  برقراری قوانین و مقررات شفاف و  حمایتی  می‌تواند  به  ایجاد  محیطی  مناسب برای  توسعه  این  صنعت  در  ایران  کمک  کند.

* تخصیص خطوط اعتباری: می‌تواند با اختصاص خطوط اعتباری کم‌بهره به سرمایه‌گذاران در این حوزه،  زمینه را برای احداث و توسعه نیروگاه‌های خورشیدی فراهم کرد.

* جذب  سرمایه‌گذاری  بخش  خصوصی  در  حوزه  خورشیدی :  دولت  می‌تواند  با  ایجاد  فضایی  مناسب  برای  فعالیت  بخش  خصوصی  و  ارائه  تسهیلات  لازم،  زمینه  را  برای  جذب  سرمایه‌گذاری  بیشتر  در  این  حوزه  فراهم  کند.

* توسعه  مشارکت‌های  عمومی-خصوصی:  توسعه  مشارکت‌های  عمومی-خصوصی  می‌تواند  به  اجرای  پروژه‌های  بزرگ  خورشیدی  و  کاهش  هزینه‌های  احداث  این  نیروگاه‌ها  کمک  کند.

istockphoto 1345681583 612x612 1 - چالش‌های نیروگاه‌های خورشیدی در ایران پس از حذف ارز نیمایی

با  اجرای  این  راهکارها  می‌توان  امید  داشت  که  چالش‌های  موجود  در  مسیر  توسعه  صنعت  خورشیدی  در  ایران  تا  حد  زیادی  مرتفع  شود  و  این  صنعت  به  عنوان  یکی  از  منابع  اصلی  تولید  برق  در  کشور  نقش  آفرینی  کند.
علاوه بر موارد ذکر شده، موارد زیر نیز می‌توانند به عنوان راهکارهای تکمیلی برای مقابله با چالش‌های نیروگاه‌های خورشیدی در ایران در نظر گرفته شوند:

* تسهیل صدور مجوزها:  بسیاری از سرمایه‌گذاران در این حوزه با بروکراسی پیچیده و زمان‌بر صدور مجوزها مواجه هستند.  تسهیل و streamlined کردن این فرآیند می‌تواند به تسریع روند احداث نیروگاه‌های خورشیدی و کاهش هزینه‌های سرمایه‌گذاری کمک کند.

* آموزش  نیروی  انسانی  متخصص:  توسعه  برنامه‌های  آموزشی  در  دانشگاه‌ها  و  مراکز  آموزشی  می‌تواند  به  تربیت  نیروی  انسانی  متخصص  در  زمینه  خورشیدی  و  ایجاد  زیربنای  لازم  برای  رشد  و  توسعه  این  صنعت  در  کشور  کمک  کند.

* استفاده  از  ظرفیت  صادرات:  ایران  از  نظر  پتانسیل  خورشیدی  یکی  از  کشورهای  برخوردار  در  منطقه  است.  با  توسعه  این  صنعت  و  کاهش  هزینه‌های  تولید،  می‌توان  از  ظرفیت  صادرات  برق  خورشیدی  به  کشورهای  همسایه  نیز  استفاده  کرد.

در  نهایت،  لازم  است  به  این  نکته  توجه  شود  که  توسعه  صنعت  خورشیدی  در  ایران  نیازمند  یک  عزم  ملی  و  همکاری  همه  دستگاه‌ها  و  نهادهای  ذیربط  است.  با  اتخاذ  سیاست‌های  مناسب  و  حمایت  از  این  صنعت،  می‌توان  امید  داشت  که  ایران  به  یکی  از  پیشگامان  منطقه  در  زمینه  استفاده  از  انرژی  خورشیدی  تبدیل  شود.

نویسنده: دپارتمان خبری آرا نیرو

الگوریتم‌هایی برای تشخیص پنل‌های خورشیدی کم‌بازده روی پشت‌بام

پژوهشگران استرالیایی الگوریتم‌های چند مرحله‌ای را برای تشخیص از راه دور و دقیق پنل‌های خورشیدی کم‌بازده در سیستم‌های فتوولتائیک (PV) مسکونی و تجاری توسعه داده‌اند.

پژوهشگران دانشگاه نیو ساوت ولز (UNSW) و دانشگاه تکنولوژی سیدنی الگوریتم‌هایی را توسعه داده‌اند که ادعا می‌کنند می‌توانند به‌طور خودکار مجموعه‌ای از مشکلات رایج کم‌بازده بودن پنل‌های خورشیدی را شناسایی کنند، از جمله خرابی سیم‌کشی، فرسودگی و اثر سایه.

فیاکر روژیو، استاد ارشد دانشکده مهندسی فتوولتائیک و انرژی‌های تجدیدپذیر UNSW، گفت که این فناوری همچنین می‌تواند محدودیت‌های اتصال، قطع و نشتی را شناسایی کند و پتانسیل انقلابی کردن تشخیص عیب سیستم‌های فتوولتائیک (PV) را دارد.

او گفت: «این یک تغییر اساسی برای بهره‌برداران سیستم‌های مسکونی و تجاری است. این الگوریتم با تجزیه و تحلیل داده‌های اینورتر و حداکثر توان هر پنج دقیقه، می‌تواند مشکلات عملکرد پایین را به طور دقیق تشخیص دهد، امکان مداخله زودهنگام و به حداکثر رساندن تولید انرژی را فراهم کند.»

روژیو گفت که محققان، با همکاری به عنوان بخشی از پروژه شبکه حسگر هوشمند نیو ساوت ولز، از حسگرها و انواع مختلف رویکردهای تحلیلی برای توسعه یک رویکرد دو سطحی برای تشخیص عملکرد پایین پنل‌های خورشیدی استفاده کردند که سالانه حدود ۷ میلیارد دلار استرالیا (۴.۶ میلیارد دلار آمریکا) هزینه در بر دارد. ضررهای قابل پیشگیری در سطح جهانی.

او گفت: «ما با استفاده از داده‌های برق AC، یک تشخیص سطح بالا ایجاد کرده‌ایم که می‌تواند دسته‌های وسیعی از مسائل مانند تولید صفر و قطع شدن را تشخیص دهد. مزیت این رویکرد این است که این تشخیص کاملاً از نظر فناوری مستقل است و می‌تواند با هر برند اینورتر و ردیاب حداکثر توان کار کند.»

روژیو با اشاره به اینکه بسیاری از برندهای اینورتر اطلاعات فنی AC و DC را ارائه می‌دهند، گفت که این تیم همچنین یک الگوریتم دقیق‌تر با استفاده از هر دو داده AC و DC توسعه داده‌اند که می‌تواند با تشخیص و طبقه‌بندی عیوب خاص‌تر مانند سایه‌زنی و مشکلات آرایه ها، بینش‌های عملی‌تری را برای مالکان نیروگاه خورشیدی فراهم کند.

وی گفت: «این نوع تشخیص نیازمند هر دو روش مبتنی بر قوانین آماری است که توسط رویکردهای یادگیری ماشین برای مواردی که توسط روش‌های مبتنی بر قوانین متعارف قابل تشخیص نیست، پشتیبانی می‌شود.»

این فناوری اکنون به طور کامل در یک پلتفرم تولید تجاری ادغام شده است که توسط شریک صنعتی پروژه، Global Sustainable Energy Solutions برای نظارت بر بیش از ۱۰۰ مگاوات انرژی خورشیدی استفاده می‌شود.

ابراهیم ابراهیم، سرپرست تیم UTS گفت که این فناوری که قابلیت پیاده‌سازی روی بیش از ۱۲۰۰ سیستم فتوولتائیک را دارد، امکان اجرای اقدامات پیشگیرانه‌ای را فراهم می‌کند که تولید انرژی را به حداکثر می‌رساند و قابلیت اطمینان سیستم را افزایش می‌دهد.

