نوشته‌ها

تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

    انتقال انرژی نیاز به زیرساخت مناسب دارد و احداث شبکه‌های انتقال برق و زیرساخت‌های توزیع برق برای انتقال انرژی تولید شده از نیروگاه‌ها به مناطق مصرف انرژی ضروری است. این زیرساخت‌ها باید به روز رسانی شده و به توسعه برسند تا تأمین انرژی پایدار و بهینه را تضمین کنند. زیرساخت‌های لازم برای انتقال انرژی از محل تولید به محل مصرف شامل خطوط و تجهیزات انتقال برق، زیرساخت‌های نگهداری، کنترل و اندازه‌گیری میشود.

   خطوط انتقال برق شامل سیم‌ها، پایه ها، و سازه‌های حمایتی هستند که انرژی تولیدی از نیروگاه‌ها را از منطقه تولید به منطقه مصرف منتقل می‌کنند. این زیرساخت از انتقال بهینه انرژی به نقاط مختلف و حفظ پایداری شبکه برق کمک می‌کند. احداث و نگهداری خطوط انتقال برق هزینه‌های گسترده‌ای دارد که به عوامل مختلفی بستگی دارد و شامل هزینه‌های مرتبط با طراحی، تهیه مواد، نصب تجهیزات، و ساختارهای حمایتی خطوط انتقال برق است و طول خط انتقال، نوع تجهیزات استفاده شده، و پیچیدگی شرایط محیطی ازعوامل تاثیرگذار روی این هزینه هاست.

   تجهیزات انتقال برق شامل ترانسفورماتورها، سوئیچ‌ها، و تجهیزات کنترلی است که در سیستم انتقال برق به کنترل جریان و ولتاژ و مدیریت شبکه کمک می‌کنند. در ادامه به شرح کاملی از این تجهیزات می پردازیم.

articleFiles 45934648 3jlav 1647155329 copy - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

ترانسفورماتورها:

   ترانسفورماتورها به عنوان یکی از اجزای اصلی سیستم‌های انتقال و توزیع برق، جهت تغییر ولتاژ بین خطوط انتقال برق به کار می‌روند. انواع مختلفی دارند، در زیر به برخی انواع ترانسفورماتورها و ویژگی‌های آنها اشاره می‌شود:

 

  1. ترانسفورماتورهای توزیع:

ترانسفورماتورهای توزیع نقش مهمی در سیستم‌های انتقال و توزیع برق ایفا می‌کنند. این ترانسفورماتورها عمدتاً برای تنظیم ولتاژ برق از سطح انتقال به سطح توزیع به کار می‌روند. در زیر توضیحات بیشتری درباره ترانسفورماتورهای توزیع آورده شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای توزیع برای انتقال برق از سطح انتقال (که ولتاژ آن بالاتر است) به سطح توزیع (که ولتاژ آن پایین‌تر است) به کار می‌روند.

   – مهمترین وظیفه آنها تغییر ولتاژ برق به مقداری مناسب برای استفاده در صنعت، شهری، یا مناطق روستایی است.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای توزیع دارای دو سیم پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

مزایا:

   – تغییر ولتاژ به صورت ایمن و مؤثر.

   – عمر طولانی و نیاز به نگهداری کم.

   – افت ولتاژ و توان‌های فراوانی را به حداقل می‌رسانند.

 کاربردها:

   – در شبکه‌های توزیع برق شهری، صنعتی و روستایی مورد استفاده قرار می‌گیرند.

   – در ایستگاه‌های تقسیم بار برای تنظیم ولتاژ و توزیع به مصارف مختلف.

 

۳. انواع ترانسفورماتورهای توزیع:

   – ترانسفورماتورهای روغنی: از روغن به عنوان عایق استفاده می‌کنند و عمدتاً در محیط‌های صنعتی استفاده می‌شوند.

۱. مزایا:

   – عایق کاری خوب: روغن به عنوان یک عایق خوب در ترانسفورماتورهای روغنی عمل می‌کند.

   – خنک‌کنندگی: روغن به خوبی حرارت تولید شده در ترانسفورماتور را انتقال می‌دهد.

   – عملکرد پایدار در شرایط مختلف: توانایی کارکرد در شرایط محیطی مختلف از جمله دما و رطوبت را داراست.

۲. معایب:

   – احتمال نشت روغن: این ترانسفورماتورها با مشکل احتمال نشت روغن مواجه هستند.

   – اندازه و وزن بالا: نسبت به ترانسفورماتورهای خشک، این نوع ترانسفورماتورها اندازه و وزن بیشتری دارند.

   – نیاز به فضای اضافی برای جلوگیری از خطرات احتمالی نشت روغن.

 

   – ترانسفورماتورهای خشک: بدون استفاده از روغن یا گاز به عنوان عایق عمل می‌کنند و اغلب در مکان‌هایی که استفاده از روغن ممنوع یا مشکل است، مورد استفاده قرار می‌گیرند.

مقایسه ترانسفورماتورهای روغنی و خشک از نظر مزایا و معایب نشان می‌دهد که هر یک از این انواع ترانسفورماتور دارای ویژگی‌ها و کاربردهای خاصی هستند. در زیر به مقایسه دقیق این دو نوع ترانسفورماتور پرداخته شده است:

۱. مزایا:

   – بدون روغن: از عایق‌های خشک برای جلوگیری از نیاز به روغن استفاده می‌کنند.

   – نگهداری آسان: به دلیل عدم وجود روغن، نگهداری و تعمیرات آسان‌تر و اقتصادی‌تر هستند.

   – احتمال کمتر نشت: به دلیل عدم وجود روغن، خطر نشت کمتر است.

 

۲. معایب:

   – کمترین خنک‌کنندگی: نسبت به ترانسفورماتورهای روغنی، توانایی خنک‌کنندگی کمتری دارند.

   – مناسب برای کاربردهای محدودتر: بیشتر در محیط‌های خشک و با دماهای پایین مورد استفاده قرار می‌گیرند.

 

با توجه به نیازها و شرایط محیطی، انتخاب بین ترانسفورماتورهای روغنی و خشک بستگی به موارد خاص هر کاربرد دارد. همیشه تصمیم بهتر از طریق مشاوره با متخصصان ترانسفورماتور و شناخت دقیق از نیازهای سیستم خود به دست می‌آید.

 

   – ترانسفورماتورهای گازی: ترانسفورماتورهای گازی یا همان ترانسفورماتورهای گاز‌دار Gas-Insulated Transformers یا GIS) ) نوعی ترانسفورماتورهستند که مواد عایق میانه بین پیچ‌ها و هسته آن گاز است و به جای عایق‌های سنتی نفتی یا عایق‌های جامد مورد استفاده قرار می‌گیرد. معمولاً گاز مورد استفاده در این ترانسفورماتورها گاز سولفورهگزا فلوراید ( (SF6است که خواص عایقی عالی دارد.

مزایا:

   – طراحی فشرده: ترانسفورماتورهای گازی نسبت به ترانسفورماتورهای سنتی با عایق روغنی دارای طراحی فشرده‌تری هستند که برای نصب در مناطق شهری با فضای محدود مناسب هستند.

   – کاهش نیاز به نگهداری: طراحی محافظت شده باعث کاهش نیاز به نگهداری می‌شود.

   – مقاومت الکتریکی بالا: گاز SF6 مقاومت الکتریکی بالایی دارد که امکان انجام تنظیمات الکتریکی را فراهم می‌کند.

   – تقویت ایمنی: محفظه مهر و مومی به افزایش ایمنی کمک می‌کند با جلوگیری از فرار گاز و کاهش خطر آتش سوزی.

 کاربردها:

   – نصب‌های شهری: ترانسفورماتورهای گازی به عنوان یک انتخاب مناسب برای نصب در مناطق شهری با فضای محدود شناخته شده‌اند.

 

electrical substation - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

  1. ترانسفورماتورهای قدرت (انتقال):

ترانسفورماتورهای قدرت نقش حیاتی در سیستم‌های انتقال و توزیع برق دارند. این ترانسفورماتورها عمدتاً برای انتقال انرژی برق از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و نقش ترانسفورماتورهای قدرت پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای قدرت برای تغییر ولتاژ برق به منظور انتقال به فواصل بلند از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی استفاده می‌شوند.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای قدرت دارای دو یا چند پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

 

۳. انواع ترانسفورماتورهای قدرت:

   – ترانسفورماتورهای انتقال: جهت انتقال انرژی برق به فواصل بلند استفاده می‌شوند و ولتاژ آنها معمولاً بسیار بالاست.

   – ترانسفورماتورهای توزیع: برای انتقال انرژی به فواصل کمتر و در سطح شهری و صنعتی به کار می‌روند و ولتاژ آنها کمتر از ترانسفورماتورهای انتقال است.

