نوشته‌ها

توربین‌های بادی عمودی تخم‌مرغی: آینده‌ای برای انرژی تجدیدپذیر

توربین‌های بادی سه پره، یک منظره‌ی رایج در افق و دریا هستند. این توربین‌ها می‌توانند از نظر اندازه متفاوت باشند، اما معمولاً بر ساختمان‌ها و تپه‌های اطراف خود غلبه می‌کنند. بلندترین این غول‌ها می‌توانند به اندازه برج ایفل و حتی بلندتر از برج راکفلر در نیویورک بایستند. یک طراحی جدید توربین بادی محور عمودی به شکل یک تخم‌مرغ، در حال رقابت جدی با توربین‌های سنتی سه پره قرار گرفته است. این توربین نوآورانه در واقع یک طراحی احیاشده است که کارشناسان را از کارایی و پتانسیل آن شوکه کرده است.

صنعت انرژی بادی در سال‌های اولیه تنها یک طراحی توربین بادی را پذیرفت و اکنون به اشتباه خود پی برده است

جهان برای جلوگیری از بحران آب و هوا باید بیشتر به انرژی‌های تجدیدپذیر متکی شود و انرژی بادی به مردم در این زمینه کمک می‌کند. سال‌هاست که شرکت‌ها تنها می‌خواهند توربین‌های بادی سه پره را تولید و نصب کنند. این توربین‌ها از فناوری پیش‌بینی‌پذیری مشابه هواپیماها استفاده می‌کنند و قطعات آن‌ها می‌توانند به راحتی در کارخانه‌های موجود تولید شوند. با این حال، این توربین‌ها بسیار سنگین هستند، که منجر به مشکلاتی در نصب آن‌ها در آب‌های عمیق دریا شده است، جایی که باد بسیار قوی تمایل به پایدار بودن دارد.

چون توربین بادی سه پره از همان ابتدا برجسته شد، صنعت انرژی بادی متوجه اشتباهی که با تنوع‌ندادن طراحی توربین‌ها مرتکب شده بود، نشد. یک طراحی قدیمی ناگهان فرصت دوم برای موفقیت پیدا می‌کند، زیرا شرکت‌ها به دنبال یک مدل توربین بادی سبک‌تر و انعطاف‌پذیرتر هستند. این توربین تخم‌مرغی روی یک محور عمودی قرار دارد و نیازی به ساخت روی یک برج سنگین مانند مدل سه پره ندارد. مدل جدید در هزینه‌های ساخت صرفه‌جویی خواهد کرد و حتی می‌توان از آن در اسکله شناور در دریا استفاده کرد.

یک توربین بادی محور عمودی تخم‌مرغی می‌تواند پاسخی باشد که کارشناسان انرژی تجدیدپذیر به دنبال آن هستند

کارشناسان قبلاً فکر می‌کردند که توربین‌های بادی محور عمودی به اندازه مدل‌های سه پره مؤثر نیستند. فناوری برای طراحی سابق در ۱۵ سال گذشته پیشرفت چشمگیری داشته است و اکنون یک طراحی تخم‌مرغی صنعت را تحت تأثیر قرار داده است. این مدل سبک‌تر، پایدارتر و احتمالاً ارزان‌تر از مدل سه پره است، که می‌تواند به آن انعطاف‌پذیری بیشتری از نظر مکان و استفاده بدهد.

به دست آوردن انرژی باد پایدار آسان نیست، اما از آنجایی که باد همه جا وجود دارد، این راه حلی است که اکثر دولت‌ها می‌خواهند از آن بهره‌برداری کنند. دولت‌ها معمولاً بودجه‌ای برای سرمایه‌گذاری در توربین‌های بادی سنگین دارند، اما صاحبان خانه‌های شخصی و کسب‌وکار اغلب باد را به عنوان یک جایگزین انرژی قابل اجرا نمی‌دانند. توربین‌های بادی محور عمودی می‌توانند برای مردم مقرون‌به‌صرفه‌تر شوند و زمینه را برای یک انقلاب انرژی در آمریکا فراهم کنند.

انرژی بادی به طور قابل توجهی متغیر است، بنابراین آمریکا می‌خواهد از فناوری جدید برای گرفتن بادهای دریایی استفاده کند

یکی از بزرگترین چالش‌های انرژی بادی، پیدا کردن راهی برای پایدار نگه داشتن خروجی برق است. باد همیشه نمی‌وزد و بادهای سبک ممکن است به اندازه کافی قوی نباشند تا توربین‌ها را بچرخانند. محققان روی طراحی‌ها و فناوری‌های جدید توربین بادی کار کرده‌اند تا به غلبه بر این مشکل کمک کنند.

آمریکا می‌خواهد توربین‌های بادی شناور را در اقیانوس نصب کند تا از انرژی باد دریا استفاده کند. مدل‌های توربین بادی سه پره بسیار سنگین هستند و ممکن است شناور خوبی نباشند، اما توربین محور عمودی تخم‌مرغی جدید به برج مرکزی متکی نیست و می‌تواند بسیار آسان‌تر شناور شود. این نوآوری ممکن است به آمریکا کمک کند تا روند انرژی بادی را تغییر دهد.

کارشناسان از کاربردهای بالقوه توربین بادی محور عمودی تخم‌مرغی به‌روز شده هیجان‌زده هستند. این سبک در حال حاضر در برخی مکان‌های جهان استفاده می‌شود، اما هنوز در آمریکا رایج نشده است. تیم‌هایی از محققان و سرمایه‌گذاران خصوصی در حال تلاش برای راه‌اندازی یک مزرعه توربین بادی محور عمودی در نزدیکی ساحل مین در آینده نزدیک هستند.

نویسنده: دپارتمان خبری آرا نیرو
منبع: مجله فتوولتائیک PV

– نیروگاه خورشیدی در مقیاس کوچک یا اصطلاحا نیروگاه خورشیدی خانگی، برای محیط زیست بهترین است، اما agrivoltaics ممکن است پاسخ بهتری داشته باشد؛

 

تجزیه و تحلیل چرخه حیات نشان می دهد که اگرچه برای محیط زیست بهتر است که خورشیدی را روی سقف قرار دهد، اما ترکیبی از هر دو مورد نیاز است.

 

مطالعه‌ای که در دانشگاه وسترن انتاریو انجام شد، تأسیسات خورشیدی بزرگ و کوچک را با هم مقایسه کرد و به این نتیجه رسید که سیستم‌های خورشیدی در مقیاس کوچک حتی از بزرگترین، کارآمدترین پروژه خورشیدی در مقیاس کاربردی، برای محیط زیست بهتر هستند.

 

 بر اساس گزارش انرژی و منابع ارنست اند یانگ، که اشاره می کند که میانگین موزون جهانی، انرژی خورشیدی در ایالات متحده و کانادا تا حدودی در حال افزایش است زیرا امروزه انرژی خورشیدی کم هزینه‌ترین شکل برق جدید در بسیاری از بازارها است.  هزینه یکسان شده برق (LCOE) برای انرژی خورشیدی 29 درصد کمتر از ارزان ترین جایگزین سوخت فسیلی است.

 

 برای از بین بردن انتشار کربن و برآورده کردن اهداف انرژی پاک ایالات متحده و کانادا، تعداد زیادی پنل خورشیدی باید نصب شود.  مطالعه‌ای که به پتانسیل agrivoltaic در کانادا نگاه کرد، پیش‌بینی کرد که اگر مزارع خورشیدی در مقیاس بزرگ نصب کنیم، تنها به ۱٪ از زمین‌های کشاورزی کانادا برای جبران سوخت‌های فسیلی برای تولید برق نیاز داریم. در حالی که این مقدار کمی از زمین است، محققان دانشگاه غربی انتاریو این سوال را مطرح کردند که آیا برای محیط زیست بهتر است چند مزرعه خورشیدی در مقیاس بزرگ وجود داشته باشد یا بسیاری از سیستم‌های کوچکتر روی پشت بام.

 

 مطالعه تجزیه و تحلیل چرخه حیات که توسط ریا روی و جاشوا ام. پیرس انجام شد، سیستم‌های خورشیدی پشت بام را با سیستم‌های PV خورشیدی در مقیاس چند مگاواتی از زمان تولید تا از کار افتادن مقایسه کرد. آنها دریافتند که سیستم های خورشیدی پشت بام 21 تا 54 درصد انرژی ورودی کمتری نیاز دارند، 18 تا 59 درصد معادل دی اکسید کربن کمتری را در انتشار گازهای گلخانه ای تولید می کنند و مقدار کمتری از آب را بین 1 تا 12 درصد در هر کیلووات پیک مصرف می کنند.

wateruse - کدام نیروگاه خورشیدی برای محیط زیست بهتر است: نیروگاه خورشیدی خانگی یا مزرعه بزرگ خورشیدی؟

Source: ClimateRealityProject.org

بنابراین محققان محاسبه کردند که زمان بازگشت سرمایه نیروگاه‌های خورشیدی پشت بامی تقریباً 51 تا 57 درصد کمتر از سیستم‌های خورشیدی نصب‌شده روی زمین در همه مکان‌ها است، دلیل اصلی آن این است که سیستم‌های پشت بام به فنس یا نگهبان مورد استفاده در فضای بزرگ نیاز ندارند. به علاوه اینکه پروژه های نیروگاه خورشیدی مقیاس کوچک معمولاً به خطوط انتقال نزدیکتر هستند، در حالی که بسیاری از نیروگاه‌های بزرگ مقیاس نیاز به اضافه کردن خطوط انتقال برق تا پست محلی دارند که در صورت اجرای مسافت طولانی باید تلفات انتقال را محاسبه کنند.

greenchart - کدام نیروگاه خورشیدی برای محیط زیست بهتر است: نیروگاه خورشیدی خانگی یا مزرعه بزرگ خورشیدی؟

Source: Joshua M. Pearce

محققان دریافتند که کاهش دی اکسید کربن برای تاسیسات خورشیدی در مقیاس بزرگ در سطح زمین، 378 تا 428 درصد بیشتر است، در مقایسه با خورشیدی روی پشت بام برای همان ماژول‌ها.