وی گفت: «با کاهش قابل توجه تلفات قابل پیشگیری که ارزش آن در سطح جهان میلیاردها دلار است، چنین فناوری‌هایی صرفه‌جویی قابل توجهی در هزینه برای مالکان سیستم‌های فتوولتائیک را تضمین می‌کنند.»

روژیو گفت که این نرم‌افزار می‌تواند جایگزین نیاز به پیمانکاران گران‌قیمت برای رفتن به محل برای کشف علت عملکرد پایین سیستم خورشیدی شود.

او گفت: «ما شورایی داشتیم که به مدت پنج ماه متوالی یک سیستم کم‌بازده داشت. آن پیمانکار قراردادی برای عملیات و نگهداری داشت، با این حال این مشکل عمده ماه‌ها کشف نشده بود. الگوریتم‌های ما تقریباً بلافاصله آن را تشخیص دادند. شگفتی بزرگ برای ما تعداد قابل توجهی از سیستم‌هایی بود که یک پیمانکار عملیات و نگهداری عملکرد پایین را که ما تشخیص داده بودیم کاملاً از دست داده بود.»

تیم تحقیقاتی اکنون در حال کار بر روی بهبود الگوریتم هستند تا بتواند طیف گسترده‌تری از مسائل مانند سایه‌زنی، آلودگی و خطاهای دقیق سمت شبکه را تشخیص دهد.

نویسنده: دپارتمان خبری آرا نیرو

 247Solar، محصول جانبی MIT، فناوری سیستم انرژی خورشیدی پیوسته را رونمایی کرد

سیستم نوآورانه انرژی خورشیدی متمرکز 247Solar، نور خورشید را برای تولید انرژی پاک و مداوم، در شب و روز ذخیره می‌کند.

 

برای دو دهه گذشته، مزارع نیروگاه خورشیدی و نیروگاه بادی تبدیل به منظره‌ای آشنا شده‌اند و انقلابی در نحوه تولید برق ایجاد کرده‌اند. با این حال، کربن‌زدایی کامل به مجموعه‌ای وسیع‌تر از فناوری‌ها نیاز دارد. این به این دلیل است که منابع تجدیدپذیری مانند خورشید و باد متناوب هستند، به این معنی که به طور مداوم برق تولید نمی‌کنند. علاوه بر این، آنها نمی‌توانند دمای بالایی را که برای بسیاری از فرآیندهای صنعتی حیاتی است، ارائه دهند.

پروژه 247Solar پیشگام رویکردی نوآورانه برای انرژی خورشیدی متمرکز (CSP) است که این محدودیت‌ها را برطرف می‌کند. سیستم‌های دما-بالای آن‌ها دارای ذخیره‌سازی انرژی حرارتی شبانه است که به آن‌ها امکان می‌دهد شبانه‌روز برق پاک و گرمای صنعتی ارائه دهند.

نوآوری الهام گرفته از MIT داستان 247Solar ریشه‌های عمیقی در مؤسسه فناوری ماساچوست (MIT) دارد. بروس اندرسون، مدیرعامل شرکت (فارغ‌التحصیل ۱۹۶۹ و فوق‌لیسانس ۱۹۷۳)، بین سال‌های ۱۹۹۶ تا ۲۰۰۰ مدیر برنامه ارتباط صنعتی (ILP) بود. ILP با اتصال شرکت‌ها به شبکه گسترده دانشجویان، اساتید و فارغ‌التحصیلان MIT، نوآوری را تقویت می‌کند. این تجربه باعث جرقه روحیه کارآفرینی اندرسون شد و او را در معرض تحقیقات پیشگامانه‌ای که از MIT بیرون می‌آمد قرار داد.

یکی از این نوآوری‌ها، مبدل حرارتی با دمای بالا بود که توسط پروفسور فقید MIT، دیوید گوردون ویلسون ساخته شد. اندرسون با ویلسون برای تجاری‌سازی این فناوری همکاری کرد که منجر به تأسیس شرکت 247Solar در اوایل دهه ۲۰۰۰ شد.

مسیر اولیه آن‌ها هموار نبود. یک گیرنده نیروگاه خورشیدی حیاتی در طول آزمایش آسیب دید و شرکت با محدودیت‌های مالی مواجه شد. با این حال، اندرسون همچنان پیگیر بود. تا سال ۲۰۱۵، پیشرفت‌های علم مواد به او اجازه داد تا مبدل حرارتی سرامیکی را با یک آلیاژ فلزی جدید با دمای بالا جایگزین کند و پروژه را احیا کند.

photo 2024 05 05 11 51 28 - 247Solar، محصول جانبی MIT، فناوری سیستم انرژی خورشیدی پیوسته را رونمایی کرد

این سیستم ها می توانند به عنوان ریزشبکه های مستقل برای جوامع یا برای تامین برق در مکان های دور افتاده مانند معادن و مزارع استفاده شوند. منبع: 247 خورشیدی

 

یک طراحی تغییر دهنده بازی سیستم 247Solar از مجموعه‌ای از آینه‌های ردیاب خورشید (هلیostat) برای متمرکز کردن نور خورشید روی یک برج مرکزی استفاده می‌کند. این برج دارای یک گیرنده خورشیدی اختصاصی است که هوا را تا دمای سوزان ۱۰۰۰ درجه سانتیگراد در فشار اتمسفر گرم می‌کند. سپس این هوای داغ توربین‌های منحصر به فرد شرکت را هدایت می‌کند و برق و گرمای صنعتی تولید می‌کند.

درخشش سیستم در ذخیره انرژی حرارتی آن نهفته است. هوای داغ اضافی به یک سیستم ذخیره‌سازی با دوام طولانی هدایت می‌شود، جایی که مواد جامدی را گرم می‌کند که گرما را برای استفاده بعدی نگه می‌دارند. این انرژی حرارتی ذخیره شده در طول شب به نیروی کار تبدیل می‌شود و زمانی که خورشید غروب می‌کند، توربین‌ها را تامین می‌کند.

اندرسون بر تطبیق‌پذیری سیستم تاکید می‌کند. او توضیح می‌دهد: «ما ۲۴ ساعت شبانه‌روز برق ارائه می‌دهیم، اما همچنین یک گزینه ترکیبی گرما و برق را با توانایی ارائه گرما تا ۹۷۰ درجه سانتیگراد برای فرآیندهای صنعتی ارائه می‌دهیم. این یک سیستم بسیار انعطاف پذیر است.»

غلبه بر چالش‌ها و رویارویی با آینده

همه‌گیری کووید-19 طرح‌های 247Solar را برای یک مرکز نمایشی منحرف کرد. با وجود این عقب‌نشینی، علاقه شدید مشتریان شرکت را به جلو سوق داده است. در حالی که انرژی خورشیدی متمرکز در مناطقی با آسمان صاف مانند آریزونا رونق دارد، اندرسون در حال بررسی فرصت‌هایی در هند، آفریقا و استرالیا است.

با نگاهی به آینده، 247Solar به طور فزاینده‌ای در حال بررسی سیستم‌های هیبریدی است که فناوری آن‌ها را با پنل‌های فتوولتائیک (PV) خورشیدی سنتی ترکیب می‌کند. این امر به مشتریان امکان می‌دهد تا از مقرون‌به‌صرفه بودن برق خورشیدی در طول روز استفاده کنند و در عین حال به طور یکپارچه به انرژی 247Solar در شب سوئیچ کنند.

اندرسون می‌گوید: «ما واقعاً به سمت این سیستم‌های هیبریدی حرکت می‌کنیم که مانند یک پریوس کار می‌کنند – گاهی اوقات از یک منبع انرژی و گاهی اوقات از منبع دیگر استفاده می‌کنید.»