 

۴. مزایا:

   – انتقال انرژی با افت ولتاژ کم.

   – افزایش یا کاهش ولتاژ به شکل مستمر و به صورت اتوماتیک.

   – عمر طولانی و نیاز به نگهداری کم.

 

۵. معایب:

   – اندازه و وزن بالا: برخی از ترانسفورماتورهای قدرت به دلیل توان بالا، اندازه و وزن بسیار بالایی دارند.

   – نیاز به مکان‌های ویژه برای نصب و نگهداری.

 

۶. کاربردها:

   – استفاده اصلی این ترانسفورماتورها در نقاط انتقال انرژی بین نیروگاه‌ها، ایستگاه‌های انتقال، و سیستم‌های توزیع برق است.

 

ترانسفورماتورهای قدرت با توجه به توان، نیازهای ولتاژی، و شرایط محیطی، به صورت اختصاصی برای هر نقطه انتقال و توزیع طراحی و استفاده می‌شوند. این ترانسفورماتورها جزء اجزای اساسی سیستم‌های انتقال و توزیع برق به شمار می‌آیند.

  

 

ترانسفورماتورهای یکپارچه (Compact):

ترانسفورماتورهای یکپارچه یا همان  Compact Transformersنوعی ترانسفورماتور هستند که به دلیل طراحی خاص و اندازه کوچک، معمولاً برای فضاها و نقاط محدود به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و کاربردهای ترانسفورماتورهای یکپارچه پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای یکپارچه با طراحی کوچک و یکپارچه خود به منظور استفاده در فضاهای محدود و نیازهای خاص ساخته شده‌اند.

 

۲. ساختار و عملکرد:

   – این ترانسفورماتورها به صورت یکپارچه و با اندازه کوچک‌تر و وزن سبک‌تر نسبت به ترانسفورماتورهای سنتی ساخته می‌شوند.

   – توان ولتاژی و جریانی که این ترانسفورماتورها توانسته‌اند پوشش دهند معمولاً کمتر از ترانسفورماتورهای بزرگ و سنتی است.

 

۳. مزایا:

   – اندازه کوچک و وزن سبک: این ترانسفورماتورها مناسب برای فضاهای محدود و نیازهای کاربردی خاص هستند.

   – نصب و استفاده آسان: به دلیل اندازه کوچک، نصب و نگهداری آنها نسبت به ترانسفورماتورهای بزرگتر ساده‌تر است.

   – قابلیت تنظیم ولتاژ: برخی از ترانسفورماتورهای یکپارچه دارای قابلیت تنظیم ولتاژ هستند.

 

۴. کاربردها:

   – در ایستگاه‌های تقسیم بار، که نیاز به ترانسفورماتورهای کوچک و مؤثر برای توزیع برق به مصارف مختلف دارند.

   – در صنایع خاص و اتوماسیون، جایی که فضا محدود و نیاز به تنظیم ولتاژ وجود دارد.

 

ترانسفورماتورهای یکپارچه به دلیل اندازه کوچک و وزن سبک، مختص فضاهای محدود و نیازهای خاصی هستند. این ترانسفورماتورها به عنوان یکی از اجزای مهم در سیستم‌های برق و اتوماسیون برای افزایش بهره‌وری و انجام وظایف خاص به کار می‌روند.

   هر نوع ترانسفورماتور بر اساس نیازها و محیط کاربردی خود مزایا و معایب خاصی دارد. انتخاب نوع مناسب ترانسفورماتور بر اساس شرایط خاص سیستم برق و نیازهای انتقال و توزیع انرژی اهمیت زیادی دارد.

 

 تجهیزات حفاظت:

تجهیزات حفاظت در خطوط انتقال برق برای محافظت از تجهیزات و انسان‌ها در مواجهه با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ، یا افزایش جریان و… استفاده می‌شوند. این تجهیزات با شناسایی خطاها و حوادث به سرعت و به صورت اتوماتیک عملکرد می‌کنند تا خسارت به تجهیزات و افراد را کاهش دهند. در زیر به شرح تجهیزات حفاظت خطوط انتقال برق پرداخته شده است:

 

۱. رله‌های حفاظت:

   – این رله‌ها به صورت اتوماتیک عملکرد دارند و به تشخیص خطاها مانند اتصال کوتاه، افت ولتاژ، جریان بیش از حد، و … می‌پردازند.

   – رله‌های حفاظت بر اساس استانداردهای تعیین شده برای حفاظت از تجهیزات و خطوط برق تنظیم می‌شوند.

 

۲. ترمینال‌ها و سوئیچ‌های حفاظتی:

   – ترمینال‌ها و سوئیچ‌های حفاظتی به صورت مکانیکی یا الکتریکی جهت قطع و وصل سریع خطوط برق در صورت حادثه به کار می‌روند.

 

۳. ترانسفورماتورهای حفاظتی:

   – این ترانسفورماتورها وظیفه تغییر ولتاژ جهت اندازه‌گیری جریان و ولتاژ در خطوط را دارند تا اطلاعات لازم برای تشخیص حوادث به رله‌های حفاظت منتقل شود.

 

۴. کمپانساتورهای دینامیک:

   – برای مدیریت ولتاژ در خطوط انتقال از کمپانساتورهای دینامیک استفاده می‌شود تا افت ولتاژ در سیستم‌ها جلوگیری شود.

 

۵. سیستم‌های مانیتورینگ:

   – سیستم‌های مانیتورینگ مدام وضعیت خطوط را نظارت کرده و در صورت وقوع حوادث، اطلاعات را به تجهیزات حفاظت اطلاع می‌دهند.

 

۶. سوئیچ‌های خودکار:

   – سوئیچ‌های خودکار برای اتصال و قطع خودکار خطوط در شرایط خاص و زمان‌های اضطراری به کار می‌روند.

 

۷. کنترل‌ها و تجهیزات اتوماسیون:

   – تجهیزات اتوماسیون و کنترل‌ها برای مدیریت اتوماتیک خطوط و ایستگاه‌های انتقال برق به کار می‌روند.

 

 این تجهیزات حفاظت، ایمنی سیستم‌های برق را حفظ کرده و در مواجهه با حوادث احتمالی سریعاً و به صورت اتوماتیک عمل میکنند تا خسارت‌ها را به حداقل برسانند.

Figure1 0 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

تجهیزات کنترل و کمکی:

تجهیزات کنترل و کمکی در خطوط انتقال برق برای مدیریت و کنترل بهینه‌تر جریان برق، تنظیم ولتاژ، و مدیریت عملیات انتقال انرژی بین ایستگاه‌ها به کار می‌روند. این تجهیزات نقش مهمی در بهره‌وری و پایداری سیستم‌های برق ایفا می‌کنند. در زیر به شرح تجهیزات کنترل و کمکی در خطوط انتقال برق پرداخته شده است:

 

۱. سیستم‌های کنترل:

   – سیستم‌های کنترل مسئول مدیریت عملیات کلان شبکه برق و تنظیم پارامترهای مختلف مانند ولتاژ، جریان، و توان هستند.

   – این سیستم‌ها از الگوریتم‌ها و منطق کنترلی برای اجرای تصمیمات بهینه بر اساس وضعیت شبکه استفاده می‌کنند.

 

۲. واحدهای کنترل کننده فرکانس (Governor):

   – این واحدها به تنظیم سرعت ژنراتورها و ایستگاه‌ها بر اساس نیازهای فرکانس شبکه برق می‌پردازند تا تطابق تولید و مصرف انرژی حفظ شود.

 

۳. کنترل‌های ولتاژ (Voltage Control):

   – این کنترل‌ها واحدهای تنظیم ولتاژ در نقاط مختلف شبکه برق هستند تا ولتاژ در سطوح مشخصی نگهداری شود.

 

۴. تجهیزات کمکی:

   – ترمینال‌ها و تجهیزات کمکی برای مدیریت انرژی و تجهیزات در ایستگاه‌های انتقال به کار می‌روند.

   – این تجهیزات شامل کمپانساتورها، ترانسفورماتورهای کمکی، باتری‌ها و سیستم‌های UPS می‌شوند.

 

۵. سیستم‌های ارتباطات:

   – سیستم‌های ارتباطات برای انتقال داده‌ها و اطلاعات بین ایستگاه‌ها، زیرسیستم‌های کنترل، و تجهیزات مختلف استفاده می‌شوند.

 

۶. مانیتورینگ و ابزار دقیق:

   – دستگاه‌های مانیتورینگ و ابزار دقیق برای نظارت بر وضعیت تجهیزات، اندازه‌گیری جریان، ولتاژ و سایر پارامترهای سیستم به کار می‌روند.