 

واقعیت

 

در حالی که تحقیقات نشان می‌دهد که نصب‌ نیروگاه‌های خورشیدی کوچک و پشت بامی برای محیط‌زیست بهتر هستند، محققان به این نتیجه رسیدند که ترکیبی از هر دو مورد نیاز است زیرا اگر گرمایش و حمل‌ونقل را در نظر بگیریم، سقف‌های کافی برای رفع نیازهای برق‌رسانی وجود ندارد. به گفته نویسندگان این مطالعه، Agrivoltaics، که دارای کاربرد دوگانه است، مزایایی دارد زیرا از زمین هم برای تولید انرژی و هم برای تولید غذا استفاده می کند.

 

منبع:

pv-magazine

اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

امسال شاهد رکوردشکنی تولید خورشیدی و «تغییر چشمگیر» در تولید باتری بودیم.
رهبر جدید انرژی خورشیدی جهان، در سال 2023 انرژی های تجدیدپذیر را با سرعت سرسام آوری اضافه کرد.
اگر این روند تقویت شود، به زمین کمک می کند تا از سوخت های فسیلی دور شود و از گرم شدن شدید زمین و اثرات آن جلوگیری کند.

انرژی پاک اغلب کم هزینه ترین گزینه است. بر اساس گزارش آژانس بین‌المللی انرژی، کشورها سیاست‌هایی را اتخاذ کردند که از انرژی‌های تجدیدپذیر حمایت می‌کنند، برخی از آنها به نگرانی‌های امنیت انرژی اشاره می‌کنند. این عوامل با نرخ‌های بهره بالا و چالش‌های مداوم در تهیه مواد و قطعات در بسیاری از مکان‌ها مقابله کردند.
آژانس بین المللی انرژی پیش بینی کرد که بیش از 440 گیگاوات انرژی تجدیدپذیر در سال 2023 اضافه شد که بیشتر از کل ظرفیت برق نصب شده آلمان و اسپانیا با هم است.
در اینجا نگاهی به سال در انرژی خورشیدی، باد و باتری داریم.

یک سال رکورد برای انرژی خورشیدی
طبق گزارش آژانس بین‌المللی انرژی‌های تجدیدپذیر (IEA)، چین، اروپا و ایالات متحده هر کدام رکوردهای نصب را برای یک سال ثبت می‌کنند.

افزوده‌های چین، بسته به اینکه پروژه‌های پایان سال چگونه پیش می‌روند، ظرفیت‌های سایر کشورها را بین 180 تا 230 گیگاوات کاهش داد. اروپا 58 گیگاوات اضافه کرد که رشدی 40 درصدی نسبت به سال 2022 داشت.
خورشیدی اکنون ارزان‌ترین شکل برق در اکثر کشورهاست.
مایکل تیلور، تحلیلگر ارشد آژانس بین‌المللی انرژی‌های تجدیدپذیر (IRENA) می‌گوید: «به‌ویژه در اروپا، گسترش استقرار با سرعت سرسام‌آوری انجام شده است.»
زمانی که اعداد نهایی برای سال 2023 مشخص شد، انتظار می‌رود که انرژی خورشیدی از نظر ظرفیت کل انرژی از انرژی آبی در سطح جهان پیشی بگیرد، اما برای برق واقعی تولید شده، انرژی آبی همچنان برای مدتی پیشتاز خواهد بود زیرا می‌تواند در تمام ساعات شبانه روز تولید کند.

در ایالات متحده، کالیفرنیا همچنان بیشترین انرژی خورشیدی را دارد و پس از آن تگزاس، فلوریدا، کارولینای شمالی و آریزونا قرار دارند.

دانیل برست، رئیس موسسه مطالعات محیطی و انرژی، یک سازمان غیرانتفاعی آموزش و سیاست، می‌گوید که مشوق‌های ایالتی و فدرال هر دو تأثیر زیادی بر رشد خورشیدی ایالات متحده داشتند.

با وجود موفقیت خورشیدی در سال 2023، موانعی وجود دارد. برست می گوید که کمبود ترانسفورماتور وجود داشته است، در حالی که نرخ بهره افزایش یافته است.

در ایالات متحده، تولید خورشیدی نیز رشد کرد. ابیگیل راس هاپر، رئیس و مدیر عامل انجمن صنایع انرژی خورشیدی، می‌گوید: «ما تأثیر قانون کاهش تورم را از لحاظ تأمین سوخت سرمایه‌گذاری‌ها دیده‌ایم… بیش از 60 تأسیسات تولید خورشیدی در سال گذشته اعلام شد.

131003788 gettyimages 1614630351 - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

چالش های انرژی باد

تا پایان سال 2023، جهان به اندازه کافی نیروگاه بادی برای تامین برق نزدیک به 80 میلیون خانه اضافه کرد و این یک سال رکورد محسوب می شود.

طبق تحقیقات Wood Mackenzie، مانند خورشیدی، بیشترین رشد با بیش از 58 گیگاوات در چین اضافه شد. به گفته Global Energy Monitor، چین در مسیر رسیدن به هدف بلندپروازانه 2030 خود یعنی 1200 گیگاوات ظرفیت انرژی خورشیدی و بادی پنج سال زودتر از برنامه زمان بندی شده، در صورتی که همه پروژه های برنامه ریزی شده ساخته شوند، پیشی می گیرد.

به گفته شورای جهانی انرژی بادی، چین یکی از معدود بازارهای رو به رشد امسال برای انرژی بادی بود. صدور مجوز سریعتر و سایر بهبودها در بازارهای کلیدی مانند آلمان و هند نیز به افزایش انرژی بادی کمک کرد. وود مکنزی گفت، اما تاسیسات در اروپا نسبت به سال گذشته 6 درصد کاهش یافته است.

چالش‌های کوتاه‌مدت مانند تورم بالا، افزایش نرخ‌های بهره و افزایش هزینه‌های مصالح ساختمانی، برخی از توسعه‌دهندگان نیروگاه بادی اقیانوسی را مجبور به مذاکره مجدد یا حتی لغو قراردادهای پروژه و برخی از توسعه‌دهندگان انرژی بادی مستقر در زمین را مجبور کرد تا پروژه‌ها را تا سال ۲۰۲۴ یا ۲۰۲۵ به تعویق بیندازند.
بادهای معکوس اقتصادی در زمان دشواری برای صنعت نوپای بادی فراساحلی ایالات متحده رخ داد، زیرا تلاش می کند اولین مزارع بادی فراساحلی در مقیاس تجاری را راه اندازی کند. ساخت و ساز در دو در سال جاری آغاز شد. هر دو قصد دارند در اوایل سال 2024 افتتاح شوند و یکی از سایت ها در حال تحویل برق به شبکه ایالات متحده است. مزارع بادی بزرگ فراساحلی برای سه دهه در اروپا و اخیراً در آسیا برق تولید می کنند.

پس از سال‌ها رشد بی‌سابقه، گروه صنعتی امریکن کلین پاور پیش‌بینی می‌کند تا پایان سال تعدادی نیروگاه بادی زمینی در ایالات متحده اضافه شود که تقریباً برای تامین برق 2.7 تا 3 میلیون خانه کافی است. این گروه می گوید توسعه دهندگان از اعتبارات مالیاتی جدیدی که سال گذشته در قانون کاهش تورم تصویب شد، استفاده می کنند، اما سال ها طول میکشد تا پروژه ها به شبکه متصل شوند. از زمان تصویب IRA تاکنون 383 میلیارد دلار (344 میلیارد یورو) سرمایه گذاری در انرژی پاک اعلام شده است.

ما در مورد سال 2023 اساساً به عنوان یک سال عملکرد پایین تر صحبت می کنیم، اما در طرح بزرگ همه چیز، 8 تا 9 گیگاوات هنوز عددی است که باید در مورد آن هیجان زده شد. جان هنسلی، معاون تحقیقات و تجزیه و تحلیل ACP می‌گوید: «نیروگاه های پاک بسیار زیادی به شبکه اضافه خواهد شد.

در سطح جهانی نیز باد امسال کندتر بود. سه بازار برتر امسال همچنان چین، ایالات متحده و آلمان برای انرژی بادی تولید شده در خشکی و چین، بریتانیا و آلمان برای فراساحل هستند.

تحلیلگران پیش‌بینی می‌کنند که صنعت جهانی در سال 2024 رونق گرفته و نزدیک به 12 درصد انرژی بادی بیشتری در سراسر جهان در دسترس خواهد بود.

3d137278 c18d 4865 ba6f 7e4bf697fa0f - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

سالی بزرگ برای باتری ها

به گفته آژانس بین‌المللی انرژی، در میان تلاش‌های مداوم برای کاهش آسیب‌های حمل‌ونقل به اقلیم، روند خودروهای الکتریکی در سال 2023 در سطح جهانی شتاب گرفت و طبق گزارش آژانس بین‌المللی انرژی، از هر پنج خودروی فروخته شده در سال جاری، یک خودرو الکتریکی بوده است. این بدان معنی بود که سال ۲۰۲۳ پرچمدار دیگری برای باتری ها بود.

طبق سیاست عمومی اطلس، بیش از 43.4 میلیارد دلار (39 میلیارد یورو) فقط در ایالات متحده در سال جاری صرف ساخت باتری و بازیافت باتری شده است که عمدتاً به لطف قانون کاهش تورم است. این امر ایالات متحده را در زمین بازی مساوی با اروپا قرار می‌دهد، اما همچنان پشت سر چین یعنی ابرقدرت باتری قرار دارد.

طبق گزارش Benchmark Mineral Intelligence، در مورد کارخانه‌های باتری‌سازی بزرگ که گیگافکتوری نامیده می‌شوند، ایالات متحده و اروپا هر کدام تا اواخر نوامبر 38 کارخانه داشتند. اما در چین 295 کارخانه در حال کار است.