باتری‌های حرارتی HeatStorE

این شرکت همچنین با باتری‌های حرارتی مستقل HeatStorE خود سروصدا به پا می‌کند. این باتری‌ها که با استفاده از برق شبکه، PV یا باد به طور الکتریکی گرم می‌شوند، می‌توانند بیش از 9 ساعت گرما را ذخیره کنند و سپس آن را به صورت برق و گرمای فرآیند صنعتی یا فقط گرمای با دمای بالا آزاد کنند. به طور قابل توجهی، اندرسون ادعا می‌کند که باتری‌های حرارتی آن‌ها تنها یک هفتم قیمت باتری‌های لیتیوم یون به ازای هر کیلووات ساعت تولید شده است.

تعهد 247Solar به انعطاف‌پذیری تضمین می‌کند که سیستم‌ها برای پاسخگویی به نیازهای فردی مشتریان در مسیر کربن‌زدایی کامل طراحی شده‌اند. از تامین برق جوامع دورافتاده تا کمک به تلاش‌های کربن‌زدایی صنعتی، فناوری 247Solar راه‌حلی جذاب برای آینده‌ای پاک‌تر و روشن‌تر در زمینه انرژی ارائه می‌دهد.

نقاط قوت 247Solar:

ذخیره‌سازی انرژی حرارتی: این شرکت از یک سیستم ذخیره‌سازی منحصر به فرد برای ذخیره گرمای اضافی در طول روز و استفاده از آن برای تولید برق در شب استفاده می‌کند.

گرمای صنعتی: 247Solar نه تنها برق، بلکه گرمای صنعتی با دمای بالا را نیز ارائه می‌دهد که آن را برای کاربردهای مختلف صنعتی مناسب می‌کند.

انعطاف‌پذیری: سیستم‌های این شرکت را می‌توان با نیازهای خاص مشتریان تطبیق داد و آن‌ها را برای طیف وسیعی از برنامه‌ها ایده‌آل می‌کند.

هزینه مقرون به صرفه: باتری‌های حرارتی HeatStorE به طور قابل توجهی ارزان‌تر از باتری‌های لیتیوم یون هستند که هزینه ذخیره‌سازی انرژی را کاهش می‌دهد.

چالش‌های 247Solar:

هزینه اولیه: سیستم‌های 247Solar ممکن است در مقایسه با سایر منابع انرژی تجدیدپذیر، هزینه اولیه بالایی داشته باشند.

مقیاس: این فناوری هنوز در مراحل اولیه توسعه است و نیاز به مقیاس‌بندی برای رقابت با منابع انرژی سنتی دارد.

رقابت: 247Solar با سایر فناوری‌های انرژی تجدیدپذیر مانند CSP و PV سنتی برای سهم بازار رقابت می‌کند.

نتیجه‌گیری:

موسسه 247Solar یک شرکت نوآور است که در حال توسعه فناوری CSP با ذخیره‌سازی انرژی حرارتی برای ارائه برق و گرمای صنعتی پاک و قابل اعتماد 24/7 است. این فناوری پتانسیل قابل توجهی برای کمک به کربن‌زدایی اقتصاد جهانی را دارد، اما قبل از اینکه به طور گسترده مورد استفاده قرار گیرد، باید بر برخی از چالش‌ها مانند هزینه و مقیاس‌پذیری غلبه کند.
نویسنده: دپارتمان خبری آرا نیرو
منبع: interestingengineering

 

محققان دپارتمان شیمی UNC-Chapel Hill از نیمه هادی ها برای برداشت و تبدیل انرژی خورشید به ترکیبات پر انرژی استفاده می کنند که پتانسیل تولید سوخت های سازگار با محیط زیست را دارند.

در مقاله منتشر شده در ACS Energy Letters، “خاتمه متیل (Methyl) سیلیکون نوع p باعث کاهش انتخابی CO2 فوتوالکتروشیمیایی توسط یک کاتالیزور مولکولی روتنیم (ruthenium) می شود.” محققان توضیح می دهند که چگونه از فرآیندی به نام خاتمه متیل (Methyl termination) استفاده می کنند که از یک ترکیب آلی ساده از یک کربن استفاده می کند. اتم به سه اتم هیدروژن پیوند می زند تا سطح سیلیکون را که یک جزء ضروری در سلول های خورشیدی است، اصلاح کند تا عملکرد آن در تبدیل دی‌اکسید کربن به مونوکسید کربن با استفاده از نور خورشید بهبود یابد.

این تحقیق با فرآیندی به نام فتوسنتز مصنوعی انجام شد که نحوه عملکرد گیاهان در استفاده از نور خورشید را برای تبدیل دی اکسید کربن به مولکول های غنی از انرژی تقلید می کند.

دی اکسید کربن یکی از گازهای گلخانه ای اصلی است که به تغییرات آب و هوایی منجر می شود. با تبدیل آن به مونوکسید کربن، که یک گاز گلخانه ای کمتر مضر و یک بلوک ساختمانی برای سوخت های پیچیده تر است، محققان گفتند که به طور بالقوه می توانند اثرات زیست محیطی انتشار دی اکسید کربن را کاهش دهند.

گابریلا بین، نویسنده اول مقاله و دکترا، می‌گوید: «یکی از چالش‌های انرژی خورشیدی این است که همیشه زمانی که ما بیشترین نیاز را به آن داریم، در دسترس نیست. چالش دیگر این است که الکتریسیته تجدیدپذیر، مانند برق ناشی از صفحات خورشیدی، مستقیماً مواد خام مورد نیاز برای ساخت مواد شیمیایی را تامین نمی کند. هدف ما ذخیره انرژی خورشیدی به شکل سوخت های مایع است که میتواند بعداً مورد استفاده قرار گیرد.
محققان از یک کاتالیزور مولکولی روتنیم با یک تکه سیلیکون اصلاح شده شیمیایی به نام فوتوالکترود استفاده کردند که با استفاده از انرژی نور بدون تولید محصولات جانبی ناخواسته مانند گاز هیدروژن، تبدیل دی اکسید کربن به مونوکسید کربن را تسهیل کرد و این فرآیند را برای تبدیل کربن دی اکسید به مواد دیگر کارآمدتر کرد.

جیلیان دمپسی، یکی از نویسندگان مقاله و پروفسور بومن و گوردون گری، گفت که وقتی آزمایش‌هایی را در محلولی پر از دی اکسید کربن انجام دادند، متوجه شدند که می‌توانند مونوکسید کربن را با بازده 87 درصد تولید کنند، به این معنی که سیستم از فوتوالکترودهای سیلیکونی اصلاح شده قابل مقایسه یا بهتر از سیستم هایی هستند که از الکترودهای فلزی سنتی مانند طلا یا پلاتین استفاده می کنند.

علاوه بر این، فوتوالکترود سیلیکونی 460 میلی ولت انرژی الکتریکی کمتری برای تولید واکنش مصرف کرد. دمپسی این را مهم خواند زیرا این فرآیند از برداشت مستقیم نور برای تکمیل یا جبران انرژی لازم برای هدایت واکنش شیمیایی که دی اکسید کربن را به مونوکسید کربن تبدیل می کند، استفاده می کند.

دمپسی می‌گوید: «چیز جالب این است که معمولاً سطوح سیلیکونی به جای مونوکسید کربن، گاز هیدروژن می‌سازند، که تولید آن از دی‌اکسید کربن را سخت‌تر می‌کند.