 

۷. تجهیزات حفاظت و کنترل:

   – تجهیزات حفاظت و کنترل برای تشخیص و مقابله با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ و … مورد استفاده قرار می‌گیرند.

 

تمام این تجهیزات کنترل و کمکی با همکاری و هماهنگی با سیستم‌های حفاظتی و مانیتورینگ، ایمنی و بهره‌وری شبکه برق را افزایش می‌دهند. این تجهیزات بر اساس تکنولوژی‌های پیشرفته جهت بهبود عملکرد و اطمینان‌پذیری سیستم‌های برق به‌کار می‌روند.

 

 

خطوط انتقال برق:

خطوط انتقال برق از جمله اجزای حیاتی در سیستم‌های برق هستند که برای انتقال انرژی برق از منبع تولید به مصارف نهایی مورد استفاده قرار می‌گیرند. این خطوط اغلب به صورت یک سیستم شبکه‌ای و پیچیده، بر روی ایستاه‌ها و ستون‌ها قرار گرفته و نقل قدرت برق را امکان‌پذیر می‌سازند. در زیر به شرح اجزای مهم خطوط انتقال برق پرداخته شده است:

 

۱.انواع خطوط انتقال:

   – خطوط انتقال مستقیم (Overhead Lines) :خطوطی که بر روی ستون‌ها یا برج‌ها نصب شده و به وسیله سیم‌های هوایی منتقل می‌شود.

   – خطوط زیرزمینی (Underground Cables): خطوطی که در زیر زمین قرار دارند و انرژی برق را به وسیله کابل‌های زیرزمینی انتقال می‌دهند.

 

  1. ویژگی‌های خطوط انتقال:

   – ولتاژ عملیاتی: خطوط انتقال برق معمولاً با ولتاژ‌های بسیار بالا عمل می‌کنند تا از افت انرژی در مسافت‌های طولانی جلوگیری شود.

   – ساختار و مواد: ساختار خطوط انتقال از جنس موادی مانند فولاد، آلومینیوم، و یا مخلوطی از این مواد استفاده می‌کند.

EMS starts work on EUR 8 15 million Bistrica substation e1529062487986 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

تأثیر نیروگاه‌های تجدیدپذیر برهزینه‌های تجهیزات و خطوط انتقال برق

نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، نیروگاه بادی و هیدروالکتریک به طور قابل توجهی بر ساختار و هزینه‌های تجهیزات و خطوط انتقال برق تأثیر می‌گذارند. این تأثیرات می‌توانند در چند زمینه مهم مشاهده شوند:

 

۱. تولید برق ناپایدار:

   – نیروگاه‌های تجدیدپذیر بر پایه باد، خورشید یا آب، تولید برق ناپایداری دارند که به دلیل شرایط آب و هوایی متغیر و تغییرات در سطح تابش خورشید یا سرعت باد اتفاق می‌افتد.

   – این ناپایداری توسط سیستم‌های انتقال برق باید مدیریت شود تا پایداری و امنیت شبکه برق حفظ شود. که در مقاله گذشته با عنوان ” یک روش طراحی موثر برای نیروگاه های فتوولتائیک خورشیدی  ” راه حل آن ارائه شده است. به منظور تعدیل نوسانات تولید نیروگاه‌های تجدیدپذیر، فناوری‌های ذخیره‌سازی انرژی نیز در شبکه برق معرفی می‌شوند. این ذخیره‌سازی ممکن است هزینه‌های اضافی برای نصب و نگهداری داشته باشد.

 

  1. بهبود زیرساخت‌ها:

   – با توسعه نیروگاه‌های تجدیدپذیر، نیاز به بهبود و توسعه زیرساخت‌های انتقال برق نیز احساس می‌شود. این شامل افزایش ظرفیت و بهبود کیفیت خطوط انتقال و تجهیزات مرتبط است.

 

  1. کاهش افت ولتاژ:

   – نیروگاه‌های تجدیدپذیر مانند نیروگاه‌های خورشیدی و بادی در نواحی دور از مراکز مصرف نصب می‌شوند. این نیروگاه‌ها می‌توانند افت ولتاژ را در نواحی دورتر از مراکز تولید انرژی کاهش دهند. کاهش افت ولتاژ ممکن است نیاز به احداث خطوط انتقال با قطر بزرگتر را کاهش داده و هزینه‌های احداث و نگهداری را در خطوط انتقال برق کاهش دهد.

 

  1. کاهش ازدحام:

کاهش ازدحام در سیستم انتقال برق به معنای کاهش ترافیک و فشار در شبکه انتقال برق است و می‌تواند به عنوان یک مزیت مهم در نتیجه استفاده از نیروگاه‌های تجدیدپذیرمثل نیروگاه‌ خورشیدی و بادی در سیستم انرژی مدنظر قرار گیرد. برخی از جنبه‌های کاهش ازدحام کاهش افت شبکه بین نقاط تولید و مصرف است. این اقدام ممکن است باعث کاهش طول خطوط انتقال و ازدحام مرتبط با آنها شود. نیروگاه‌های تجدیدپذیر معمولاً از منابع محلی انرژی مانند نور خورشید در نیروگاه خورشیدی یا باد در نیروگاه بادی بهره می‌برند. استفاده از این منابع محلی نیاز به انتقال انرژی از مناطق دورتر را کاهش میدهد که می‌تواند هزینه‌های انتقال و از دست دادن انرژی را به حداقل برساند.

همچنین، استفاده از تکنولوژی‌های هوشمند و سیستم‌های اتوماسیون در اداره شبکه انتقال برق می‌تواند به بهبود بهره‌وری و مدیریت ازدحام در شبکه برق کمک کند. این تدابیر می‌توانند در کاهش هزینه‌های انتقال انرژی و افزایش پایداری سیستم تأثیرگذار باشند.

تأثیرات دقیق بر هزینه‌های تجهیزات و خطوط انتقال برق با توجه به مکان، نوع نیروگاه تجدیدپذیر، و شرایط محیطی متفاوت خواهد بود. این تأثیرات باید به عنوان یکی از عوامل در برنامه‌ریزی و طراحی سیستم انتقال برق در نظر گرفته شوند.

بنابراین، تأثیر نیروگاه‌های تجدیدپذیر بر هزینه‌ها و ساختار تجهیزات و خطوط انتقال برق نیازمند مدیریت دقیق، فناوری‌های پیشرفته و توسعه زیرساخت‌های مناسب است.

 

نویسنده: مهدی پارساوند

استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی به تبادل و خرید و فروش انرژی بین کشورها یا انجمن‌های اقتصادی مختلف اشاره دارد. انرژی ممکن است از منابع مختلفی مانند نفت، گاز، زغال‌سنگ، انرژی هسته‌ای، انرژی خورشیدی و باد به دست آید. در تجارت انرژی، کشورها سعی می‌کنند نیازهای انرژی خود را برطرف کنند، همزمان با بهره‌مندی از منابع داخلی و یا از طریق واردات انرژی از منابع خارجی.

تجارت انرژی می‌تواند بر اساس قراردادهای ثابت (مثل قراردادهای بلندمدت) یا معاملات کوتاه‌مدت (مثل خرید و فروش روزانه) انجام شود. در بسیاری از موارد، قراردادهای تجارت انرژی به صورت طولانی‌مدت منعقد می‌شوند تا اطمینان از تأمین پایدار انرژی برای طرفین باشد.

کشورهای صادرکننده انرژی می‌توانند منابع طبیعی خود را به دیگر کشورها صادر کرده و درآمد حاصل از این تجارت را به دست آورند. در عین حال، کشورهای وابسته به واردات انرژی ممکن است به دنبال تنوع منابع و کاهش وابستگی به یک منبع خاص باشند.

تاثیرات سیاسی، اقتصادی، و محیطی تجارت انرژی بسیار گسترده است و می‌تواند به تعیین نقشه قدرت و روابط بین‌المللی نیز تأثیر بگذارد. همچنین، مسائلی مانند تغییرات اقلیمی، امنیت انرژی، و توسعه پایدار نیز به طور مستقیم در این زمینه تأثیرگذارند.

تجارت انرژی مبتنی بر نیروگاه‌های تجدیدپذیر به تبادل و خرید و فروش انرژی، که از منابع تجدیدپذیر مانند انرژی خورشیدی، باد، هیدروپاور، گرمای زمین، و سایر منابع پاک تولید می‌شود، اشاره دارد که از منابعی مانند نور خورشید ( نیروگاه خورشیدی فتوولتائیک ) ، باد ( نیروگاه بادی متشکل از توربین های مگاواتی )، آب‌های سطحی و زیرزمینی ( نیروگاه های برق آبی )، و سایر منابع تجدیدپذیر بهره می‌برد. این منابع به دلیل اینکه قابلیت تجدید خود را دارند، تامین انرژی پایدار و دوستدار محیط زیست را فراهم می‌کنند.