به گفته کارشناسان، این صنعت همچنان به کشف راه‌های مختلف ساخت باتری‌ها بدون وابستگی زیاد به مواد مضر و همچنین راه‌هایی برای پایدارتر کردن قطعات ادامه داده، و به گفته کارشناسان، صنعت بازیافت باتری پیشرفت کرده است.
ایوان هارتلی، تحلیلگر ارشد بنچمارک، می گوید که هزینه مواد خام کلیدی باتری، از جمله لیتیوم نیز به میزان قابل توجهی کاهش یافته است.
پل براون، استاد علم و مهندسی مواد دانشگاه ایلینویز می‌گوید: «هزینه باتری اکنون در مسیری قرار دارد که اکثر آمریکایی‌ها می‌توانند یک خودروی الکتریکی بخرند».

2023 سفر آسانی نبود. صنعت در ایالات متحده، چندین باد مخالف را پشت سر گذاشت. تاسیسات عظیم باتری پاناسونیک در کانزاس با چالش های انرژی مواجه بود. تویوتا باید سایت خود در کارولینای شمالی را تقویت کند. نقض ایمنی و بهداشت در یک کارخانه سرمایه گذاری مشترک بین شرکت جنرال موتورز و LG Energy Solution در اوهایو مشاهده شد و این لیست ادامه دارد.

صرف نظر از منطقه، موانع موجود در مواد معدنی، زنجیره تأمین، مسئول ایجاد زیرساخت های شارژ خواهد ماند. جان آیشبرگر، مدیر اجرایی مؤسسه انرژی حمل‌ونقل، می‌گوید: «این موضوع دستور کار بعدی خواهد بود. اما کارشناسان خوش بین هستند که رشد باتری در سراسر جهان ادامه خواهد داشت.

منبع خبر : Isabella O’Malley, Jennifer McDermott, Alexa St. John with AP
Published on 29/12/2023

تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

    انتقال انرژی نیاز به زیرساخت مناسب دارد و احداث شبکه‌های انتقال برق و زیرساخت‌های توزیع برق برای انتقال انرژی تولید شده از نیروگاه‌ها به مناطق مصرف انرژی ضروری است. این زیرساخت‌ها باید به روز رسانی شده و به توسعه برسند تا تأمین انرژی پایدار و بهینه را تضمین کنند. زیرساخت‌های لازم برای انتقال انرژی از محل تولید به محل مصرف شامل خطوط و تجهیزات انتقال برق، زیرساخت‌های نگهداری، کنترل و اندازه‌گیری میشود.

   خطوط انتقال برق شامل سیم‌ها، پایه ها، و سازه‌های حمایتی هستند که انرژی تولیدی از نیروگاه‌ها را از منطقه تولید به منطقه مصرف منتقل می‌کنند. این زیرساخت از انتقال بهینه انرژی به نقاط مختلف و حفظ پایداری شبکه برق کمک می‌کند. احداث و نگهداری خطوط انتقال برق هزینه‌های گسترده‌ای دارد که به عوامل مختلفی بستگی دارد و شامل هزینه‌های مرتبط با طراحی، تهیه مواد، نصب تجهیزات، و ساختارهای حمایتی خطوط انتقال برق است و طول خط انتقال، نوع تجهیزات استفاده شده، و پیچیدگی شرایط محیطی ازعوامل تاثیرگذار روی این هزینه هاست.

   تجهیزات انتقال برق شامل ترانسفورماتورها، سوئیچ‌ها، و تجهیزات کنترلی است که در سیستم انتقال برق به کنترل جریان و ولتاژ و مدیریت شبکه کمک می‌کنند. در ادامه به شرح کاملی از این تجهیزات می پردازیم.

articleFiles 45934648 3jlav 1647155329 copy - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

ترانسفورماتورها:

   ترانسفورماتورها به عنوان یکی از اجزای اصلی سیستم‌های انتقال و توزیع برق، جهت تغییر ولتاژ بین خطوط انتقال برق به کار می‌روند. انواع مختلفی دارند، در زیر به برخی انواع ترانسفورماتورها و ویژگی‌های آنها اشاره می‌شود:

 

  1. ترانسفورماتورهای توزیع:

ترانسفورماتورهای توزیع نقش مهمی در سیستم‌های انتقال و توزیع برق ایفا می‌کنند. این ترانسفورماتورها عمدتاً برای تنظیم ولتاژ برق از سطح انتقال به سطح توزیع به کار می‌روند. در زیر توضیحات بیشتری درباره ترانسفورماتورهای توزیع آورده شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای توزیع برای انتقال برق از سطح انتقال (که ولتاژ آن بالاتر است) به سطح توزیع (که ولتاژ آن پایین‌تر است) به کار می‌روند.

   – مهمترین وظیفه آنها تغییر ولتاژ برق به مقداری مناسب برای استفاده در صنعت، شهری، یا مناطق روستایی است.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای توزیع دارای دو سیم پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

مزایا:

   – تغییر ولتاژ به صورت ایمن و مؤثر.

   – عمر طولانی و نیاز به نگهداری کم.

   – افت ولتاژ و توان‌های فراوانی را به حداقل می‌رسانند.

 کاربردها:

   – در شبکه‌های توزیع برق شهری، صنعتی و روستایی مورد استفاده قرار می‌گیرند.

   – در ایستگاه‌های تقسیم بار برای تنظیم ولتاژ و توزیع به مصارف مختلف.

 

۳. انواع ترانسفورماتورهای توزیع:

   – ترانسفورماتورهای روغنی: از روغن به عنوان عایق استفاده می‌کنند و عمدتاً در محیط‌های صنعتی استفاده می‌شوند.

۱. مزایا:

   – عایق کاری خوب: روغن به عنوان یک عایق خوب در ترانسفورماتورهای روغنی عمل می‌کند.

   – خنک‌کنندگی: روغن به خوبی حرارت تولید شده در ترانسفورماتور را انتقال می‌دهد.

   – عملکرد پایدار در شرایط مختلف: توانایی کارکرد در شرایط محیطی مختلف از جمله دما و رطوبت را داراست.

۲. معایب:

   – احتمال نشت روغن: این ترانسفورماتورها با مشکل احتمال نشت روغن مواجه هستند.

   – اندازه و وزن بالا: نسبت به ترانسفورماتورهای خشک، این نوع ترانسفورماتورها اندازه و وزن بیشتری دارند.

   – نیاز به فضای اضافی برای جلوگیری از خطرات احتمالی نشت روغن.

 

   – ترانسفورماتورهای خشک: بدون استفاده از روغن یا گاز به عنوان عایق عمل می‌کنند و اغلب در مکان‌هایی که استفاده از روغن ممنوع یا مشکل است، مورد استفاده قرار می‌گیرند.

مقایسه ترانسفورماتورهای روغنی و خشک از نظر مزایا و معایب نشان می‌دهد که هر یک از این انواع ترانسفورماتور دارای ویژگی‌ها و کاربردهای خاصی هستند. در زیر به مقایسه دقیق این دو نوع ترانسفورماتور پرداخته شده است:

۱. مزایا:

   – بدون روغن: از عایق‌های خشک برای جلوگیری از نیاز به روغن استفاده می‌کنند.

   – نگهداری آسان: به دلیل عدم وجود روغن، نگهداری و تعمیرات آسان‌تر و اقتصادی‌تر هستند.

   – احتمال کمتر نشت: به دلیل عدم وجود روغن، خطر نشت کمتر است.

 

۲. معایب:

   – کمترین خنک‌کنندگی: نسبت به ترانسفورماتورهای روغنی، توانایی خنک‌کنندگی کمتری دارند.

   – مناسب برای کاربردهای محدودتر: بیشتر در محیط‌های خشک و با دماهای پایین مورد استفاده قرار می‌گیرند.

 

با توجه به نیازها و شرایط محیطی، انتخاب بین ترانسفورماتورهای روغنی و خشک بستگی به موارد خاص هر کاربرد دارد. همیشه تصمیم بهتر از طریق مشاوره با متخصصان ترانسفورماتور و شناخت دقیق از نیازهای سیستم خود به دست می‌آید.

 

   – ترانسفورماتورهای گازی: ترانسفورماتورهای گازی یا همان ترانسفورماتورهای گاز‌دار Gas-Insulated Transformers یا GIS) ) نوعی ترانسفورماتورهستند که مواد عایق میانه بین پیچ‌ها و هسته آن گاز است و به جای عایق‌های سنتی نفتی یا عایق‌های جامد مورد استفاده قرار می‌گیرد. معمولاً گاز مورد استفاده در این ترانسفورماتورها گاز سولفورهگزا فلوراید ( (SF6است که خواص عایقی عالی دارد.

مزایا:

   – طراحی فشرده: ترانسفورماتورهای گازی نسبت به ترانسفورماتورهای سنتی با عایق روغنی دارای طراحی فشرده‌تری هستند که برای نصب در مناطق شهری با فضای محدود مناسب هستند.

   – کاهش نیاز به نگهداری: طراحی محافظت شده باعث کاهش نیاز به نگهداری می‌شود.

   – مقاومت الکتریکی بالا: گاز SF6 مقاومت الکتریکی بالایی دارد که امکان انجام تنظیمات الکتریکی را فراهم می‌کند.

   – تقویت ایمنی: محفظه مهر و مومی به افزایش ایمنی کمک می‌کند با جلوگیری از فرار گاز و کاهش خطر آتش سوزی.

 کاربردها:

   – نصب‌های شهری: ترانسفورماتورهای گازی به عنوان یک انتخاب مناسب برای نصب در مناطق شهری با فضای محدود شناخته شده‌اند.