“با استفاده از این سطح سیلیکونی خاص با پایانه متیل، ما توانستیم از این مشکل جلوگیری کنیم. اصلاح سطح سیلیکون، فرآیند تبدیل CO2 به مونوکسید کربن را در آینده کارآمدتر و انتخابی تر می کند، که می تواند برای ساخت سوخت های مایع از نور خورشید در محیط بسیار مفید باشد.”
نویسنده: دپارتمان خبری آرا نیرو
منبع : University of North Carolina at Chapel Hill

یک مولکول هیدروکربن به عنوان تامین کننده و محلول ذخیره انرژی برای انرژی خورشیدی

تاکنون تولید و ذخیره الکتریسیته از انرژی خورشیدی به دستگاه های مختلف وابسته بوده و منجر به تلفات تبدیل شده است. این ممکن است به زودی تغییر کند، زیرا شیمیدانان در دانشگاه فریدریش-الکساندر-ارلانگن-نورنبرگ (FAU) و سایر مؤسسات تحقیقاتی در آلمان، استرالیا، بریتانیا، ایتالیا، سوئد و ایالات متحده در حال انجام تحقیق بر روی یک مولکول هیدروکربنی هستند که می تواند نور خورشید را به الکتریسیته تبدیل کند. و البته کمکی به ذخیره انرژی برای مدت طولانی به شکل شیمیایی باشد.
این می تواند راه را برای ماژول های خورشیدی آلی کاملاً جدید هموار کند. اصول تبدیل و ذخیره سازی با استفاده از این مولکول اکنون در مجله Nature Chemistry منتشر شده است.

امید است که انرژی خورشیدی محرک اصلی تحول انرژی باشد. با این حال، از آنجایی که نور خورشید یک منبع انرژی بسیار فرار است، باید راه حلی برای ذخیره انرژی کارآمد پیدا کرد.

پروفسور دکتر جولین باخمن، رئیس شیمی مواد لایه نازک (CTFM) توضیح می‌دهد: «تاکنون، ما الکتریسیته را از ماژول‌های خورشیدی که بلافاصله مصرف نمی‌شوند به باتری منتقل کرده‌ایم، جایی که می‌توان از آن در صورت لزوم و در صورت نیاز استفاده کرد». با تغییر مکرر بین انرژی شیمیایی و الکتریکی، حداقل 30 درصد از انرژی تبدیل شده اولیه در طول این فرآیند ذخیره باتری از بین می رود.

photo 2024 04 20 14 22 07 1 - یک مولکول هیدروکربن به عنوان تامین کننده و محلول ذخیره انرژی برای انرژی خورشیدی

طیف جذب محاسبه شده ویگنر طیف جذب QC را با استفاده از 10000 شرایط اولیه که توسط گاوسی گسترش یافته بود (FWHM = 0.1 eV) نمونه برداری کرد. با استفاده از هندسه ها و انرژی ها در سطح تئوری RMS(9)-CASPT2(2،6)/6-31 G* + D محاسبه می شود. منبع: شیمی طبیعت (2024). DOI: 10.1038/s41557-023-01420-w

باخمن به همراه مایکل بوش، یک کاندیدای دکترا در Chair CTFM، امیدوار است که ویژگی جدیدی را از یک ماده شناخته شده ایجاد کند، که باعث شود نور خورشید به انرژی الکتریکی تبدیل شود یا انرژی را بسته به نیاز ذخیره کند. ماده مورد بحث نوربورنادین (norbornadiene) است، یک ایزومر هیدروکربنی متشکل از دو حلقه مولکولی است. اگر نوربورنادین در معرض نور ماوراء بنفش قرار گیرد، سازماندهی مجدد جزئی پیوندهای اتمی منجر به تبدیل آن به کوادری سیکلان (quadricyclane) با ساختار مشابه اما با فشار زیادتر می شود.

باخمن توضیح می دهد: «فرایند تبدیل قبلاً شناخته شده است، با این حال، تحقیقات تاکنون بر بازیابی انرژی ذخیره شده به شکل گرما متمرکز بوده است. “رویکرد جدید ما شامل کنترل فرآیند است تا انرژی ذخیره شده را حتی پس از گذشت ماه ها به عنوان برق نیز در دسترس قرار دهد.”

دانشمندان هنوز به طور کامل مکانیسم های فیزیکی-شیمیایی پشت انتقال بین ایزومرها را درک نکرده اند. محققانی از استرالیا، بریتانیا، ایتالیا، سوئد و ایالات متحده با همکاران FAU همکاری می‌کنند تا با استفاده از طیف‌سنجی فوتوالکترون به درک بهتری از این فرآیند دست یابند.

باخمن می‌گوید: «هرچه بیشتر در مورد دینامیک تبدیل عکس و الکتروشیمیایی بدانیم، بهتر می‌توانیم طراحی مولکول را مطابق با عملکردهای مورد نظر تغییر دهیم.»

هدف از تحقیقات آینده، برای مثال، نه تنها استفاده از تحریک فرابنفش، بلکه همچنین استفاده از طیف گسترده ای از نور خورشید برای تحریک الکترون است. باخمن توضیح می دهد: «پتانسیل زیادی وجود دارد. چگالی انرژی خالص سیستم نوربورنادین-کوادری سیکلان با باتری لیتیوم یون قابل مقایسه است.

اگر محققان موفق به کنترل قابل اعتماد تبدیل برگشت پذیر نوربورنادین-کوادری سیکلان شوند، این نه تنها منجر به یک ماژول خورشیدی کارآمد می شود که برای ذخیره برق نیز مناسب است. تولید مواد مبتنی بر هیدروکربن آلی نیز مقرون به صرفه خواهد بود، نیازی به فلزات کمیاب نخواهد داشت و در پایان چرخه عمر خود به راحتی می توان آنها را به روشی سازگار با محیط زیست بازیافت کرد.
نویسنده: دپارتمان خبری آرا نیرو
منبع:
Blandina Mangelkramer, Friedrich–Alexander University Erlangen–Nurnberg

شرکت Longi پنل خورشیدی ضد گرد و غبار را برای بخش C&I راه اندازی کرد

سازنده چینی خورشیدی Longi یک ماژول جدید “ضد گرد و غبار” را برای بازار تجاری و صنعتی (C&I) در استرالیا توسعه داده است. قاب به صورت هم سطح روی شیشه در ساید کوتاه قرار می گیرد و امکان می دهد که آب در لبه های فریم ماژول جمع نشود.

شرکت Longi ماژول جدید Hi-MO X6 Guardian C&I خود را در کنفرانس انرژی هوشمند سیدنی معرفی کرده است.

ماژول بازار استرالیا به آب اجازه می دهد تا آزادانه از سطح آن خارج شود، بنابراین بقایای گرد و غبار در اطراف لبه هایی که قاب به شیشه می رسد جمع نمی شود. با این حال، ماژول همچنان دارای قاب بندی سنتی در طرف های بلندتر خود است، بنابراین ماژول ها باید به جای افقی، بر روی یک محور عمودی نصب شوند.

photo 2024 03 12 18 56 03 - شرکت Longi پنل خورشیدی ضد گرد و غبار را برای بخش C&I راه اندازی کرد

Image: pv magazine

این ماژول از فناوری تماس برگشتی (BC) استفاده می‌کند که Longi محدوده استرالیایی خود را در سال 2023 به طور کامل به آن تغییر داد. فناوری BC مزایایی برای کارایی پنل خورشیدی دارد، زیرا تلفات سایه را کاهش می‌دهد.

حداکثر توان خروجی ماژول گاردین 590 وات است. این ماژول بزرگ است، ابعاد آن 2281 میلی‌متر در 1134 میلی‌متر است و وزن آن 27.2 کیلوگرم است.

این شرکت قصد دارد یک پنل خورشیدی برای نیروگاه‌ خورشیدی خانگی با همان مفهوم قاب خود تمیز شونده را در سه ماهه سوم یا چهارم سال جاری با ابعاد حدود 1722 میلی متر در 1134 میلی متر عرضه کند.

از نظر هزینه، شرکت اعلام کرد که Hi-MO X6 Guardian حدود 0.30 دلار استرالیا (0.20 دلار) در هر وات عرضه می شود.