توسعه نیروگاه‌های تجدیدپذیر می‌تواند اشتغال، توسعه فناوری، و رشد اقتصادی را تحت تأثیر قرار دهد. همچنین، این تجارت می‌تواند به کاهش وابستگی به منابع انرژی سنتی و کاهش هزینه‌های انرژی کمک کند.

استفاده از نیروگاه‌های تجدیدپذیر به معنای کاهش انتشار گازهای گلخانه‌ای و دیگر آلودگی‌های زیست محیطی است. این تجارت می‌تواند به حفاظت از محیط زیست و کاهش تأثیرات منفی تغییرات اقلیمی کمک کند.

 

تجارت انرژی می‌تواند منافع اقتصادی زیادی برای کشورها فراهم کند. در زیر به برخی از این منافع اشاره شده است:

  1. افزایش درآمد ناخالص داخلی (GDI): صادرات انرژی، می‌تواند منبع اصلی درآمد برای کشورها باشد. درآمدهای حاصل از تجارت انرژی می‌تواند به افزایش GDI و توسعه اقتصادی کشورها کمک کند.

 

  1. ایجاد فرصت‌های اشتغال: صنایع انرژی، از جمله نیروگاه‌ها و زیرساخت‌های مرتبط، ایجاد فرصت‌های شغلی زیادی را برای جمعیت فراهم می‌کنند. این شغل‌ها اغلب در زمینه‌های مهندسی، تکنولوژی، حمل و نقل، و خدمات پشتیبانی فراهم می‌شوند.

 

  1. توسعه زیرساخت‌ها: برای تولید، انتقال، و صادرات انرژی، زیرساخت‌های حمل و نقل و انتقال انرژی نیاز است. سرمایه‌گذاری در این زیرساخت‌ها می‌تواند به توسعه زیرساخت‌های کلان و تقویت اقتصاد منطقه انرژی‌زا کمک کند.

 

  1. تحقق استقلال انرژی: بسیاری از کشورها سعی دارند با داشتن منابع انرژی داخلی قوی، استقلال بیشتری در تأمین نیازهای انرژی خود داشته باشند. این استقلال انرژی می‌تواند زیرساخت‌های اقتصادی و امنیت ملی را تقویت کند.

 

  1. تبادل تخصص و فناوری: تجارت انرژی ممکن است باعث تبادل تخصص و فناوری در زمینه‌های نوین انرژی شود. این تبادل می‌تواند به توسعه فناوری‌های پایدار و بهبود بهره‌وری در زمینه انرژی منجر شود.

 

  1. تأمین امنیت انرژی: کشورهای وابسته به واردات انرژی ممکن است از تجارت انرژی برای تأمین امنیت انرژی استفاده کنند. تنوع منابع انرژی و دسترسی به منابع انرژی پایدار از طریق تجارت می‌تواند به کاهش ریسک وابستگی به یک منبع خاص کمک کند.
    تصویر تابلو سبز بورس 1402 araniroo 1 آرانیرو copy - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی، اگر به درستی مدیریت شود، می‌تواند به توسعه اقتصادی، اشتغالزایی، و امنیت انرژی یک کشور کمک کند. همچنین، این تجارت می‌تواند بستری برای همکاری بین المللی و تبادل تجاری فراهم کند.

برای توسعه تجارت انرژی از منابع تجدیدپذیر، لازم است زیرساخت‌های مناسبی در نظر گرفته شوند از جمله احداث نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، بادی، هیدروپاور، و گاهی حتی نیروگاه‌های انرژی دریاها (مانند نیروگاه‌های موج و جاری). این نیروگاه‌ها به تولید برق از منابع تجدیدپذیر کمک می‌کنند. به منظور مدیریت موثر تولید انرژی از منابع تجدیدپذیر، زیرساخت‌های ذخیره‌سازی انرژی نیز حائز اهمیت هستند. این زیرساخت‌ها شامل سیستم‌های باتری، انرژی ذخیره‌شده در شکل گاز، یا حتی ساختارهای ذخیره‌سازی گرما می‌شوند و از تعادل سیستم انرژی استفاده می‌کنند و در مدیریت نیاز به انرژی در ساعات اوج و کم‌بار تاثیرگذار هستند.

انرژی، به عنوان رگ حیات صنایع، خانه‌ها و اقتصادها، ارتباط زیادی با فرصت‌های فراوانی برای کارآفرینان دارد. درک جزئیات بازار انرژی و مقابله با چالش‌ها گام‌های اساسی برای یک ورود موفق به این حوزه می‌باشد.

ایران، با منابع غنی و تقاضای رو به رشد برای انرژی، زمینهٔ خوبی را برای تجارت انرژی فراهم می‌کند. دینامیک بازار، تحت تأثیر عوامل داخلی و بین‌المللی، نقش مهمی در شکل‌گیری فرصت‌ها دارد. شناخت بازیگران اصلی و آگاهی از روندهای بازار برای تصمیم‌گیری مطلوب بسیار حائز اهمیت است.

تأمین مجوزها و پروانه‌های لازم و اطمینان از رعایت مقررات زیست‌محیطی، جنبه حیاتی یک تجارت انرژی است. درک چارچوب حقوقی و گنجاندن آن در استراتژی کسب و کار گام مهمی است.

کسب و کارهای انرژی به سرمایه‌گذاری قابل توجهی نیاز دارند. کارآفرینان باید با دقت مناسب به بررسی منابع سرمایه‌ای بپردازند، گزینه‌های تأمین مالی را بررسی کنند و مدل مالی قوی ایجاد کنند تا بتوانند از نوسانات بازار جلوگیری کنند.

تکنولوژی نقش تحول‌آفرینی در حوزه انرژی دارد. کارآفرینان باید از پیشرفت‌های فناورانه بهره‌مند شوند تا به بهبود کارایی عملیاتی و ادغام فناوری‌های هوشمند برای تداوم شیوه‌های پایدار بپردازند.

شناسایی و کاهش ریسک‌ها جزء مؤلفه‌های اصلی یک تجارت انرژی موفق است. از ناپایداری‌های جغرافیایی تا نوسانات بازار، داشتن استراتژی‌های مدیریت ریسک قوی و برنامه‌های آمادگی ضروری است. شناخت و بهره‌مندی از سیاست‌های حمایتی دولت و انگیزه‌ها برای کارآفرینان انرژی، گام استراتژیکی است. کارآفرینان باید از این ایمنی‌ها، مانند معافیت مالیاتی و حمایت‌ها، بازدید کنند و بررسی کنند چگونه می‌توانند از آنها بهره‌مند شوند.

 

نتیجه‌گیری

در نتیجه، ورود به تجارت انرژی در ایران نیازمند یک رویکرد چندجانبه است. از فهم دینامیک بازار تا بهره‌گیری از نوآوری‌های فناورانه و ایجاد شراکت‌های استراتژیک، کارآفرینان باید در منظومه پیچیده‌ای حرکت کنند.

حضور در تجارت انرژی‌های تجدیدپذیر، به ویژه در زمینه نیروگاه خورشیدی در ایران، می‌تواند یک فرصت عالی برای سرمایه‌گذاری و توسعه کسب و کار باشد. قبل از ورود به این صنعت، تحقیقات دقیقی در مورد بازار انرژی تجدیدپذیر و نیروگاه‌ خورشیدی در ایران انجام دهید. ارزیابی نیازهای بازار، میزان تقاضا، قوانین و مقررات مرتبط با تجارت انرژی و دیگر عوامل بازاریابی می‌تواند کمک شایانی به شناخت بازار کند. آگاهی از قوانین و مقررات مرتبط با تولید و تجارت انرژی تجدیدپذیر در ایران بسیار حائز اهمیت است. بررسی مجوزها، حقوق ارتعاشی، تسهیلات دولتی و دیگر الزامات قانونی از جمله مسائلی هستند که باید به آنها توجه کنید.

   انتخاب مکان مناسب برای نصب نیروگاه خورشیدی از اهمیت بسیاری برخوردار است. بررسی شدت تشعشعات خورشیدی، نقشه‌های باد، دمای محل، ارتفاع و سایر شرایط جوی می‌تواند تأثیر زیادی در عملکرد نیروگاه داشته باشد.

   برای شروع یک پروژه نیروگاه خورشیدی، تأمین منابع مالی ضروری است. می‌توانید از تسهیلات بانکی، سرمایه‌گذاری‌های خصوصی یا حتی برنامه‌های حمایتی دولتی بهره‌مند شوید.