 

electrical substation - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

  1. ترانسفورماتورهای قدرت (انتقال):

ترانسفورماتورهای قدرت نقش حیاتی در سیستم‌های انتقال و توزیع برق دارند. این ترانسفورماتورها عمدتاً برای انتقال انرژی برق از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و نقش ترانسفورماتورهای قدرت پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای قدرت برای تغییر ولتاژ برق به منظور انتقال به فواصل بلند از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی استفاده می‌شوند.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای قدرت دارای دو یا چند پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

 

۳. انواع ترانسفورماتورهای قدرت:

   – ترانسفورماتورهای انتقال: جهت انتقال انرژی برق به فواصل بلند استفاده می‌شوند و ولتاژ آنها معمولاً بسیار بالاست.

   – ترانسفورماتورهای توزیع: برای انتقال انرژی به فواصل کمتر و در سطح شهری و صنعتی به کار می‌روند و ولتاژ آنها کمتر از ترانسفورماتورهای انتقال است.

 

۴. مزایا:

   – انتقال انرژی با افت ولتاژ کم.

   – افزایش یا کاهش ولتاژ به شکل مستمر و به صورت اتوماتیک.

   – عمر طولانی و نیاز به نگهداری کم.

 

۵. معایب:

   – اندازه و وزن بالا: برخی از ترانسفورماتورهای قدرت به دلیل توان بالا، اندازه و وزن بسیار بالایی دارند.

   – نیاز به مکان‌های ویژه برای نصب و نگهداری.

 

۶. کاربردها:

   – استفاده اصلی این ترانسفورماتورها در نقاط انتقال انرژی بین نیروگاه‌ها، ایستگاه‌های انتقال، و سیستم‌های توزیع برق است.

 

ترانسفورماتورهای قدرت با توجه به توان، نیازهای ولتاژی، و شرایط محیطی، به صورت اختصاصی برای هر نقطه انتقال و توزیع طراحی و استفاده می‌شوند. این ترانسفورماتورها جزء اجزای اساسی سیستم‌های انتقال و توزیع برق به شمار می‌آیند.

  

 

ترانسفورماتورهای یکپارچه (Compact):

ترانسفورماتورهای یکپارچه یا همان  Compact Transformersنوعی ترانسفورماتور هستند که به دلیل طراحی خاص و اندازه کوچک، معمولاً برای فضاها و نقاط محدود به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و کاربردهای ترانسفورماتورهای یکپارچه پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای یکپارچه با طراحی کوچک و یکپارچه خود به منظور استفاده در فضاهای محدود و نیازهای خاص ساخته شده‌اند.

 

۲. ساختار و عملکرد:

   – این ترانسفورماتورها به صورت یکپارچه و با اندازه کوچک‌تر و وزن سبک‌تر نسبت به ترانسفورماتورهای سنتی ساخته می‌شوند.

   – توان ولتاژی و جریانی که این ترانسفورماتورها توانسته‌اند پوشش دهند معمولاً کمتر از ترانسفورماتورهای بزرگ و سنتی است.

 

۳. مزایا:

   – اندازه کوچک و وزن سبک: این ترانسفورماتورها مناسب برای فضاهای محدود و نیازهای کاربردی خاص هستند.

   – نصب و استفاده آسان: به دلیل اندازه کوچک، نصب و نگهداری آنها نسبت به ترانسفورماتورهای بزرگتر ساده‌تر است.

   – قابلیت تنظیم ولتاژ: برخی از ترانسفورماتورهای یکپارچه دارای قابلیت تنظیم ولتاژ هستند.

 

۴. کاربردها:

   – در ایستگاه‌های تقسیم بار، که نیاز به ترانسفورماتورهای کوچک و مؤثر برای توزیع برق به مصارف مختلف دارند.

   – در صنایع خاص و اتوماسیون، جایی که فضا محدود و نیاز به تنظیم ولتاژ وجود دارد.

 

ترانسفورماتورهای یکپارچه به دلیل اندازه کوچک و وزن سبک، مختص فضاهای محدود و نیازهای خاصی هستند. این ترانسفورماتورها به عنوان یکی از اجزای مهم در سیستم‌های برق و اتوماسیون برای افزایش بهره‌وری و انجام وظایف خاص به کار می‌روند.

   هر نوع ترانسفورماتور بر اساس نیازها و محیط کاربردی خود مزایا و معایب خاصی دارد. انتخاب نوع مناسب ترانسفورماتور بر اساس شرایط خاص سیستم برق و نیازهای انتقال و توزیع انرژی اهمیت زیادی دارد.

 

 تجهیزات حفاظت:

تجهیزات حفاظت در خطوط انتقال برق برای محافظت از تجهیزات و انسان‌ها در مواجهه با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ، یا افزایش جریان و… استفاده می‌شوند. این تجهیزات با شناسایی خطاها و حوادث به سرعت و به صورت اتوماتیک عملکرد می‌کنند تا خسارت به تجهیزات و افراد را کاهش دهند. در زیر به شرح تجهیزات حفاظت خطوط انتقال برق پرداخته شده است:

 

۱. رله‌های حفاظت:

   – این رله‌ها به صورت اتوماتیک عملکرد دارند و به تشخیص خطاها مانند اتصال کوتاه، افت ولتاژ، جریان بیش از حد، و … می‌پردازند.

   – رله‌های حفاظت بر اساس استانداردهای تعیین شده برای حفاظت از تجهیزات و خطوط برق تنظیم می‌شوند.

 

۲. ترمینال‌ها و سوئیچ‌های حفاظتی:

   – ترمینال‌ها و سوئیچ‌های حفاظتی به صورت مکانیکی یا الکتریکی جهت قطع و وصل سریع خطوط برق در صورت حادثه به کار می‌روند.

 

۳. ترانسفورماتورهای حفاظتی:

   – این ترانسفورماتورها وظیفه تغییر ولتاژ جهت اندازه‌گیری جریان و ولتاژ در خطوط را دارند تا اطلاعات لازم برای تشخیص حوادث به رله‌های حفاظت منتقل شود.

 

۴. کمپانساتورهای دینامیک:

   – برای مدیریت ولتاژ در خطوط انتقال از کمپانساتورهای دینامیک استفاده می‌شود تا افت ولتاژ در سیستم‌ها جلوگیری شود.

 

۵. سیستم‌های مانیتورینگ:

   – سیستم‌های مانیتورینگ مدام وضعیت خطوط را نظارت کرده و در صورت وقوع حوادث، اطلاعات را به تجهیزات حفاظت اطلاع می‌دهند.

 

۶. سوئیچ‌های خودکار:

   – سوئیچ‌های خودکار برای اتصال و قطع خودکار خطوط در شرایط خاص و زمان‌های اضطراری به کار می‌روند.

 

۷. کنترل‌ها و تجهیزات اتوماسیون:

   – تجهیزات اتوماسیون و کنترل‌ها برای مدیریت اتوماتیک خطوط و ایستگاه‌های انتقال برق به کار می‌روند.

 

 این تجهیزات حفاظت، ایمنی سیستم‌های برق را حفظ کرده و در مواجهه با حوادث احتمالی سریعاً و به صورت اتوماتیک عمل میکنند تا خسارت‌ها را به حداقل برسانند.

Figure1 0 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

تجهیزات کنترل و کمکی:

تجهیزات کنترل و کمکی در خطوط انتقال برق برای مدیریت و کنترل بهینه‌تر جریان برق، تنظیم ولتاژ، و مدیریت عملیات انتقال انرژی بین ایستگاه‌ها به کار می‌روند. این تجهیزات نقش مهمی در بهره‌وری و پایداری سیستم‌های برق ایفا می‌کنند. در زیر به شرح تجهیزات کنترل و کمکی در خطوط انتقال برق پرداخته شده است:

 

۱. سیستم‌های کنترل:

   – سیستم‌های کنترل مسئول مدیریت عملیات کلان شبکه برق و تنظیم پارامترهای مختلف مانند ولتاژ، جریان، و توان هستند.

   – این سیستم‌ها از الگوریتم‌ها و منطق کنترلی برای اجرای تصمیمات بهینه بر اساس وضعیت شبکه استفاده می‌کنند.

 

۲. واحدهای کنترل کننده فرکانس (Governor):

   – این واحدها به تنظیم سرعت ژنراتورها و ایستگاه‌ها بر اساس نیازهای فرکانس شبکه برق می‌پردازند تا تطابق تولید و مصرف انرژی حفظ شود.

 

۳. کنترل‌های ولتاژ (Voltage Control):

   – این کنترل‌ها واحدهای تنظیم ولتاژ در نقاط مختلف شبکه برق هستند تا ولتاژ در سطوح مشخصی نگهداری شود.

 

۴. تجهیزات کمکی:

   – ترمینال‌ها و تجهیزات کمکی برای مدیریت انرژی و تجهیزات در ایستگاه‌های انتقال به کار می‌روند.

   – این تجهیزات شامل کمپانساتورها، ترانسفورماتورهای کمکی، باتری‌ها و سیستم‌های UPS می‌شوند.

 

۵. سیستم‌های ارتباطات:

   – سیستم‌های ارتباطات برای انتقال داده‌ها و اطلاعات بین ایستگاه‌ها، زیرسیستم‌های کنترل، و تجهیزات مختلف استفاده می‌شوند.

 

۶. مانیتورینگ و ابزار دقیق:

   – دستگاه‌های مانیتورینگ و ابزار دقیق برای نظارت بر وضعیت تجهیزات، اندازه‌گیری جریان، ولتاژ و سایر پارامترهای سیستم به کار می‌روند.

 

۷. تجهیزات حفاظت و کنترل:

   – تجهیزات حفاظت و کنترل برای تشخیص و مقابله با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ و … مورد استفاده قرار می‌گیرند.

 

تمام این تجهیزات کنترل و کمکی با همکاری و هماهنگی با سیستم‌های حفاظتی و مانیتورینگ، ایمنی و بهره‌وری شبکه برق را افزایش می‌دهند. این تجهیزات بر اساس تکنولوژی‌های پیشرفته جهت بهبود عملکرد و اطمینان‌پذیری سیستم‌های برق به‌کار می‌روند.