در اواخر این ماه، Longi همچنین یک ماژول جدید Ultra Black را با توان خروجی 440 وات به بازار نیروگاه خورشیدی خانگی استرالیا عرضه خواهد کرد. یکی از ویژگی پنل‌های Ultra Black این است که ضد اثر انگشت است و کار را برای نصب کنندگان آسان تر می کند.
شرکت Longi تنها شرکت در بازار استرالیا نیست که ماژول ضد گرد و غبار بر اساس طراحی قاب پایین‌تر دارد. DAH Solar ماژول تمام صفحه خود را از اکتبر 2023 از طریق عمده‌فروش Austra Energy در کشور عرضه می‌کند. ماژول DAH Full Screen برای جلوگیری از تجمع گرد و غبار و آب، تمام لبه های قاب خود را پایین آورده است.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله PV

شرکت ال جی راه حل جدید ذخیره سازی مسکونی را ارائه داد .

 

به گزارش آرا نیرو، ال‌جی دو نسخه از سیستم ذخیره‌سازی enblock E جدید خود را توسعه داده است که هر کدام دارای ظرفیت‌های انرژی قابل استفاده 12.4 کیلووات ساعت و 15.5 کیلووات ساعت هستند. این دو مدل با ابعاد 451 در 330 میلی‌متر می‌توانند به راحتی در فضاهای کوچک مستقر شوند.

شرکت LG کره جنوبی از سیستم ذخیره سازی جدیدی برای کاربردهای مسکونی رونمایی کرده است. سیستم enblock E در دو نسخه با ظرفیت های انرژی قابل استفاده 12.4 کیلووات ساعت و 15.5 کیلووات موجود است.

این شرکت در بیانیه‌ای اعلام کرد: کابینت ذخیره‌سازی به هیچ وجه در هنگام نصب فضای زیادی اشغال نمی‌کند و تنها با چند میلی‌متر در هر طرف، محدود می‌شود. به لطف کلاس حفاظتی IP55،می‌توان Enblock E را بدون هیچ مشکلی در زیرزمین و همچنین در گاراژ نصب کرد.

این سیستم دارای سلول‌های باتری لیتیوم آهن فسفات (LFP) است که توسط واحد راه‌حل انرژی LG این گروه تولید می‌شود. همچنین با اینورترهایی مانندFronius Kstar، GoodWe و SMA سازگار است.

مدل کوچکتر دارای ظرفیت انرژی قابل استفاده 12.4 کیلووات ساعت و ظرفیت باتری 56.6 Ah است. محدوده ولتاژ بین 180.0 ولت و 262.8 ولت است، در حالی که ولتاژ اسمی 231.8 ولت است.

حداکثر جریان شارژ-دشارژ سیستم 36.5A و حداکثر توان شارژ-دشارژ 6.2 کیلو وات است. راندمان رفت و برگشت بسته باتری بیش از 95٪ است.

محصول بزرگتر ظرفیت انرژی قابل استفاده 15.5 کیلووات ساعت و ظرفیت باتری مشابه محصول کوچکتر را ارائه می دهد. محدوده ولتاژ بین 225.0 ولت و 328.5 ولت است، در حالی که ولتاژ اسمی 289.8 ولت است.

حداکثر جریان شارژ-دشارژ سیستم 36.5 آمپر و حداکثر توان شارژ-دشارژ 7.7 کیلو وات است. راندمان رفت و برگشت بسته باتری بیش از 96٪ است.

به گفته سازنده، ابعاد دو مدل مختلف 451 میلی‌متر در 330 میلی‌متر است که امکان استقرار آسان در “کنج ترین” گوشه‌ها را فراهم می‌کند.

ال‌جی گفت: «صاحبان سیستم نیروگاه خورشیدی فتوولتائیک PV می‌توانند Enblock E را در سمت DC با یک سیستم خورشیدی جدید ادغام کنند یا یک سیستم خورشیدی موجود در سمت AC را بازسازی کنند. “اگر ظرفیت ذخیره سازی اولیه نصب شده کافی نیست، Enblock E اجازه می دهد تا یک ماژول ذخیره سازی اضافی تا دو سال پس از راه اندازی مجدداً نصب شود.”

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله PV

انرژی خورشیدی سودمند، زغال سنگ را به عنوان ارزانترین منبع انرژی در آسیا از سلطنت خلع میکند

بر اساس یک مطالعه جدید، هزینه انرژی های تجدیدپذیر در آسیا در سال گذشته 13 درصد ارزان تر از زغال سنگ بوده و انتظار می رود تا سال 2030، 32 درصد ارزان تر باشد.

بر اساس آخرین تحلیل وود مکنزی از هزینه یکسان شده برق (LCOE) برای منطقه آسیا و اقیانوسیه (APAC)، LCOE از انرژی های تجدیدپذیر در سال 2023 به پایین ترین سطح تاریخی خود رسید. این مهم است زیرا نشان دهنده تغییر به سمت رقابتی شدن انرژی های تجدیدپذیر با زغال سنگ است و یک پایه اصلی در ترکیب انرژی APAC است. نیروی محرکه این روند کاهشی سرمایه‌گذاری های قابل توجه برای پروژه‌های انرژی تجدیدپذیر است.

چین با کاهش 40 تا 70 درصدی هزینه در انرژی خورشیدی، باد خشکی و باد فراساحلی در مقایسه با سایر بازارهای آسیا و اقیانوسیه پیشتاز است. انتظار می رود چین تا سال 2050 به میزان 50 درصد مزیت هزینه را در زمینه انرژی های تجدیدپذیر حفظ کند.

نیروگاه خورشیدی ارزان ترین انرژی در دسترس، همچنان در حال سقوط است.

کاهش قابل توجه هزینه های نیروگاه خورشیدی به میزان 23 درصد در سال 2023، نشان دهنده پایان اختلالات زنجیره تامین و فشارهای تورمی است. در نتیجه، نیروگاه خورشیدی کاربردی اکنون ارزان ترین منبع انرژی در 11 کشور از 15 کشور APAC است. انتظار می‌رود که هزینه‌های پروژه‌های نیروگاه خورشیدی جدید تا سال 2030 به دلیل کاهش قیمت ماژول‌ها و عرضه بیش از حد از چین، 20 درصد دیگر کاهش یابد.

این کاهش هزینه‌های نیروگاه خورشیدی، به‌ویژه در سال‌های 2023-2024، بر زغال‌سنگ و گاز فشار وارد می‌کند و کاهش 23 درصدی LCOE برای PV برق در سراسر آسیا و اقیانوسیه را نشان می‌دهد که ناشی از کاهش 29 درصدی هزینه‌های سرمایه گذاری دارد.

انرژی خورشیدی پراکنده، مانند نیروگاه خورشیدی روی پشت بام مسکونی، کاهش 26 درصدی را در سال 2023 داشته است. این امر باعث می شود که انرژی خورشیدی توزیع شده 12 درصد ارزان تر از قیمت برق مسکونی باشد و پتانسیل قابل توجهی را برای نیروگاه خورشیدی روی پشت بام باز کند.

نیروگاه خورشیدی توزیع شده به طور فزاینده ای برای مشتریان در بسیاری از بازارهای آسیا و اقیانوسیه جذاب شده است، با هزینه هایی که اکنون 30 درصد کمتر از افزایش تعرفه های مسکونی در کشورهایی مانند چین و استرالیا است. با این حال، بازارهایی با تعرفه‌های برق مسکونی یارانه‌ای، مانند هند، ممکن است تا سال 2030 یا بعد از آن منتظر بمانند تا قیمت‌های رقابتی برای انرژی خورشیدی توزیع‌شده را ببینند.

photo 2024 03 02 11 39 15 - انرژی خورشیدی سودمند، زغال سنگ را به عنوان ارزانترین منبع انرژی در آسیا از سلطنت خلع میکند

Source: Wood Mackenzie Asia Pacific Power & Renewable Services

انرژی بادی، خیلی عقب نیست
در حالی که انرژی خورشیدی از نظر سرمایه‌گذاری مقرون به صرفه در حال پیشروی است، نیروگاه بادی در خشکی با وجود 38٪ بیشتر از هزینه های نیروگاه خورشیدی در سال 2023 از چرخه سرمایه گذاری ارزان در حوزه انرژی زیاد عقب نیست. آسیا از واردات کم هزینه تجهیزات برق بادی سود خواهد برد، با این حال، تاثیر کمتری بر بازارهایی با جذب محدود توربین‌های چینی مانند ژاپن و کره جنوبی که بیشتر بر زنجیره های تامین داخلی تمرکز دارند، خواهد گذاشت.