   برقراری همکاری با شرکت‌ها و متخصصان معتبر در زمینه نیروگاه‌ خورشیدی، از جمله مهندسان، مشاوران حقوقی و مدیران پروژه، به شما کمک می‌کند تا با چالش‌ها بهتر کنار بیایید و بهترین نتیجه را بگیرید.

   استفاده از تکنولوژی‌های به‌روز در نیروگاه خورشیدی شما را قادر به بهره‌مندی از کارایی بالاتر و هزینه‌های کمتر می‌کند.

   در تجارت انرژی، مسئولیت اجتماعی بازیگر کلیدی است. توجه به اثرات زیست‌محیطی، ایمنی کارگران، اشتغال محلی و سایر ابعاد مسئولیت اجتماعی می‌تواند تصمیم‌گیری‌های شما را بهبود بخشد.

   برنامه‌ریزی مناسب برای بازاریابی و فروش انرژی تولیدی از نیروگاه خورشیدی را انجام دهید. ایجاد روابط با خریداران محتمل، شرکت‌های انرژی، گروه‌های صنعتی و دیگر بازارهای هدف از این قسمت حائز اهمیت است.

   برنامه‌ریزی برای پایش و نگهداری نیروگاه خورشیدی به منظور حفظ عملکرد بهینه و کاهش هزینه‌ها بسیار ضروری است.

با رعایت این نکات و برنامه‌ریزی دقیق، حضور در تجارت انرژی تجدیدپذیر، به ویژه در زمینه نیروگاه‌ خورشیدی، می‌تواند فرصتی موفق‌ برای سرمایه‌گذاری و توسعه کسب و کار شما باشد.

ضمن اینکه با ورود به الگوی تجارت انرژی منطقه‌ای در قالب صادرات انرژی به کشورها یا مناطق همسایه میتوانید تجارت خود را بین المللی کنید. هچنین ما به عنوان شرکت آرا نیرو آمادگی داریم در این الگو، ارتباط شما را به طور گسترده در زمینه تجارت انرژی برقرار کنیم. این شامل صادرات و واردات انرژی به وسیله سیستم‌های انتقال برق بین‌المللی است. در دهه‌های اخیر، با توسعه انرژی‌های تجدیدپذیر، الگوهای تجارت انرژی نیز تغییر کرده است. کشورها و شرکت‌ها اکنون می‌توانند انرژی تولید شده از منابع تجدیدپذیر را تجارت کنند و به اشتراک بگذارند.

البته در دنیا اشکال دیگری از تجارت انرژی نیز مرسوم میباشد که نمونه آن تجارت انرژی همتا به همتا است و نیازمند شبکه هوشمند انرژی است که متاسفانه در ایران از ساختار شبکه هوشمند برق بی بهره هستیم.

Renewable Energy Business - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی همتا به همتا، یک مفهوم در زمینه انرژی است که به معنای تبادل مستقیم انرژی بین افراد یا واحدهای تولید انرژی می‌باشد، بدون واسطه‌های مرسوم چون شرکت‌های توزیع و انتقال انرژی. در این مدل، افراد یا واحدهای تولید انرژی مستقیماً با سایر افراد یا واحدها تبادل انرژی می‌کنند، بدون نیاز به شبکه‌های مرکزی یا شرکت‌های متعلق به دولت.

 

این رویکرد به منظور افزایش کارآیی، کاهش هزینه‌ها، و حمایت از تولید انرژی پایدار مطرح شده است. این سیستم می‌تواند باعث ایجاد یک بازار محلی برای انرژی شود که در آن تولید کنندگان و مصرف‌کنندگان می‌توانند به طور مستقیم با یکدیگر معامله کنند.

به عنوان مثال، یک فرد یا شرکتی که انرژی را از منابع تجدیدپذیر تولید می‌کند، می‌تواند این انرژی را به صورت مستقیم به همسایگان یا دیگر افراد در یک منطقه فرستاده و با آنها تبادل کند، بدون اینکه نیاز به انتقال انرژی از طریق شبکه‌های مرکزی باشد.

تجارت انرژی همتا به همتا به توسعه انرژی‌های تجدیدپذیر، افزایش بهره‌وری و کاهش اثرات منفی بر محیط زیست کمک می‌کند. این مدل همچنین می‌تواند اقتصاد محلی را تقویت کرده و به ایجاد یک سیستم انرژی مستقل و پایدار کمک کند.

جلوتر ماندن از منحنی فناوری به معنای تقویت مزیت رقابتی شماست. به همین دلیل است که ما بینش های نوآوری مبتنی بر داده در صنعت انرژی را به شما ارائه می دهیم. در پایان با امید به شکل گیری زیرساخت های شبکه هوشمند برق در ایران، 5 راه حل دستچین شده برای تجارت انرژی همتا به همتا را با ذکر مثال از چند شرکت و استارت آپ موفق جهانی ارائه میدهیم:

 

  1. Hygge یک بازار انرژی مستقل ایجاد می کند

سال تاسیس: 2017

مکان: تورنتو، کانادا

شریک: تجارت انرژی های تجدیدپذیر

استارتاپ کانادایی Hygge Energy یک بازار تجارت انرژی های تجدیدپذیر را ارائه می دهد که در سراسر جهان قابل دسترسی است. پلت فرم استارت آپ خدمات تراکنشی را هم در جلو و هم در پشت کنتور فعال می کند. اولی به شرکت های خدمات شهری اجازه می دهد تا از دارایی های توزیع شده خود با افزایش معاملات انرژی استفاده کنند، در حالی که دومی از رویکرد تجارت همتا به همتا استفاده می کند که مبتنی بر جامعه، بازار، و توسعه دهنده است. Hygge از طریق باکس سفارشی خود که ترکیبی از هوش مصنوعی AI، بلاکچین خصوصی و قدرت محاسباتی بالا است، به این مهم دست می یابد. این استارت‌آپ همچنین یک برنامه کاربردی تلفن هوشمند ارائه می‌کند که به تولیدکنندگان انرژی خصوصی اجازه می‌دهد تا تولید مازاد خود را به شرکت‌های برق بفروشند و انرژی کم‌هزینه را با همسایگان معامله کنند. این امر بازده سرمایه گذاری را برای نیروگاه های خصوصی افزایش می دهد و درآمد شرکت های برق را از طریق بهبود توان عملیاتی انرژی افزایش می دهد.

 

  1. Exodus یک برنامه تجارت همتا به همتا را ارائه می دهد

سال تاسیس: 2018

مکان: لیدز، انگلستان

شریک برای: اشتراک انرژی خانه به خانه

Exodus یک استارت‌آپ مستقر در بریتانیا است که ExodusHOME را توسعه می‌دهد، برنامه‌ای برای گوشی‌های هوشمند برای فعال کردن تجارت همتا به همتا در جوامع محلی. ExodusHOME به صاحبان خانه با واحدهای تولید برق محلی اجازه می دهد تا بر تولید، مصرف و سطوح ذخیره انرژی نظارت کنند. با این بینش، مصرف کنندگان می توانند انرژی مازاد خود را با سایر خریداران و مصرف کنندگان مبادله کنند و همچنین آن را به شبکه برق انتقال دهند. این بازار انرژی به نفع جامعه است و راه اندازی واحدهای تولید انرژی تجدیدپذیر محلی را از طریق مشوق های مالی ترویج می کند. بنابراین، منجر به توسعه راه‌حل‌های سخت‌افزاری در دسترس برای تولید انرژی‌های تجدیدپذیر خارج از شبکه می‌شود و انتقال انرژی را تسریع می‌کند. این همچنین بار هزینه های سرمایه ای را بر اپراتورهای شبکه و واحدهای تولید برق کاهش می دهد.

 

  1. سوئیچ تجارت انرژی خورشیدی را فعال می کند

سال تاسیس: 2018

مکان: کیپ تاون، آفریقای جنوبی

شریک: بازرگانی انرژی خورشیدی

استارت‌آپ انرژی سوئیچ انرژی مستقر در آفریقای جنوبی راه‌حل‌های هوشمند اندازه‌گیری و مدیریت انرژی را ارائه می‌دهد. مودم استارت‌آپ برق را در زمان واقعی مشاهده و کنترل می‌کند، تعویض لوازم خانگی را زمان‌بندی می‌کند و تجارت برق خورشیدی را فعال می‌کند. Switch Energy همچنین یک پلت فرم نرم افزاری را توسعه می دهد که شامل یک برنامه تلفن همراه و یک کنسول مدیریت برای تسهیل نظارت بر تولید و مصرف انرژی در زمان واقعی است. علاوه بر این، به کاربران اجازه می دهد تا انرژی را بین ساختمان های دارای تولید خورشیدی در شبکه های زیر متری مبادله کنند، بنابراین وابستگی خانوارها به شبکه اصلی کاهش می یابد.