 

 

خطوط انتقال برق:

خطوط انتقال برق از جمله اجزای حیاتی در سیستم‌های برق هستند که برای انتقال انرژی برق از منبع تولید به مصارف نهایی مورد استفاده قرار می‌گیرند. این خطوط اغلب به صورت یک سیستم شبکه‌ای و پیچیده، بر روی ایستاه‌ها و ستون‌ها قرار گرفته و نقل قدرت برق را امکان‌پذیر می‌سازند. در زیر به شرح اجزای مهم خطوط انتقال برق پرداخته شده است:

 

۱.انواع خطوط انتقال:

   – خطوط انتقال مستقیم (Overhead Lines) :خطوطی که بر روی ستون‌ها یا برج‌ها نصب شده و به وسیله سیم‌های هوایی منتقل می‌شود.

   – خطوط زیرزمینی (Underground Cables): خطوطی که در زیر زمین قرار دارند و انرژی برق را به وسیله کابل‌های زیرزمینی انتقال می‌دهند.

 

  1. ویژگی‌های خطوط انتقال:

   – ولتاژ عملیاتی: خطوط انتقال برق معمولاً با ولتاژ‌های بسیار بالا عمل می‌کنند تا از افت انرژی در مسافت‌های طولانی جلوگیری شود.

   – ساختار و مواد: ساختار خطوط انتقال از جنس موادی مانند فولاد، آلومینیوم، و یا مخلوطی از این مواد استفاده می‌کند.

EMS starts work on EUR 8 15 million Bistrica substation e1529062487986 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

تأثیر نیروگاه‌های تجدیدپذیر برهزینه‌های تجهیزات و خطوط انتقال برق

نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، نیروگاه بادی و هیدروالکتریک به طور قابل توجهی بر ساختار و هزینه‌های تجهیزات و خطوط انتقال برق تأثیر می‌گذارند. این تأثیرات می‌توانند در چند زمینه مهم مشاهده شوند:

 

۱. تولید برق ناپایدار:

   – نیروگاه‌های تجدیدپذیر بر پایه باد، خورشید یا آب، تولید برق ناپایداری دارند که به دلیل شرایط آب و هوایی متغیر و تغییرات در سطح تابش خورشید یا سرعت باد اتفاق می‌افتد.

   – این ناپایداری توسط سیستم‌های انتقال برق باید مدیریت شود تا پایداری و امنیت شبکه برق حفظ شود. که در مقاله گذشته با عنوان ” یک روش طراحی موثر برای نیروگاه های فتوولتائیک خورشیدی  ” راه حل آن ارائه شده است. به منظور تعدیل نوسانات تولید نیروگاه‌های تجدیدپذیر، فناوری‌های ذخیره‌سازی انرژی نیز در شبکه برق معرفی می‌شوند. این ذخیره‌سازی ممکن است هزینه‌های اضافی برای نصب و نگهداری داشته باشد.

 

  1. بهبود زیرساخت‌ها:

   – با توسعه نیروگاه‌های تجدیدپذیر، نیاز به بهبود و توسعه زیرساخت‌های انتقال برق نیز احساس می‌شود. این شامل افزایش ظرفیت و بهبود کیفیت خطوط انتقال و تجهیزات مرتبط است.

 

  1. کاهش افت ولتاژ:

   – نیروگاه‌های تجدیدپذیر مانند نیروگاه‌های خورشیدی و بادی در نواحی دور از مراکز مصرف نصب می‌شوند. این نیروگاه‌ها می‌توانند افت ولتاژ را در نواحی دورتر از مراکز تولید انرژی کاهش دهند. کاهش افت ولتاژ ممکن است نیاز به احداث خطوط انتقال با قطر بزرگتر را کاهش داده و هزینه‌های احداث و نگهداری را در خطوط انتقال برق کاهش دهد.

 

  1. کاهش ازدحام:

کاهش ازدحام در سیستم انتقال برق به معنای کاهش ترافیک و فشار در شبکه انتقال برق است و می‌تواند به عنوان یک مزیت مهم در نتیجه استفاده از نیروگاه‌های تجدیدپذیرمثل نیروگاه‌ خورشیدی و بادی در سیستم انرژی مدنظر قرار گیرد. برخی از جنبه‌های کاهش ازدحام کاهش افت شبکه بین نقاط تولید و مصرف است. این اقدام ممکن است باعث کاهش طول خطوط انتقال و ازدحام مرتبط با آنها شود. نیروگاه‌های تجدیدپذیر معمولاً از منابع محلی انرژی مانند نور خورشید در نیروگاه خورشیدی یا باد در نیروگاه بادی بهره می‌برند. استفاده از این منابع محلی نیاز به انتقال انرژی از مناطق دورتر را کاهش میدهد که می‌تواند هزینه‌های انتقال و از دست دادن انرژی را به حداقل برساند.

همچنین، استفاده از تکنولوژی‌های هوشمند و سیستم‌های اتوماسیون در اداره شبکه انتقال برق می‌تواند به بهبود بهره‌وری و مدیریت ازدحام در شبکه برق کمک کند. این تدابیر می‌توانند در کاهش هزینه‌های انتقال انرژی و افزایش پایداری سیستم تأثیرگذار باشند.

تأثیرات دقیق بر هزینه‌های تجهیزات و خطوط انتقال برق با توجه به مکان، نوع نیروگاه تجدیدپذیر، و شرایط محیطی متفاوت خواهد بود. این تأثیرات باید به عنوان یکی از عوامل در برنامه‌ریزی و طراحی سیستم انتقال برق در نظر گرفته شوند.

بنابراین، تأثیر نیروگاه‌های تجدیدپذیر بر هزینه‌ها و ساختار تجهیزات و خطوط انتقال برق نیازمند مدیریت دقیق، فناوری‌های پیشرفته و توسعه زیرساخت‌های مناسب است.

 

نویسنده: مهدی پارساوند

 

 

ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺳﺒﺰوار و ﯾﺰد ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ 10 درﺻﺪ از ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮار

ﻣﻘﺎﻟﻪي ﺣﺎﺿـﺮ ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار و ﯾﺰد را ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ ده درﺻﺪ از
ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮارﻫﺎي اﯾﻦ دو ﺷﻬﺮﺳﺘﺎن ﺑﺮرﺳﯽ ﻣﯽﮐﻨﺪ. از ﻧﺮم اﻓﺰار ﮐﺎﻣﻔﺎر ﺑﺮاي ﻣﻄﺎﻟﻌﺎت اﻣﮑﺎن ﺳـﻨﺠﯽ اﺳـﺘﻔﺎده ﺷـﺪه اﺳـﺖ. ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎه در دو ﺷـﻬﺮﺳﺘﺎن اﻗﺘﺼﺎدي

ﺑﻪ ﺗﺮﺗﯿﺐ 36,39 و 37,67 درﺻﺪ

ارزﯾﺎﺑﯽ ﺷـﺪه اﺳﺖ. ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﻧﯿﺮوﮔﺎهﻫﺎي 14,5 و 42,5 ﻣﮕﺎواﺗﯽ ﺳﺒﺰوار و ﯾﺰد
ﺑﻮده و دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﺑﺮاي ﭘﺮوژهﻫﺎي ﻣﻮرد ﻧﻈﺮ 6,4 و 6,17 ﺳﺎل ﺑﺮآورد ﺷﺪه اﺳﺖ.

1 ﻣﻘﺪﻣﻪ

در ﺳﺎلﻫﺎي اﺧﯿﺮ، ﺑﺎ ﺗﻮﺳﻌﻪ ﺳﺮﯾﻊ ﺟﺎﻣﻌﻪ و اﻗﺘﺼﺎد، ﻧﯿﺎز ﺑﺸﺮ ﺑﻪ اﻧﺮژي ﺑﻪ ﻃﻮر ﭼﺸﻤﮕﯿﺮي اﻓﺰاﯾﺶ ﯾﺎﻓﺘﻪ اﺳﺖ . ﺑﻪ دﻟﯿﻞ ﮐﺎﻫﺶ ﻣﻨﺎﺑﻊ ﻓﺴﯿﻠﯽ در اﺛﺮ اﻓﺰاﯾﺶ ﻣﺼﺮف اﻧﺮژي و ﻫﻢ ﭼﻨﯿﻦ ﻣﺴﺎﺋﻞ زﯾﺴﺖ ﻣﺤﯿﻄﯽ ، اﺳﺘﻔﺎده از ﻣﻨﺎﺑﻊ اﻧﺮژي ﺗﺠﺪﯾﺪﮐﺸﻮر اﯾﺮان ﺑﺎ داﺷﺘﻦ ﻣﯿﺎﻧﮕﯿﻦ 300 روز آﻓﺘﺎﺑﯽ در ﺳﺎل ، ﭘﺘﺎﻧﺴﯿﻞ ﺑﺴﯿﺎر ﺧﻮﺑﯽ ﺑﺮاي ﺑﻬﺮهﮔﯿﺮي از اﻧﺮژي ﺧﻮرﺷﯿﺪي را داراﺳﺖ. ﯾﮑﯽ از ﻣﻬﻢﺗﺮﯾﻦ ﻣﺰاﯾﺎي ﺳﯿﺴﺘﻢﻫﺎي ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ، ﻗﺎﺑﻠﯿﺖ اﺳﺘﻔﺎده ﺑﻪ ﺻﻮرت ﻣﺘﺼﻞ ﺑﻪ ﺷﺒﮑﻪ و ﻣﺴﺘﻘﻞ از ﺷﺒﮑﻪ اﺳﺖ[1] . در ﮔﺰارش ﺣﺎﺿﺮ، ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎهﻫﺎي ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺳﺒﺰوار و ﯾﺰد ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ ده درﺻﺪ از ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮارﻫﺎي اﯾﻦ دو ﺷﻬﺮﺳﺘﺎن ، ﻣﻮرد ارزﯾﺎﺑﯽ ﻣﺎﻟﯽ ﻗﺮار ﺧﻮاﻫﺪ ﮔﺮﻓﺖ.