موسسه WoodMac همچنین بر رقابت رو به رشد نیروگاه بادی offshore ( نیروگاه بادی فراساحلی یا دریایی) با سوخت های فسیلی در APAC تاکید می‌کند. با کاهش 11 درصدی هزینه در سال 2023، هزینه های نیروگاه بادی دریایی اکنون با زغال سنگ در امتداد سواحل چین قابل رقابت است و انتظار می رود تا سال های 2027 و 2028 به ترتیب در ژاپن و منطقه تایوان گاز کمتری مصرف شود. کاهش هزینه های سرمایه‌گذاری و پیشرفت های فناوری، بازارهای جدیدی را برای نیروگاه باد فراساحلی در هند، آسیای جنوب شرقی و استرالیا طی پنج تا 10 سال آینده باز می کند.

برخلاف کاهش هزینه های انرژی های تجدیدپذیر، هزینه های تولید زغال سنگ و گاز از سال 2020 تا 12 درصد افزایش یافته است و پیش بینی می شود تا سال 2050 افزایش بیشتری یابد، که عمدتاً به دلیل مکانیسم های قیمت گذاری کربن خواهد بود.

در حالی که بازارهای توسعه یافته APAC افزایش قابل توجهی در قیمت کربن را پیش بینی می کنند و تا سال 2030 به 20 تا 55 دلار آمریکا در هر تن می‌رسد، انتظار می رود آسیای جنوب شرقی و هند شاهد کاهش قیمت کربن باشند.

این روند نشان می‌دهد که انرژی گاز، با هزینه‌هایی که به طور متوسط ​​تا سال 2050 بالای 100 دلار آمریکا در هر مگاوات ساعت باقی می‌ماند، به تدریج رقابت خود را با نیروگاه بادی فراساحلی در دهه آینده از دست خواهد داد.

الکس ویتورث، معاون رئیس جمهور، رئیس تحقیقات انرژی آسیا و اقیانوسیه در وود مکنزی، نتیجه گرفت:

هزینه های نیروگاه خورشیدی در سال 2023 در منطقه آسیا و اقیانوسیه به پایین ترین حد تاریخی رسیده است و نگرانی ها از تورم هزینه دائمی را معکوس می‌کند. اما در حالی که هزینه‌های پایین از رونق مداوم سرمایه‌گذاری‌های انرژی‌های تجدیدپذیر حمایت می‌کند، نگرانی‌هایی در میان سرمایه‌گذاران در مورد سودآوری، یکپارچه‌سازی شبکه، پشتیبان‌گیری و ذخیره انرژی با وجود نیروگاه خورشیدی وجود دارد.
سیاست‌های دولت ها نقش مهمی در آینده برای حمایت از ارتقای قابلیت اطمینان شبکه، ظرفیت انتقال و ارتقای ذخیره‌سازی باتری برای مدیریت ماهیت متناوب انرژی‌های تجدیدپذیر ایفا خواهند کرد.

اروپا بیش از هر زمان دیگری پنل های خورشیدی نصب می کند، به لطف سیل پنل های خورشیدی ارزان چینی که باعث افزایش 40 درصدی نصب در سال گذشته شد. اما این امر هزینه گزافی برای تولیدکنندگان داخلی دارد: تولیدکنندگان محلی تجهیزات نیروگاه خورشیدی در آستانه یک فروپاشی کامل هستند که ممکن است ظرف چند هفته اتفاق بیفتد.

photo 2024 03 02 11 39 21 - انرژی خورشیدی سودمند، زغال سنگ را به عنوان ارزانترین منبع انرژی در آسیا از سلطنت خلع میکند

Photo by Pixabay on Pexels.com

به گزارش رویترز، طبق داده های آژانس بین المللی انرژی، اتحادیه اروپا در حال بررسی اقداماتی است که باید بردارد، زیرا حدود 95 درصد از پنل های خورشیدی و قطعات مورد استفاده در اتحادیه اروپا از چین می آیند.

تولیدکنندگان پنل های خورشیدی محلی اروپایی به بحرانی رسیده اند که می گویند نمی توانند با واردات ارزان و عرضه بیش از حد رقابت کنند. بر اساس گزارش قبلی رویترز در سال گذشته، مشاغل در حال تعطیل شدن هستند، در حالی که “انبوهی” از پنل های چینی در انبارها در سراسر اروپا نشسته اند. این بخش هشدار داده است که نیمی از ظرفیت تولید محلی ممکن است ظرف چند هفته آینده بسته شود، مگر اینکه دولت اقدامی رادیکال انجام دهد – و این به معنای اعمال تعرفه است.

اما همه از این موضوع خوشحال نیستند. رابرت هابک، وزیر اقتصاد آلمان به اتحادیه اروپا نوشت که تعرفه‌های وارداتی از چین می‌تواند به گسترش چشمگیر انرژی سبز اروپا پایان دهد و 90 درصد بازار نیروگاه خورشیدی فتوولتائیک PV را گران‌تر کند.

همه اینها برای فرانسه که امید زیادی به صنعتی شدن مجدد انرژی سبز اروپا دارد، قرص تلخی بود. پشتیبانی خورشیدی آلمان به دلیل بحران بودجه در خطر بوده است، در حالی که اسپانیا تعرفه واردات پنل های خورشیدی را رد نکرده است. یک مقام دولتی از هلند به رویترز گفت که این کشور “می خواهد واردات فتوولتائیک خورشیدی را با مالیات بر مرز کربن اتحادیه اروپا پوشش دهد.”

به نوبه خود، ایتالیا به تازگی از سرمایه گذاری 90 میلیون یورویی در یک کارخانه تولید پنل های خورشیدی در سیسیل خبر داد.
اقدامات اتحادیه اروپا که روی میز است شامل قانونی برای پیگیری سریع مجوزها برای تولیدکنندگان محلی و دادن مزیت به محصولات اتحادیه اروپا در “مناقصه های فناوری پاک آینده” است.

محدودیت‌های تجاری اهمیت چندانی ندارند – به ویژه از این نظر که اتحادیه اروپا بیش از 320 گیگاوات ظرفیت نیروگاه خورشیدی فتوولتائیک PV تازه نصب شده تا سال 2025 و 600 گیگاوات تا سال 2030 را هدف قرار داده است – و احتمالاً برای تحقق این امر به  صنعت فتوولتائیک PV چین نیاز دارد.

در ماه سپتامبر، اتحادیه اروپا تحقیقاتی را در مورد صنعت خودروهای برقی چین آغاز کرد، زیرا شرکت‌های اروپایی برای رقابت با واردات خودروهای برقی ارزان و پیشرفته چینی که توسط نیروی کار کم‌هزینه وارد اتحادیه اروپا می‌شوند، تلاش می‌کنند. اتحادیه اروپا در حال بررسی یارانه‌های ناعادلانه و کمپین‌های وام‌دهی بانکی از سوی پکن است که به رشد بیش از حد در چین دامن زد، با ترس از اینکه چین در حال ساخت کارخانه‌های خودرو الکتریکی بسیار فراتر از سطح مورد نیاز برای تقاضای داخلی است. در همین حال، ایالات متحده و اروپا قوانین خود را برای فروش خودروهای چینی و قطعات خودروهای برقی در کشورهایشان تشدید می‌کنند و تعرفه‌های گمرکی در ایالات متحده آنقدر بالاست که چین تمرکز خود را بر سایر حوزه‌ها، یعنی آمریکای جنوبی، آسیا و اروپا معطوف کرده است.