 

  1. TroonDx تبادل برق غیرمتمرکز را توسعه می دهد

سال تاسیس: 2019

مکان: چنای، هند

شریک: تجارت غیرمتمرکز انرژی، بازار انرژی مبتنی بر بلاک چین

TroonDx یک استارت آپ هندی است که یک پلتفرم نرم افزاری مبتنی بر بلاک چین را فراهم می کند که زیرساخت های حیاتی را در شبکه انرژی برای تبادل نیرو به هم متصل می کند. پلتفرم تبادل برق غیرمتمرکز این استارت آپ، تراکنش های دیجیتالی امن را بدون وابستگی به یک نقطه مرکزی قدرت امکان پذیر می کند. این پلتفرم قراردادهای هوشمندی را ارائه می‌کند که اجرای تراکنش‌ها را خودکار می‌کند و شفافیت در توافق‌نامه‌های خریدار و فروشنده را افزایش می‌دهد و امکان معاملات بی‌درنگ را فراهم می‌کند. این باعث ایجاد چندین بازار انرژی ابرمحلی خودکفا با حداقل وابستگی به شبکه اصلی می شود. علاوه بر این، بلاک چین یک مسیر حسابرسی تغییرناپذیر از هر تراکنش انرژی را حفظ می کند که به حسابداری، حل و فصل صورتحساب و فرآیندهای حل اختلاف خودکار کمک می کند.

 

  1. nyway یک بازار انرژی های تجدیدپذیر ایجاد می کند

سال تاسیس: 2017

مکان: هامبورگ، آلمان

شریک: بازار انرژی های تجدیدپذیر

استارت‌آپ آلمانی به هر حال بازار انرژی‌های تجدیدپذیر را برای معاملات انرژی همتا به همتا ایجاد می‌کند. پلت فرم این استارت آپ به مصرف کنندگان انرژی این امکان را می دهد که فروشنده های خصوصی برق را انتخاب و انتخاب کنند. این به مشتریان اجازه می دهد تا انرژی پاک را با قیمت های پایین در محل خود خریداری کنند. enyway همچنین از فناوری مبتنی بر بلاک چین برای ثبت و حسابرسی این تراکنش ها استفاده می کند. علاوه بر این، بازار استارت آپ نیازی به نصب دستگاه یا زیرساخت جدیدی برای تامین انرژی خریداری شده به مشتریان خود ندارد. راه حل enyway تضمین می کند که انرژی کاملاً پایدار، شفاف و ایمن است، بنابراین از هرگونه وقفه در عرضه جلوگیری می کند.

 

نویسنده: مهدی پارساوند

 

 

مکان یابی احداث نیروگاه خورشیدی براساس تئوری راف و تئوری چشم انداز

(مطالعه موردی استان سمنان)

 

چکیده:

انتخاب مکان یکی از گام های اساسی در ساخت نیروگاه های خورشیدی است که بر ظرفیت تولید برق و منافع اقتصادی-اجتماعی در آینده تاثیر میگذارد. لازم است عوامل بسیاری در انتخاب مکان مانند آب و هوا، زمین شناسی، پذیرش اجتماعی و … در نظر گرفته شود.  با این حال اغلب مطالعات قبلی کمتر فردیت و ابهام اطلاعات تصمیم گیرنده در نظر گرفته شده و فرض میکنند که تصمیم گیرندگان بدون در نظر گرفتن عوامل روان شناختی آنها کاملا منطقی هستند. برای مقابله با این مشکل یک رویکرد یکپارچه بر اساس نظریه راف برای تعیین معیار های مناسب، و تئوری چشم انداز برای انتخاب مکان مناسب پیشنهاد شده است. در نهایت یک مطالعه موردی در مناطق مختلفی از استان سمنان برای انتخاب مکان مناسب با توجه به معیار های برگزیده، انجام شده و مکان مناسب جهت احداث این نیروگاه انتخاب شده است.

 

مقدمه

گرم شدن جهانی کره زمین، امنیت انرژی و مسائل اقتصادی وضعیت را از انرژی سنتی به انرژی تجدید پذیر تبدیل میکند . ثابت شده است که انرژی خورشیدی یکی از منابع قابل اعتماد انرژی برای تولید برق است. انرژی خورشیدی فراوان، آزاد و تمیز است و هیچ نوع آلودگی برای محیط زیست ندارد. خورشید منبع عظیم انرژی، بلکه سرآغازحیات و منشا تمام انرژی های دیگراست .در حدود شش هزار میلیون سال از تولد این گوی آتیشین میگذرد و در هر ثانیه 4.2 میلیون تن از جرم خورشید به انرژی تبدیل میشوند. با توجه به وزن خورشید که حدود 333 هزار برابر وزن زمین است این کره نورانی را میتوان به عنوان منبع عظیم انرژی تا 5 میلیارد سال آینده به حساب آورد . بنابر تحقیقات آژانس بین المللی انرژی، رشد 20 تا 25 درصدی استفاده از انرژی خورشیدی برای تولید انرژی الکتریسیته تا سال 2050 خواهید داشت  . آژانس بین المللی بیان کرده است تا سال 2050 سامانه های انرژی خورشیدی قادر خواهد بود 9000 تراوات ساعت انرژی تولید کند که سالانه از خروج 6 بیلیون تن دی اکسید کربن جلو گیری خواهد شد .بسیاری از جوامع بخصوص کشورهای در حال توسعه به منظور تقویت پایه های توسعه و رفع عدم تعادل بیش از هر زمانی نیازمند برنامه ریزی و شناسایی امکانات و منابع بالقوه شان میباشند .قرار گرفتن ایران برکمربند گرم دنیا و مدار 25 – 40 درجه عرض شمالی، دارای یکی از بالاترین پتانسیل های جذب انرژی خورشیدی است . سالانه با میانگین 280 روز آفتابی در بیش از 90 درصد از اراضی کشور و میزان تابش نور خورشید بین 1800 تا 2200 کیلو وات بر ساعت بر متر مربع در زمره کشور هایی که حداکثر دریافت نور دارند قرار گرفته است. ایران با توجه به اینکه 8 تا 9 ماه سال را از بارش باران بی بهره است و در واقع آسمانی بدون ابر دارد، میتواند بخش بزرگی از انرژی مورد نیاز خود را از تابش نور خورشید تامین کند. این در حالی است که طبق استناد های ثبت شده ارزیابی منابع نفتی ایران بعد از 43 سال، منابع گازی 167سال،زغال سنگ 417 سال دیگر به پایان خواهند رسید . کشور ایران به دلیل رشد جمعیت، بالا رفتن سرانه مصرف انرژی الکتریکی، توسعه بخش های صنعتی،کشاورزی و … میزان تقاضا مصرف این نوع انرژی پیوسته در حال افزایش است.به همین علت امنیت انرژی حکم میکند همواره به دنبال یافتن و استفاده از منابع انرژی تجدید پذیر باشیم. اولین و مهم ترین قدم در بهره گیری انرژی خورشیدی، یافتن مناطق مناسب است. در گذشته هدف اولیه از مکان یابی یک نیروگاه، یافتن محلی بود که نیروی برق مورد نظر را با کمترین هزینه تولید کند و برای کاهش پیچیدگی های طراحی سیستم انتقال نیرو، نیروگاه ها معولا در نزدیک بخش های صنعتی و شهر ها احداث میشدند. بطور کلی معیار های منابع )مانند انرژی خورشیدی(، معیار های اقتصادی )مانند هزینه و سود( و معیار های محیطی )مانند کاهش تخلیه آلاینده ها و کاربری زمین (بیشتر معیار مورد استفاده برای متخصصان و کارشناسان برای ارزیابی یک مکان برای احداث نیروگاه خورشیدی است.

در این پژوهش سه دیدگاه محیط زیست، اجتماعی- فرهنگی، اقتصادی برای شناسایی عوامل موثر درانتخاب مکان مناسب مورد مطالعه قرار گرفته است. این عوامل عبارتند از: 1 – ساعت آفتابی 2 – متوسط دمای سالانه 3 – متوسط بارش سالانه 4 – رطوبت 5 – ارتفاع 6 – فاصله ازجاده های ارتباطی 7 – فاصله از شهر ها 8 – شیب 9 – تعداد روز های گرد و غباری 10 – جهت شیب زمین 11 – فاصله از رودخانه و دریا 12 – معیار های زیست محیطی 13 – گسل 14 – دیگر معیار های اقتصادی- اجتماعی 15 – فاصله از خطوط انتقال نیرو 16 -استاندارد های ایمنی و امنیتی 17 -تعداد روز های ابری در ایران و سایر کشور ها تحقیقات متعددی روی این امر انجام پذیرفته شده است برای مثال ارزیابی چرخه عمر نیروگاه ها، حساسیت و قابلیت اطمینان نیروگاه ها، عملکرد نیروگاه های خورشیدی، مقایسه با دیگر پروژه های نیروگاه خورشیدی، و…که به چند مورد در ذیل اشاره میشود.