اﻧﺘﺨﺎب ﺻﺤﯿﺢ ﻣﺎژول، اﯾﻨﻮرﺗﺮ، ﻇﺮﻓﯿﺖ و ﭼﯿﺪﻣﺎن، ﺳﺒﺐ اﻓﺰاﯾﺶ ﺑﻬﺮهوري ﻧﯿﺮوﮔﺎه و ﮐﺎﻫﺶ ﻫﺰﯾﻨﻪ ﺗﻤﺎمﺷﺪه ﻣﯽﮔﺮدد. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﻮﻗﻌﯿﺖ ﺟﻐﺮاﻓﯿﺎﯾﯽ ﻣﺤﻞ اﺣﺪاث ﻧﯿﺮوﮔﺎه، آراﯾﺶ آراﯾﻪﻫﺎي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ، ﺳﻄﺢ اﺷﻐﺎل ﺷﺪه و ﺟﻠﻮﮔﯿﺮي از ﺳﺎﯾﻪ اﻓﮑﻨﯽ ﻣﺎژولﻫﺎ ﺑﺮ روي ﻫﻢ، زاوﯾﻪي ﺑﻬﯿﻨﻪ ﭘﻨﻞﻫﺎ ﻗﺎﺑﻞ اﺳﺘﺨﺮاج اﺳﺖ[2].ﺑﻌﺪ از اﻧﺘﺨﺎب ﻣﺪل ﻣﺎژول و ﻣﺒﺪل، ﻗﯿﻤﺖ و ﺗﻌﺪاد ﭘﻨﻞﻫﺎي ﻣﻮرد ﻧﯿﺎز، ﺗﻮان ﺧﺮوﺟﯽ ﻧﯿﺮوﮔﺎه، ﻣﺴﺎﺣﺖ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎز،ﻫﺰﯾﻨﻪﻫﺎي ﺟﺎﻧﺒﯽ و …، ﺑﺮرﺳﯽ اﻗﺘﺼﺎدي ﺻﻮرت ﻣﯽﮔﯿﺮد.

2 ﻣﻮﻗﻌﯿﺖ ﺟﻐﺮاﻓﯿﺎﯾﯽ و ﺷﺮاﯾﻂ اﻗﻠﯿﻤﯽ ﻣﻨﻄﻘﻪ

ارﺗﻔﺎﻋﺎت اﻃﺮاف ﻣﺤﻞ اﺣﺪاث و آﻧﺎﻟﯿﺰ ﺳﺎﯾﻪاﻧﺪازي دور در اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ از اﻫﻤﯿﺖ زﯾﺎدي ﺑﺮﺧﻮردار اﺳﺖ. [2]ﻣﯿﺰان ﺗﺎﺑﺶ ﺧﻮرﺷﯿﺪ ﮐﻪ ﺑﻪ ﺳﻄﺢ ﻣﺎژولﻫﺎي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﻣﯽﺗﺎﺑﺪ، ﻧﻘﺶ ﮐﻠﯿﺪي در ﻋﻤﻠﮑﺮد ﻓﻨﯽ و اﻗﺘﺼﺎدي ﻧﯿﺮوﮔﺎهﺧﻮرﺷﯿﺪي اﯾﻔﺎ ﻣﯽﮐﻨﺪ.

ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار:

ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار ﯾﮑﯽ از ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺑﺰرگ اﺳﺘﺎن ﺧﺮاﺳﺎن رﺿﻮي اﺳﺖ. ﻣﺮﮐﺰ اﯾﻦ ﺷﻬﺮﺳﺘﺎن، ﺷﻬﺮ ﺳﺒﺰوار اﺳﺖ. اﯾﻦﺷﻬﺮﺳﺘﺎن ﺑﺎ ﻣﺴﺎﺣﺖ 16,038 ﮐﯿﻠﻮﻣﺘﺮ ﻣﺮﺑﻊ در ﻣﺨﺘﺼﺎت 13 درﺟﻪ ﺷﺮﻗﯽ و 36 درﺟﻪ ﺷﻤﺎﻟﯽ ﻗﺮار دارد. ﻗﺴﻤﺖ ﺷﻤﺎﻟﯽ وﺷﺮﻗﯽ اﯾﻦ ﺷﻬﺮﺳﺘﺎن ﮐﻮﻫﺴﺘﺎﻧﯽ و داراي اﻗﻠﯿﻢ ﻣﻌﺘﺪل و در ﻗﺴﻤﺖﻫﺎي ﺟﻠﮕﻪاي ﺑﺎ ﻫﻮاي ﮔﺮم ﻫﻤﺮاه اﺳﺖ. ﺑﺨﺶ ﻣﺮﮐﺰي ﺳﺒﺰوار ﺑﺎ ﻣﻘﺪار 90,201,150 و ﺑﺨﺶ ﺷﺸﺘﻤﺪ ﺑﺎ 66,910,770 وات ﺑﺮ ﻣﺘﺮﻣﺮﺑﻊ، ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﯿﺸﺘﺮﯾﻦ وﮐﻤﺘﺮﯾﻦ ﻣﯿﺰان ﺗﺎﺑﺶ ﮐﻞ را دارﻧﺪ. [3] ﻧﺘﯿﺠﻪي ﻣﻄﺎﻟﻌﻪاي ﮐﻪ در ﺳﺎل 2017 اﻧﺠﺎم ﺷﺪه اﺳﺖ، ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ 95,82 درﺻﺪ از ﺳﻄﺢ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار داراي ﭘﺘﺎﻧﺴﯿﻞ ﻋﺎﻟﯽ، 4,01 درﺻﺪ داراي ﭘﺘﺎﻧﺴﯿﻞ ﺧﯿﻠﯽ ﺧﻮب و 0,15 درﺻﺪ داراي ﭘﺘﺎﻧﺴﯿﻞ ﺧﻮب ﻫﺴﺘﻨﺪ .

ﺷﻬﺮﺳﺘﺎن ﯾﺰد:

ﺷﻬﺮ ﯾﺰد، در 630 ﮐﯿﻠﻮﻣﺘﺮي ﺟﻨﻮب ﺷﺮﻗﯽ ﺗﻬﺮان، ﺑﯿﻦ دو ﺑﯿﺎﺑﺎن دﺷﺖ ﮐﻮﯾﺮ و دﺷﺖ ﻟﻮت و روي ﮐﻤﺮﺑﻨﺪ زرد ﺗﺎﺑﺸﯽ ﻗﺮار دارد ﮐﻪ ﯾﮑﯽ از داغﺗﺮﯾﻦ ﻣﮑﺎن ﻫﺎي ﺟﻬﺎن اﺳﺖ. آب و ﻫﻮاي ﮔﺮم و ﺧﺸﮏ در ﯾﺰد ﺑﺮاي ﺗﻮﻟﯿﺪ اﻧﺮژي ﺧﻮرﺷﯿﺪي ﻣﻨﺎﺳﺐ اﺳﺖ.

ﺑﺮاﺳﺎس ﺑﺮآوردﻫﺎي اﻧﺠﺎم ﺷﺪه، اﻧﺮژي ﺗﺎﺑﺸﯽ ورودي ﺑﻪ ﯾﺰد در ﺣﺪود 7,787 ﻣﮕﺎژول ﺑﺮ ﻣﺘﺮ ﻣﺮﺑﻊ اﺳﺖ[5].

1 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ :1 ﭘﺘﺎﻧﺴﯿﻞ ﺗﺎﺑﺶ ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﺑﺮ ﺳﻄﺢ اﯾﺮان [4]

 

.3 ﻃﺮاﺣﯽ

ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ دادهﻫﺎي ﺑﻪدﺳﺖ آﻣﺪه از ﺷﻬﺮﺳﺘﺎنﻫﺎ و ﻣﺎژول ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ، ﺗﻌﺪاد ﻣﺎژول، اﯾﻨﻮرﺗﺮ و ﻣﺴﺎﺣﺖ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎزﻣﺤﺎﺳﺒﻪ ﻣﯽﮔﺮدد. ﺳﭙﺲ ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي ﻃﺮح ﺻﻮرت ﻣﯽﮔﯿﺮد.

ﺟﺪول :1 ﻣﺸﺨﺼﻪﻫﺎي ﻋﻤﻮﻣﯽ ﺷﻬﺮﺳﺘﺎنﻫﺎ

 

ﻧﺎم ﺷﻬﺮ ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻻﻧﻪ[4] ﺑﺮق ﻣﺼﺮﻓﯽ ﺧﺎﻧﻮار در

ﺳﺎل )ﻣﮕﺎوات[6,7](

ﻣﯿﺎﻧﮕﯿﻦ ﻗﯿﻤﺖ زﻣﯿﻦ ﺑﺮاي

اﺣﺪاث)ﻫﺰار ﺗﻮﻣﺎن[8](

ﺳﺒﺰوار 1,750 220,000 12-10
ﯾﺰد 1,890 700,000 20

 

ﺟﺪول 2 : ﻣﺸﺨﺼﺎت ﭘﻨﻞ و ﻣﺒﺪل )اﯾﻨﻮرﺗﺮ[9](

 

ﻧﺎم ﻣﺤﺼﻮل ﻣﺪل ﺷﺮﮐﺖ ﺗﻮﻟﯿﺪ

ﮐﻨﻨﺪه

ﻣﺤﺪوده ﺗﻮان اﺑﻌﺎد(mm3) ﻗﯿﻤﺖ

($/Wp)

ﺑﺎزده

(%)

ﻣﺎژول NS-250-290p6 Polycrown

solar tech

250-290Wp 35*992*1640 0,1165 18
ﻣﺒﺪل اﯾﻨﻮرﺗﺮ CNS330 Constant

technology

160-250KW 0,0391 92

ﻣﻌﺎدﻻت ﺣﺎﮐﻢ :

ﺑﻪ ﻣﻨﻈﻮر ﻃﺮاﺣﯽ ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﻓﺮﺿﯿﺎت زﯾﺮ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ :

  • ﻫﺪف ﺗﺎﻣﯿﻦ 10 درﺻﺪ اﻧﺮژي اﻟﮑﺘﺮﯾﮑﯽ ﻣﺼﺮﻓﯽ ﺧﺎﻧﻮار ﻣﯽ ﺑﺎﺷﺪ.
  • ﻣﺠﻤﻮع ﺧﻄﺎي ﺳﺎزﻧﺪه، دﻣﺎ، ﮔﺮد و ﻗﺒﺎر ﻣﺎژول ﻫﺎ 10 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺑﻪ ﻣﻨﻈﻮر ﻣﺸﺨﺺ ﻧﻤﻮدن ﻣﺎﮐﺰﯾﻤﻢ اﻧﺮژي ﻣﻮرد ﻧﯿﺎز، ﺗﺎﺛﯿﺮ ﺗﻠﻔﺎت 5 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺗﻮان ﺗﻮﻟﯿﺪي ﻣﺎژولﻫﺎ 250 وات در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.