در همین حال، برخی از سازندگان پنل های اروپایی می‌گویند که چین نیز همین کار را با پنل های خورشیدی انجام داده است. گونتر ارفورت، مدیرعامل شرکت سوئیسی مایر برگر، سازنده PV، به رویترز گفت: «صنعت خورشیدی در چین سال‌ها با صدها میلیارد دلار، یارانه راهبردی دریافت می‌کند.
اروپا، در حال حاضر، نمی تواند رقابت کند – و حداقل نیاز به خرید زمان بیشتری برای رسیدن به اهداف حمایتی از صنعت فتوولتائیک داخلی است.

نویسنده: دپارتمان خبری آرا نیرو

منبع: electrek.co



نقش فیوزها در نیروگاه خورشیدی فتوولتائیک
فیوزها در نیروگاه‌های خورشیدی فتوولتائیک (PV) نقشی حیاتی برای حفاظت از تجهیزات و ایمنی افراد ایفا می‌کنند. وظایف اصلی فیوزها در این سامانه‌ها عبارتند از:

1. حفاظت از پنل‌های خورشیدی:
در صورت اتصال کوتاه یا اضافه بار در پنل‌های خورشیدی، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن پنل‌ها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد پنل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

2. حفاظت از کابل‌ها:
در صورت اتصال کوتاه یا اضافه بار در کابل‌های رابط بین پنل‌ها و سایر تجهیزات، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن کابل‌ها جلوگیری شود.
فیوزها با قطع جریان، از ذوب شدن کابل‌ها و بروز آتش‌سوزی جلوگیری می‌کنند.

3. حفاظت از اینورترها:
در صورت اتصال کوتاه یا اضافه بار در اینورترها، فیوزها جریان را قطع می‌کنند تا از آسیب دیدن اینورترها جلوگیری شود.
فیوزها با قطع جریان، از داغ شدن بیش از حد اینورترها و بروز آتش‌سوزی جلوگیری می‌کنند.

4. حفاظت از جان افراد:
در صورت بروز نقص الکتریکی در سامانه PV، فیوزها جریان را قطع می‌کنند تا از برق گرفتگی افراد جلوگیری شود.

انواع فیوزهای مورد استفاده در نیروگاه‌های خورشیدی:
فیوزهای DC: این نوع فیوزها برای حفاظت از مدارهای DC در سامانه‌های PV استفاده می‌شوند.
فیوزهای AC: این نوع فیوزها برای حفاظت از مدارهای AC در سامانه‌های PV استفاده می‌شوند.
نکات مهم در انتخاب فیوز برای نیروگاه‌های خورشیدی:
جریان نامی: فیوز باید با توجه به جریان نامی مدار انتخاب شود.
ولتاژ نامی: فیوز باید با توجه به ولتاژ نامی مدار انتخاب شود.
ظرفیت قطع: فیوز باید با توجه به ظرفیت قطع مورد نیاز سامانه PV انتخاب شود.

نتیجه:
فیوزها جزئی ضروری از سامانه‌های PV هستند و نقش مهمی در حفاظت از تجهیزات و افراد ایفا می‌کنند. انتخاب و نصب صحیح فیوزها می‌تواند از بروز مشکلات و خطرات احتمالی جلوگیری کند.
کمیسیون بین‌المللی الکتروتکنیک (IEC) نیز الزامات و روش‌های تست فیوزهای مخصوص نیروگاه‌های خورشیدی را به تفصیل ارائه داده که خلاصه آن را به شرح زیر ارائه می‌دهیم.
استاندارد IEC 60269: فیوزها – فیوزهای مخصوص سامانه‌های فتوولتائیک
این بخش از IEC 60269 الزامات و روش‌های تست فیوزهای مخصوص سامانه‌های فتوولتائیک (PV) را ارائه می‌دهد. هدف از این استاندارد، تضمین عملکرد ایمن و قابل اعتماد فیوزها در سامانه‌های PV است.

دامنه کاربرد
این استاندارد برای فیوزهای مورد استفاده در سامانه‌های PV با ولتاژ نامی DC تا 1500 ولت و جریان نامی تا 1250 آمپر قابل استفاده است. این استاندارد شامل فیوزهای مورد استفاده در هر دو نوع سامانه PV متصل به شبکه و مستقل از شبکه است.

تعاریف
در این استاندارد، اصطلاحات زیر به کار رفته است:
سامانه فتوولتائیک: سامانه‌ای که از سلول‌های فتوولتائیک برای تبدیل انرژی تابشی خورشید به انرژی الکتریکی استفاده می‌کند.
سامانه فتوولتائیک متصل به شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل است.
سامانه فتوولتائیک مستقل از شبکه: سامانه فتوولتائیکی که به شبکه برق عمومی متصل نیست.
فیوز: وسیله‌ای که برای قطع جریان الکتریکی در صورت عبور جریان بیش از حد از آن طراحی شده است.

الزامات
فیوزهای مورد استفاده در سامانه‌های PV باید الزامات زیر را برآورده کنند:
ظرفیت قطع: فیوز باید قادر به قطع جریان اتصال کوتاه در سامانه PV باشد.
توانایی قطع جریان معکوس: فیوز باید قادر به قطع جریان معکوس در سامانه PV باشد.
ویژگی‌های ولتاژ-جریان: فیوز باید دارای مشخصات ولتاژ-جریان مناسب برای استفاده در سامانه PV باشد.
عایق بندی: فیوز باید دارای عایق بندی مناسب برای استفاده در سامانه PV باشد.
مقاومت در برابر محیط: فیوز باید در برابر شرایط محیطی مختلف مقاوم باشد.
روش‌های تست
این استاندارد روش‌های تستی را برای ارزیابی انطباق فیوزها با الزامات ذکر شده در بالا ارائه می‌دهد.

پیوست‌ها
این استاندارد شامل پیوست‌های زیر است:
پیوست A: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV متصل به شبکه
پیوست B: الزامات اضافی برای فیوزهای مورد استفاده در سامانه‌های PV مستقل از شبکه
پیوست C: روش‌های تست برای ارزیابی توانایی قطع جریان معکوس
پیوست D: روش‌های تست برای ارزیابی ویژگی‌های ولتاژ-جریان

فهرست مراجع
• IEC 60269-1:2000, Low-voltage fuses – Part 1: General requirements
• IEC 60269-2:2007, Low-voltage fuses – Part 2: Supplementary requirements for a.c. fuse-links for rated voltages up to 1 000 V
• IEC 60947-1:2007, Low-voltage switchgear and controlgear – Part 1: General rules
تاریخ انتشار
2015
نسخه
1.0
نویسنده: دپارتمان خبری آرا نیرو
منبع:
کمیسیون بین‌المللی الکتروتکنیک (IEC)

آگریوولتائیک بایفشیال برای باغ های زیتون

به گزارش آرا نیرو، یک تیم تحقیقاتی اسپانیایی-ایتالیایی پیکربندی‌های مختلف سیستم را برای آرایه‌های خورشیدی آگریولتائیک دو وجهی (Bifacial)مستقر در باغ‌های زیتون بررسی کرده‌اند و دریافته‌اند که زاویه شیب ماژول‌های خورشیدی تاثیر قابل‌توجهی بر بازده انرژی دارد در حالی که ارتفاع آن‌هانقش مهمی در افزایش عملکرد کشاورزی دارد.