 

1 – روشی برای شناسایی و احداث نیروگاه انرژی خورشیدی در مناطق شهری توسعه داد تا هزینه های پیش از نصب،کم تر شود و همچنین پتانسیل واقعی شهری را مشخص کرد. به منظور این کار از سیستم اطلاعات جغرافیایی استفاده کرد و این روش را در سایر نقاط تکثیر کرد.

2 – از 4 معیار مورد استفاده شده : مکان، اوروگرافی،کاربری زمین و آب و هوا برای ارزیابی مناسب بودن مکان ها برای اجرای پروژه انرژی خورشیدی استفاده کردند. در این مطالعه دریافتند که آب و هوا مهم ترین معیار است.

3 – استان اصفهان با معیار میزان ساعت آفتابی در طول یک سال، با هدف مکان یابی نقاط مناسب جهت قرارگیری پنل های خورشیدی برای پژوهش انتخاب شد .این پژوهش ترکیبی از روش های توصیفی-تحلیلی و روش کتابخانه ای است با استفاده از نرم افزار GIS لایه ها تهیه و با برهم گذاری نقاط مستعد در نقشه و از طریق همپوشانی وزنی، مکان های مناسب شناسایی شدند.سپس به روش تاپسیس گزینه های مختلف بررسی و بهترین مکان انتخاب شد. نتایج حاصل نشان داد که 17 درصد از مناطق استان اصفهان وضعیت مطلوبی برای قرارگیری پنل های خورشیدی دارد.

4 – مکان یابی نیروگاه خورشیدی با استفاده از روش تحلیل چند گانه و مطالعه جامع برای اولویت بندی مناطق مختلف جهت احداث نیروگاه خورشیدی انجام داد و در نتیجه پی برد که شهر های شیراز، یزد و بیرجند پتانسیل بالایی برای احداث نیروگاه دارند.

5 – مکان یابی نیروگاه را در استان فارس در دو مرحله مقدماتی و تفصیلی انجام داد. در این مطالعه مدل های بولین، همپوشانی شاخص و فازی را برای تلفیق لایه های اطلاعاتی مورد استفاده قرار دارد.  نتیجه نشان داد که مدل های فازی نسبت به مدل های دیگر از قابلیت انعطاف بالایی برای مدل کردن مدل های منطقی و تاثیرات متقابل پارامتر ها بر همدیگر و مکان یابی برخوردار است.

 

یک روش مبتنی بر تئوری چشم انداز برای انتخاب محل نیروگاه خورشیدی:

برای انتخاب مکان نیروگاه، یک روش تاپسیس مبتنی بر تئوری مجموعه راف و نظریه چشم انداز پیشنهاد شده است. تئوری مجموعه راف بوسیله دقت متغییر در فرآیند تصمیم گیری می تواند ذهنیت ها و عدم قطعیت ها را تغییر دهد. تئوری چشم انداز با در نظر گرفتن عوامل روان شناختی تصمیم گیرندگان، در شریط عدم قطعیت به آنان کمک میکند . نظریه چشم انداز شامل دو قسمت می باشد:

1 – تعیین اوزان معیارها 2 – رتبه بندی مکان ها با روش بسط داده شده

تعیین اوزان معیارها:

در این مرحله، وزن معیارها از طریق ارزیابی مستقیم معیارها محاسبه می شوند.  مراحل محاسبات به شرح زیر است:

قدم اول : تعیین اهمیت کریسپ هر معیار

چندین مکان نیروگاه خورشیدی و معیارهای ارزیابی توسط متخصصان گردآوری شده است سپس، آنان برای میزان اهمیت معیارها، امتیازات 1 – 10 در نظر می گیرند. هر چه امتیاز بالاتر باشد معیار مهم تر می باشد امتیاز 1 نشان دهنده کمترین میزان اهمیت و امتیاز 10 نشان دهنده بیشترین اهمیت می باشد . بر این اساس ارزش های ارزیابی اهمیت هر یک از معیارها از نظر متخصصان را میتوان به دست آورد.

قدم دوم:  تبدیل کریسپ به فواصل راف

تئوری مجموعه راف یک ابزار ریاضی موثر برای دستیابی اطلاعات غیردقیق و نامشخص بدون فرضیات اضافی می باشد . اطلاعات غیردقیق در فرآیند تصمیم گیری را میتوان با یک جفت از مفاهیم دقیق بر اساس تقریب پایین و بالا در تئوری مجموعه راف ها به دست آورد . ممکن است به دلیل تجربه ودانش متفاوت متخصصان، با درجه متفاوتی از ابهام، در نظر کارشناسان مواجه شویم برای مشخص کردن درجه تغییر، پارامتر دقت متغییر که در بازه صفر و یک تعریف می شود در نظر گرفته میشود.  بنابراین در این مرحله، باید عدد کریسپ معیارها را به شکل عدد راف تبدیل کرد.

 

منطقه مورد مطالعه:

استان سمنان بین طول های جغرافیایی ″′15 °55 53 طول خاوری و ″5 ′14 °35 عرض شمالی با مرکزیت شهرستان سمنان واقع شده است. و مساحتی برابر با 97491 کیلومتر مربع، 5 / 9 درصد مساحت کل کشور را شامل میشود و از نظر مساحت ششمین استان ایران است . استان سمنان هم اکنون دارای 7شهرستان، 18 شهر، 11 بخش و 29 دهستان است.

عرصه های کویری استان سمنان به دلیل واقع شدن روی کمربند خورشیدی مستعد بهره برداری سلول های خورشیدی است و براساس آمار اداره کل هواشناسی سمنان، استان سمنان از 365 روز سال، 325 روز هوای آفتابی دارد و به عبارتی این استان در حدود سه هزار ساعت در سال از هوای صاف بهره مند است . در زمان حاضر 100 کیلووات برق تجدید پذیر در استان سمنان تولید می شود که این رقم چندان قابل قبول نیست .

نه منطقه برای این آزمایش انتخاب شده است که عبارتند از: سمنان، دامغان، گرمسار، ایوانکی، شاهرود، میامی، رضوان، بیارجمند، شهمیرزاد

Untitled 1 - مکان یابی احداث نیروگاه خورشیدی

شکل 1 .مناطق انتخابی جهت ارزیابی

از 3 نفر شامل یک سرمایه گذار، یک کارشناس زمین شناسی و یک کارشناس هوا شناسی برای ارزیابی و وزن دهی معیار های انتخابی استفاده شده است.در جدول 2 به تمامی این معیار ها اشاره شده و اهمیت هر یک در جدول 2 از نظر کارشناسان بررسی شده است.

 

1 – ساعت آفتابی :  میزان تابش خورشید در مناطق مختلف ، نقش کلیدی در عملکرد فنی و اقتصادی نیروگاه خورشیدی ایفا میکند.
 2 – متوسط دمای سالانه : درنظرگرفتن اثر دما در فرآیند انتخاب محل احداث نیروگاه خورشیدی، باعث کاهش هدررفت سرمایه و افزایش راندمان نیروگاه خورشیدی میشود. شکل (2)
 3 – متوسط بارش سالانه :

4 – رطوبت

گرچه بارش باران سالانه یک پارامتر هیدرولوژی مهم محسوب میشود، میزان بارش بسیار زیاد باران میتواند یک پارامتر مهم در محل احداث نیروگاه خورشیدی باشد؛

چراکه رطوبت بالا میتواند با جذب و یا بازتاب نور خورشید، میزان تابشی که به سطح ماژول های نیروگاه خورشیدی میرسد را کاهش دهد. ( شکل3 )

 5 – ارتفاع به دلیل نازکترشدن لایه اتمسفر، در محل های با ارتفاع بیشتر از سطح دریا شدت تابش افزایش می یابد. از سوی دیگر، به دلیل کاهش دما در ارتفاعات بالاتر، عملکرد ماژول های فتوولتاییک نیز بهبود پیدا میکند. هزینه انتقال تجهیزات، کارگر و…  کاهش پیدا میکند، که درنتیجه برای راه اندازی نیروگاه مناسب نخواهد بود . ( شکل 4)
6 – جاده های ارتباطی