 

𝑃   =              𝑀

𝑇      (1 − 0.05) ∗ 𝜂𝜂𝑖𝑖𝑛𝑣

(۱)

 

ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﯿﺎﻧﮕﺮ اﻧﺮژي ﮐﻞ، ﺗﻮان ﮐﻞ و ﺑﺎزده ﻣﺒﺪل ﻫﺴﺘﻨﺪ. ﻣﻘﺪار ﮐﻞ اﻧﺮژي ﮐﻪ ﺑﺎﯾﺪ

𝜂𝜂𝑖𝑖𝑛𝑣

در ﻣﻌﺎدﻟﻪ (1)، 𝑀 ، 𝑃𝑇 و

ﺳﺎﻻﻧﻪ ﺗﺎﻣﯿﻦ ﺷﻮد از ﺗﻘﺴﯿﻢ اﻧﺮژي ﻣﻮرد ﻧﯿﺎز ﺑﺮ ﺑﺎزده ﻣﺒﺪل و ﺿﺮﯾﺐ ﺗﻠﻔﺎت ﺑﺪﺳﺖ ﻣﯽ آﯾﺪ.

𝑃𝑚 = 250 ∗ (1 − 0.1)

𝑃𝑚 = 250 ∗ (1 − 0.1) (۲)

 

ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار ﺗﻮان ﺗﻮﻟﯿﺪي ﯾﮏ ﻣﺎژول اﺳﺖ.

در ﻣﻌﺎدﻟﻪ (2)، 𝑃

𝑁    = 𝑃 ∗ 1,000,000

𝑚        𝑇     𝐴𝑌𝑆 ∗ 𝑃𝑚

(۳)

ﺑﻪ ﺗﺮﺗﯿﺐ ﻧﺸﺎن دﻫﻨﺪهي ﺗﻌﺪاد ﻣﺎژولﻫﺎ، ﺗﻮان ﮐﻞ، ﻣﺘﻮﺳﻂ ﺗﺎﺑﺶ ﺳﺎﻟﯿﺎﻧﻪ و

در ﻣﻌﺎدﻟﻪ (3)، 𝑁𝑚، 𝑃𝑇، 𝐴𝑌𝑆 و 𝑃

ﺗﻮان ﻣﺎژول ﻫﺴﺘﻨﺪ. ﺗﻌﺪاد ﻣﺎژولﻫﺎ، ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻮان ﮐﻞ، ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻟﯿﺎﻧﻪ و ﺗﻮان ﺗﻮﻟﯿﺪي ﻫﺮ ﻣﺎژول ﺑﻪدﺳﺖ ﻣﯽآﯾﺪ.ﭘﺲ از ﺑﻪدﺳﺖ آوردن ﺗﻌﺪاد ﻣﺎژولﻫﺎي ﻣﻮرد ﻧﯿﺎز ﺑﺮاي ﺗﺎﻣﯿﻦ اﻧﺮژي، ﺑﺎﯾﺪ ﺗﻌﺪاد ﻣﺒﺪلﻫﺎ و ﭼﯿﺪﻣﺎن ﻣﺎژولﻫﺎ را ﻣﺸﺨﺺ ﻧﻤﻮد.ﺑﺎﯾﺪ ﺗﻮﺟﻪ ﺷﻮد در ﭼﯿﺪﻣﺎن ﻣﺎژولﻫﺎ، ﺗﻮان ورودي ﺑﻪ ﻣﺒﺪل از ﺗﻮان ﻧﺎﻣﯽ آن ﺑﯿﺸﺘﺮ ﻧﺸﻮد ، ﻟﺬا ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ  160kw ﺑﻪ ﻋﻨﻮان ﺗﻮان ﻧﺎﻣﯽ ﻣﺒﺪل ، ﻣﯽﺗﻮان ﺗﻌﺪاد 23 ﻣﺎژول را ﺑﻪ ﺻﻮرت رﺷﺘﻪاي و 27 رﺷﺘﻪ را ﺑﻪ ﺻﻮرت ﻣﻮازي ﺑﻪ ﻫﻢ اﺗﺼﺎلداد و ﺧﺮوﺟﯽ را ﺑﻪ ورودي ﯾﮏ ﻣﺒﺪل ﻣﺘﺼﻞ ﻧﻤﻮد. ﺑﻪ اﯾﻦ ﺗﺮﺗﯿﺐ ﺑﺮآﯾﻨﺪ ﺗﻮان ورودي ﺑﻪ ﻣﺒﺪل ﺑﺮاﺑﺮkw 155ﺧﻮاﻫﺪ ﺑﻮد ﮐﻪﮐﻤﺘﺮ از ﺗﻮان ﻧﺎﻣﯽ ﻣﺒﺪل اﺳﺖ[10]. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻌﺪاد ﻣﺎژولﻫﺎ و ﭼﯿﺪﻣﺎن آنﻫﺎ ﺑﺮاي اﺗﺼﺎل ﺑﻪ ﯾﮏ ﻣﺒﺪل ﻣﯽﺗﻮان ﺗﻌﺪاد ﮐﻞ ﻣﺒﺪل ﻣﻮرد ﻧﯿﺎز را از ﺗﻌﺪاد ﮐﻞ ﻣﺎژولﻫﺎ ﺑﻪدﺳﺖ آورد. 𝑁𝑚 و 𝑁𝑖𝑖𝑛𝑣 ﻧﺸﺎن دﻫﻨﺪهي ﺗﻌﺪاد ﮐﻞ ﻣﺎژولﻫﺎ و ﻣﺒﺪلﻫﺎ ﻫﺴﺘﻨﺪ.

𝑁𝑖𝑖𝑛𝑣 = 𝑁𝑚/(23 ∗ 27) (۴)

ﯾﮑﯽ از ﻣﻮارد ﻗﺎﺑﻞ ﺗﻮﺟﻪ، ﺗﻘﺴﯿﻢ ﮐﺮدن ﺗﻮان ﺗﻮﻟﯿﺪي ﻧﯿﺮوﮔﺎه ﺑﻪ ﭼﻨﺪ ﺑﺨﺶ ﺑﺮاي ﺳﻬﻮﻟﺖ در ﺗﻌﻤﯿﺮ و ﻧﮕﻪ داري و ﺗﻮﻟﯿﺪ اﻟﮑﺘﺮﯾﺴﯿﺘﻪ ﺑﻪ ﻫﻨﮕﺎم ﺗﻌﻮﯾﺾ اﺳﺖ. ﺑﻪ اﯾﻦ ﻣﻨﻈﻮر ﻧﯿﺮوﮔﺎه را ﺑﻪ ﺑﺨﺶ ﻫﺎي ﯾﮏ ﻣﮕﺎواﺗﯽ ﺗﻘﺴﯿﻢ ﻣﯽ ﮐﻨﯿﻢ.ﺑﻪ ﻃﻮري ﮐﻪ ﻫﺮ ﻗﺴﻤﺖ ﻣﺠﺰا از ﺳﺎﯾﺮ ﻗﺴﻤﺖﻫﺎ ﺑﺎﺷﺪ.   ﺑﺮاي ﭼﯿﺪﻣﺎن ﮐﻞ ﻣﺎژولﻫﺎ و ﻣﺤﺎﺳﺒﻪ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎز، ﺑﺎﯾﺪ زاوﯾﻪ ﻣﻨﺎﺳﺐ ﻗﺮارﮔﯿﺮي ﻣﺎژول و ﻓﺎﺻﻠﻪ ﻫﺮ رﺷﺘﻪ ﺑﺎ رﺷﺘﻪ ﻣﻘﺎﺑﻞ ﻣﺸﺨﺺ ﺷﻮد. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﭘﮋوﻫﺶﻫﺎي اﻧﺠﺎم ﺷﺪه، [11] ﺑﻬﺘﺮﯾﻦ زاوﯾﻪ 22 درﺟﻪ اﺳﺖ ﮐﻪ ﺑﺮ اﺳﺎس اﺑﻌﺎد ﻣﺎژول، زاوﯾﻪ ﺗﺎﺑﺶ در آن ﻣﻨﻄﻘﻪ و ﭼﯿﺪﻣﺎن ﺗﮏ ﻃﺒﻘﻪ ﻣﺎژولﻫﺎ ﻧﯿﺎز اﺳﺖ ﻫﺮ رﺷﺘﻪ ﻣﺎژول ﺣﺪود 3 ﻣﺘﺮ از رﺷﺘﻪ ﻣﺎژول ﻗﺒﻞ از ﺧﻮد ﻓﺎﺻﻠﻪ داﺷﺘﻪ ﺑﺎﺷﺪ ﺗﺎ از ﺳﺎﯾﻪ اﻓﺘﺎدن ﺻﻔﺤﺎت ﺑﺮ روي ﻫﻢ ﺟﻠﻮﮔﯿﺮي ﮔﺮدد . ﺑﺎ اﯾﻦ اوﺻﺎف و ﺗﻌﺪاد ﻣﺎژول در ﻫﺮ رﺷﺘﻪ و ﺗﻌﺪاد رﺷﺘﻪ ﻫﺎ، ﻣﯽﺗﻮان ﻣﺴﺎﺣﺖ ﻣﻮرد ﻧﯿﺎز ﺑﺮاي اﺣﺪاث ﻧﯿﺮوﮔﺎه را ﻣﺤﺎﺳﺒﻪ ﮐﺮد.