 

گروهی از دانشمندان دانشگاه Jaén اسپانیا و دانشگاه Sapienza ایتالیا در رم بررسی کرده‌اند که چگونه سیستم‌های agrivoltaic دو وجهی را می‌توان بارشد زیتون ترکیب کرد تا هم قدرت و هم عملکرد کشاورزی را بهبود بخشد. محققان می‌گویند: «با در نظر گرفتن سه نوع متمایز زیتون (Picual، Manzanillaو Chemlali) و کاوش در پیکربندی‌های مختلف سیستم‌های خورشیدی فتوولتائیک(PV) دو وجهی، هدف این تحقیق بهینه‌سازی بازده کلی تولید انرژی وتولید زیتون است.

 

المهدی محب، نویسنده مسئول، به مجله pv گفت: «برخلاف انتظارات مرسوم، شیب عمودی ماژول‌های خورشیدی فتوولتائیک (PV) برای به حداکثر رساندن عملکرد درختان زیتون بهینه است. “این یافته غیرمنتظره بر تعامل ظریف بین جهت گیری ماژول PV و بهره وری کشاورزی درختان زیتون در سیستمهای agrivoltaic تاکید می کند.”

 

گروه تحقیقاتی پیکربندی های مختلف سیستم را بسته به زاویه شیب و ارتفاع پنل های خورشیدی آزمایش کردند.  سناریوها در یک شبیه‌سازی نرم‌افزاری تجزیه و تحلیل شدند و با استفاده از رویکرد raytracing مدل‌سازی شدند که نحوه تعامل نور با اجسام را توضیح می‌دهد.

photo 2024 02 21 10 33 12 - آگریوولتائیک بایفشیال برای باغ های زیتون

Source: https://www.sciencedirect.com/science/article/pii/S0306261924000436#f0010
شکل 1. شماتیک مدل سیستم agrivoltaic با ماژول های PV دو وجهی. این صحنه شامل زمینی از درختان زیتون به همراه ماژول های PV است. سپس یک اسکن از صحنه انجام می شود تا میزان تابش خورشیدی گرفته شده توسط هر دو طرف جلو و عقب ماژول های PV دو وجهی و همچنین تابش گرفته شده توسط درختان زیتون محاسبه شود.

 

برای شبیه‌سازی‌ها، دانشگاهیان یک سیستم agrivoltaic دو وجهی (Bifacial) را فرض کردند که در شهر Jaén در جنوب اسپانیا، با مقادیر تابش و دماییک سال معمولی هواشناسی کار می‌کند. مزرعه شبیه سازی شده دارای مساحت 860 متر مربع بود که مطابق با شکل مستطیلی به طول 41.42 متر وعرض 20.76 متر بود. هشت ردیف درخت زیتون و هفت ردیف PV را در یک رویکرد کشت فوق فشرده در خود جای داد.

 

آنها توضیح دادند: “در این نوع پرورش زیتون، درختان معمولاً در یک طرح مستطیلی با الگوی کاشت 4-5 متر × 2-3 متر قرار می گیرند، بنابراین فضای کافی

بین ردیف ها برای قرار دادن ماژول های PV فراهم می‌شود.” مزارع فوق فشرده نیاز به خاک های با شیب متوسط ​​دارند که نصب سازه های PV را تسهیل می‌کند.

photo 2024 02 21 10 33 19 - آگریوولتائیک بایفشیال برای باغ های زیتون

نسبت های معادل زمین، عملکرد زیتون، و عملکرد فتوولتائیک PV با درخت زیتون Picual
Image: University of Jaén, Applied Energy

در شبیه سازی آنها، تنه درختان دارای شعاع 0.25 متر و ارتفاع 1 متر است، در حالی که تاج درخت دارای شعاع 1 متر و ارتفاع 1.5 متر است. ارتفاع کل2.5 متر در نظر گرفته شده است که نشان دهنده ارتفاع متوسط ​​درختان زیتون در این رویکرد کشت است. مدل های دو وجهی به اندازه 1.755 متر در1.038 متر در نظر گرفته شد و برای اطمینان از حرکت ماشین‌های برداشت بر روی هاب ها با حداقل ارتفاع 3 متر قرار گرفتند.

 

دانشمندان افزودند: “میزان تابش خورشیدی که به سمت عقب ماژول PV دو وجهی می رسد مستقیماً به ضرایب آلبدوی درختان و زمین مرتبط است.” دراین مطالعه، پهنای باند آلبدوی مورد استفاده برای درختان 0.309 است. همچنین از خاک سبک به عنوان آلبدوی زمینی با آلبدوی پهن باند 0.25 استفاده شد.

 

دما روی 21 درجه سانتیگراد و رطوبت 40 درصد تنظیم شد، با فرض شبیه سازی 16 ساعت نور در روز. برای محاسبه عملکرد درختان زیتون، واکنش جذب کربن ناخالص به نور جذب شده ارزیابی شد. این نشان دهنده کارایی کوانتومی فتوسنتز در درختان زیتون است که نشان می دهد چقدر انرژی نور را به انرژی شیمیایی تبدیل می کنند.

photo 2024 02 21 10 32 43 - آگریوولتائیک بایفشیال برای باغ های زیتون

Source: https://www.sciencedirect.com/science/article/pii/S0306261924000436#f0010
شکل 2. مدلسازی یک سیستم Agrivoltaic با درختان زیتون با استفاده از ابزار Raytracing تشعشع دو وجهی. صحنه ایجاد شده برای به دست آوردن تشعشعات فرود در نقاط مختلف.

هر تنظیم با زوایای شیب 0، 20، 40، 60، 80، و 90 درجه و ارتفاع هاب 3 متر، 3.5 متر، 4 متر و 4.5 متر اندازه گیری شد. سه رقم زیتون به دلیل پاسخنوری متفاوت آنها انتخاب شدند، زیرا در مناطق مختلف جغرافیایی غالب هستند. زیتون‌های رنگارنگ عمدتاً در Jaén یافت می‌شوند، زیتون‌های Manzanillaبومی سویل اسپانیا هستند، و زیتون Chemlali را می‌توان در کشورهای مختلف مدیترانه، به‌ویژه تونس یافت.

محققان اظهار داشتند: “به طور کلی، نتایج نشان می‌دهد که تغییر در زاویه شیب تاثیر بیشتری بر عملکرد PV دارد، در حالی که تغییر در ارتفاع ماژول PVدر درجه اول بر عملکرد درختان زیتون تاثیر می‌گذارد.” یافته‌ها نشان می‌دهد که ماژول‌های PV که در نزدیکی عرض جغرافیایی سایت قرار دارند، بالاترین بازده انرژی را دارند، در حالی که ماژول‌های عمودی به بیشترین بازده زیتون منجر می‌شوند.

 

نسبت معادل اوج زمین (LER)، که بهره‌وری زمین حاصل از ترکیب انرژی و محصول را کمیت می‌کند، 171 درصد از آنچه که هر سیستم به صورت جداگانه تولید می‌کند، در صورت اجرای جداگانه در همان منطقه بود. در زاویه شیب 20 درجه و 3 متر به دست آمد. کمترین LER در 90 درجه، در ارتفاع 4 متر به دست آمد.

 

محققان نتیجه گرفتند: «ارزیابی گونه‌های درخت زیتون وابستگی متوسطی به سایه‌اندازی نشان می‌دهد، و همه گونه‌ها را کاندید مناسبی برای کاربردهای agrivoltaic می‌کند».
یافته‌ها در مقاله «افزایش کاربری زمین: ادغام دو وجهی PV و درختان زیتون در سیستم‌های agrivoltaic» منتشر شده در Applied Energy معرفی شدند.

نویسنده: پایگاه خبری آرا نیرو
منبع:
https://www.sciencedirect.com/science/article/pii/S0306261924000436#f0010