7 – فاصله مناطق مسکونی

مناطق روستایی و شهری با دربرداشتن مراکز شلوغ میتوانند هزینه انتقال و توزیع برق را کاهش دهند.  به دلیل صرفه جویی در هزینه ها، سودآوری نیروگاه خورشیدی و نرخ بازگشت سرمایه در این مناطق افزایش پیدا میکند . همچنین، قرارگیری نیروگاه های برق تجدیدپذیر در مجاورت مناطق شهری میتواند آلودگی ناشی از تولید برق فسیلی در نزدیکی محل زندگی انسانها را کاهش دهد.
 8 – شیب : شیب زمین یک پارامتر ژئوموروفولوژیکی در مطالعه محل احداث نیروگاه است که به طور چشمگیری بر پایداری محل نصب نیروگاه اثرگذار است . شیب زمین میتواند روی هزینه عمرانی نیروگاه اثر مستقیم داشته باشد . با افزایش میزان شیب، هزینه تسطیح زمین و ساخت سازه نگهدارنده پنل ها افزایش می یابد . بنابراین، بهتر است که محل مورد نظر جهت ساخت نیروگاه ، صاف و دارای شیب اندک باشد . شیب اقتصادی برای محل احداث نیروگاه خورشیدی بین 0 تا 3 درجه است . ( شکل 5)
9 – جهت شیب اگر محل احداث نیروگاه خورشیدی در نیمکره شمالی زمین قرارداشته باشد )مانند ایران(، بهترین جهت برای نصب ماژولهای فتوولتاییک به سمت جنوب است . بنابراین، بهتر است که جهت شیب زمین به سمت جنوب باشد.  اگرچه، این بدین معنا نیست که دیگر جهت های شیب زمین برای نصب ماژولهای فتوولتاییک مناسب نیست، بلکه تنظیم و نصب پنل های خورشیدی در این زمین ها دشواری و پیچیدگی کمتری خواهد داشت.  (شکل (6
10 – روز های غباری مناطق صنعتی و معادن و آلودگی ناشی از فعالیتها همچون گردوغبار میتواند اثر منفی روی عملکرد پنلهای از طریق جذب و بازتابش پرتوهای خورشید، داشته باشد.این ذرات 15درصد از انرژی موج خورشید را جذب میکند. از همینروی رعایت فاصله 500 متری از معادن و مناطق صنعتی پیشنهاد میشود.
11 – فاصله از رودخانه و به دلیل نیاز به محافظت از محیط زیست اکولوژیکی رودخانه ها، دریاچه ها و دیگر منابع آبی، لازم است که نیروگاه های برق با فاصله از این مناطق ساخته شوند. براساس مدل بولین فاصله نیروگاه با رودخانه و دریاچه باید 200 متر باشد. البته رعایت این فاصله باعث افزایش ایمنی نیروگاه در مقابل خطر وقوع سیل نیز خواهد شد
 12 – زیست محیطی به دلیلی خشکی برخی مناطق، رعایت فاصله 200 متری از پارک های طبیعی و سایتهای گردشگری و فاصله 500 متری از مراتع و جنگلها باید جهت تعیین محل ساخت نیروگاه، در نظر گرفته شود.  فاصله ایمن تا محل دفن زباله برای احداث نیروگاه با هدف اطمینان از حفظ سلامت کارکنان نیروگاه، ضروری است. این موضوع همچنین برای جلوگیری از کاهش عملکرد پنل های خورشیدی به دلیل انباشتگی ذرات معلق در هوا، اهمیت دارد.
13 – گسل این موضوع به عنوان یک ویژگی ژئولوژیکی خطرناک در فرآیند انتخاب زمین مناسب ، برای ساخت نیروگاه ، مدنظر قرار میگیرد. ریسک تخریب سازه نیروگاه در نزدیکی گسل های زمین بسیار بالا است . ازاینرو، نه تنها ساخت سکونت گاه انسانها بلکه احداث نیروگاه در فاصله ای مناسب از گسل های زمین، امری ضروری است.
14 – معیار های اقتصادی-اجتماعی احداث و گسترش نیروگاه های خورشیدی با هدف کمک توسعه پایدار مناطق صورت میگیرد.  از اینرو، تخریب زمین های کشاورزی و باغات قابل کشت برای نصب سیستم های خورشیدی منطقی نیست . قابل توجه است که زمین های کشاورزی، باغات و مراکز پرورش آبزیان که منبع درآمد مردم محلی هستند نباید برای احداث و توسعه نیروگاه خورشیدی دچار آسیب شوند.  بنابراین، حفظ حریم این مناطق و رعایت فاصله مناسب میتواند از تنش های بعدی با اهالی محلی جلوگیری کند . با این حال، زمین های بایر میتواند گزینه مناسب برای راه اندازی نیروگاه خورشیدی باشند.
 15 – فاصله از خطوط

انتقال نیرو

برق تولیدی هر نیروگاه برای توزیع، نیاز به خطوط انتقال دارد . فاصله نیروگاه از خطوط انتقال برق اهمیت بسیاری دارد زیرا که این خطوط باعث بالا بردن هزینه پروژه شده و همچنین تلفات برق تولید شده را زیاد میکند.
16 – استاندار های ایمنی به منظور حفظ حریم مناطق نظامی و امنیتی، در نظر گرفتن فاصله 1000 متری تا این مراکز و  فاصله 3000 متری  از فرودگاه ها باید رعایت شود.
17 – روزهای ابری ابرها میتوانند 21درصد انرژی موج خورشیدی را جذب کنند.

جدول 3

 

Untitled 2 - مکان یابی احداث نیروگاه خورشیدی

Untitled 3 - مکان یابی احداث نیروگاه خورشیدی

بدست آوردن اوزان معیار و رتبه بندی مکان ها:

ابتدا اهمیت قطعی معیارها توسط کارشناسان جمع آوری شده است )جدول ( 3با در نظر گرفتن ذهنیت و ابهام متخصصان در تصمیم گیری، اهمیت کریسپ با توجه به معادلات به شکل عدد راف تبدیل شده است.  علاوه بر این مقادیر قطعی متغیر راف و مقادیر وزنی برای سود و زیان گرد آوری شده است. این 17 معیار دارای درجه متفاوتی می باشند. معیار ساعت آفتابی و متوسط دما که امتیاز گروه بالایی دارند هر دو معیار مهم بوده و نمرات اهمیت ساعت آفتابی و متوسط دما به ترتیب 9.655 و 8.117می باشد.

با دقت بالا متوجه میشویم که با توجه اطلاعات در دسترس و نظرات کارشناسان در خصوص معیارها، منطقه سمنان به عنوان بهترین مکان جهت ساخت نیروگاه خورشیدی انتخاب شده است.

 

بحث و نتیجه گیری

توسعه انرژی نو یکی از شاخص های مهم در توسعه اقتصادی است.  از لحاظ بعد اقتصادی، اجتماعی، فرهنگی، زیست محیطی و سازمانی نقاط قوت و دلایل مهمی برای استفاده از انرژی خورشیدی وجود دارد.  در این مطالعه روشی براساس تئوری چشم انداز، نظریه راف و روش تاپسیس و با استفاده از آمار آب و هوایی و اطلاعات جغرافیایی استان سمنان، برای انتخاب مکان مناسب جهت احداث نیروگاه خورشیدی استفاده شده است.  این روش نه تنها عقلانیت محدود کارشناسان را اداره میکند بلکه نگرش های ریسک کارشناسان در فرایند تصمیم گیری را مورد توجه قرار میدهد . از آنجایی که تصمیمات افراد با ابهام و تناقض هایی درگیر است و همچنین به دلیل عقلانیت محدود کارشناسان، ممکن است کارشناسان نتوانند عملکرد مناسبی را در امتیاز دهی معیار ها داشته باشند و در نتیجه با انتخاب های نامناسب منجر به تحمیل هزینه های جبران ناپذیری شوند. به منظور کاهش این ضرایب خطا، از تئوری راف اسفاده شد.در تئوری راف با استفاده از دقت متغیر a و تغییرات آن، تغییرات اولویت بندی مکان ها را تحت شرایط ابهام و نادقیق را میتوان مشاهده کرد.

تحلیل حساسیت:

برای بررسی تاثیر سطوح مختلف دقت متغیر بر رده بندی نهایی مکان ها یک آنالیز حساسیت با a های متفاوت انجام شده است . همان طور که در شکل مشاهده می شود سمنان و رضوان به ترتیب به عنوان بهترین و بدترین مکان با در نظر گرفتن این موضوع که هیچ ابهامی در نظر کارشناسان وجود ندارد( a = 0) به ازای دقت متغیر های متفاوت ضریب نزدیکی مکان ها در شکل 7 مشخص شده است.

Untitled 4 - مکان یابی احداث نیروگاه خورشیدی

نویسندگان مقاله

آقای مهندس رسول عبدالمحمدی ، آقای مهندس علی رهنمای شلمانی ، خانم دکتر دنیا رحمانی ،آقای دکتر امیرخاکباز