ﺟﻨﺒﻪﻫﺎي اﻗﺘﺼﺎدي :

ﯾﮑﯽ از ﻣﻬﻢﺗﺮﯾﻦ ﺟﻨﺒﻪﻫﺎي اﺣﺪاث ﻧﯿﺮوﮔﺎهﻫﺎ، ﺟﺪا از اﻫﻤﯿﺖ اﺳﺘﻔﺎده از اﻧﺮژيﻫﺎي ﺗﺠﺪﯾﺪﭘﺬﯾﺮ ،ﻧﯿﺎز ﮐﺸﻮر ﺑﻪ ﺗﻮﻟﯿﺪ ﺑﺮق و، ﺟﻨﺒﻪﻫﺎي اﻗﺘﺼﺎدي آنﻫﺎ ﻧﻈﯿﺮ زﻣﺎن ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﯾﺎ ﻧﺮخ ﺳﻮد ﺳﺎﻟﯿﺎﻧﻪ اﺳﺖ.

ﻓﺮﺿﯿﺎت :

  • ﻧﺮخ ﺗﻮرم 25 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﻗﯿﻤﺖ دﻻر 23,000 و ﻗﯿﻤﺖ ﯾﻮرو 30,000 ﺗﻮﻣﺎن در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺗﻌﺮﻓﻪ ﻓﺮوش ﺑﺮق 890 ﺗﻮﻣﺎن ﺑﻪ ازاي ﻫﺮ ﮐﯿﻠﻮوات ﺳﺎﻋﺖ اﺳﺖ[12].
  • وام ﺑﻠﻨﺪ ﻣﺪت ﻣﯽﺗﻮاﻧﺪ از ﺑﺎﻧﮏﻫﺎي دوﻟﺘﯽ ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻧﺮخ ﻧﺎﻣﯽ ﺗﻮرم داﺧﻠﯽ ﮔﺮﻓﺘﻪ ﺷﻮد.
  • زﻣﺎن ﺳﺎﺧﺖ دو ﺳﺎل و زﻣﺎن ﺑﻬﺮه ﺑﺮداري 15 ﺳﺎل در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﻧﺮخ ﺗﻌﻤﯿﺮ و ﻧﮕﻪ داري $/KWh 0,001454 در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ[13].

ﺑﺎﯾﺪ ﺑﻪ اﯾﻦ ﻧﮑﺘﻪ ﺗﻮﺟﻪ ﺷﻮد ﮐﻪ ﻫﺰﯾﻨﻪ ﮐﻞ ﭘﻨﻞﻫﺎ 60 درﺻﺪ از ﻫﺰﯾﻨﻪ ﮐﻞ اﺣﺪاث ﻧﯿﺮوﮔﺎه را ﺷﺎﻣﻞ ﻣﯽﺷﻮد و ﻣﺎﺑﻘﯽﻫﺰﯾﻨﻪﻫﺎ ﺷﺎﻣﻞ ﻫﺰﯾﻨﻪ ﻣﺒﺪل، دﺳﺖ ﻣﺰد و ﺳﯿﻢ ﮐﺸﯽ و … ﻣﯽ ﺑﺎﺷﺪ[10].از ﻧﺮم اﻓﺰار COMFAR ﺑﺮاي اﻣﮑﺎنﺳﻨﺠﯽ و ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي ﭘﺮوژه اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ.

.4 ﻧﺘﺎﯾﺞ

وژه وار:

ﭘﺮوژهي ﺳﺎﺧﺖ ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﺳﺒﺰوار، از ﻧﻈﺮ اﻗﺘﺼﺎدي ارزﯾﺎﺑﯽ ﺷﺪه اﺳﺖ. ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ36,39 درﺻﺪ ﺑﺮآورد ﺷﺪه اﺳﺖ ﮐﻪ در 6,4 ﺳﺎل رخ ﻣﯽدﻫﺪ .

2 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ :2ﻧﻤﻮدار ﮐﻞ ﻓﺮوش و ﻫﺰﯾﻨﻪﻫﺎي ﺗﻮﻟﯿﺪ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

ﺷﮑﻞﻫﺎي 2 و 6 راﺑﻄﻪي ﺑﯿﻦ ﻓﺮوش، ﺗﻮﻟﯿﺪ و ﻫﺰﯾﻨﻪﻫﺎي ﺑﺎزارﯾﺎﺑﯽ را ﻧﺸﺎن ﻣﯽدﻫﻨﺪ ﮐﻪ ﺑﯿﺎﻧﮕﺮ ﺗﻮاﻧﺎﯾﯽ ﭘﺮوژه در ﺗﺒﺪﯾﻞﻓﺮوش ﺑﻪ ﺳﻮد ﭘﺲ از در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻫﺰﯾﻨﻪﻫﺎي ﻋﻤﻠﯿﺎﺗﯽ اﺳﺖ.

3 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 3 :ﻧﻤﻮدار ﺟﺮﯾﺎن ﺧﺎﻟﺺ ﺳﺮﻣﺎﯾﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

 

ﺟﺮﯾﺎنﻫﺎي ﻣﺎﻟﯽ ﺷﮑﻞﻫﺎي 3 و 7، ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار ، زﻣﺎنﺑﻨﺪي ﻣﻨﺎﺑﻊ ﻣﺎﻟﯽ اراﺋﻪ ﺷﺪه ﺑﺮاي ﭘﺮوژه و ﺗﻌﻬﺪات ﻣﺎﻟﯽ در ﻃﻮلاﻓﻖ ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﺷﺪه اﺳﺖ .

4 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

 

ﺷﮑﻞ 4 : ﻧﻤﻮدار ﺟﺮﯾﺎن ﻧﻘﺪي  ﺑﺮاي ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﻣﺎﻟﯽ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

ﺟﺮﯾﺎن ﻧﻘﺪي ﺳﺎﻻﻧﻪ ﺷﮑﻞﻫﺎي 4 و 8، ﻣﺎزاد ﯾﺎ ﮐﺴﺮي ﺑﻮدﺟﻪ ﺣﺎﺻﻞ از اﺳﺘﻔﺎدهي ﺗﻤﺎم ﻣﻨﺎﺑﻊ  و ﺑﻮدﺟﻪي ﭘﺮوژه اﺳﺖ. ﻣﺎزاد ﺑﻮدﺟﻪ در ﻫﺮ دوره ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار در دﺳﺘﺮس ﺑﺮاي آﺗﯽ اﺳﺖ. ﮐﺴﺮي ﺑﻮدﺟﻪ در ﻫﺮ دوره ، ﺑﯿﺎﻧﮕﺮ ﻣﯿﺰان ﺑﻮدﺟﻪاي اﺳﺖ ﮐﻪ ﺑﺎﯾﺪاز ﺳﺮﻣﺎﯾﻪﻫﺎي ﻣﻮﺟﻮد ﯾﺎ ﺳﺎﯾﺮ ﻣﻨﺎﺑﻊ ﺧﺎرﺟﯽ ﺗﺎﻣﯿﻦ ﺷﻮد .

 

5 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 5 : ﻧﻤﻮدار ﺧﺎﻟﺺ ارزش ﻓﻌﻠﯽ ﺗﺠﻤﻌﯽ-دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ

 

در ﺷﮑﻞﻫﺎي 5 و 9، دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ ﻧﺸﺎن داده ﺷﺪه اﺳﺖ ﮐﻪ ﺑﯿﺎﻧﮕﺮ دورهاي اﺳﺖ ﮐﻪ در آن ﮐﻞ ﻫﺰﯾﻨﻪﻫﺎيﭘﺮوژه ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺣﻔﻆ ارزش ﭘﻮﻟﯽ، ﺑﺎزﻣﯽﮔﺮدد .

ﭘﺮوژه ﯾﺰد:

ﭘﺮوژهي ﺳﺎﺧﺖ ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﯾﺰد، اﻗﺘﺼﺎدي ارزﯾﺎﺑﯽ ﺷﺪه اﺳﺖ .  ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ 37,67 درﺻﺪ ﺑﺮآورد ﺷﺪه اﺳﺖ ﮐﻪ در6,17 ﺳﺎل رخ ﻣﯽدﻫﺪ.

6 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

 

ﺷﮑﻞ :6ﻧﻤﻮدار ﮐﻞ ﻓﺮوش و ﻫﺰﯾﻨﻪﻫﺎي ﺗﻮﻟﯿﺪ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

 

 

 

7 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 7 :ﻧﻤﻮدار ﺟﺮﯾﺎن ﺧﺎﻟﺺ ﺳﺮﻣﺎﯾﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

8 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 8 : ﻧﻤﻮدار ﺟﺮﯾﺎن ﻧﻘﺪي  ﺑﺮاي ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﻣﺎﻟﯽ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

9 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 9 : ﻧﻤﻮدار ﺧﺎﻟﺺ ارزش ﻓﻌﻠﯽ ﺗﺠﻤﻌﯽدوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

 

ﺑﺎ ﺑﻪ ﮐﺎرﮔﯿﺮي ﻣﻌﺎدﻻت و داده ﻫﺎي اوﻟﯿﻪ داده ﺷﺪه در ﺑﺨﺶ ﻗﺒﻞ ﻗﺎدر ﺑﻪ ﻃﺮاﺣﯽ ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﺧﻮاﻫﯿﻢ ﺑﻮد ﮐﻪﺗﻌﺪاد ﻣﺎژول ، ﻣﺴﺎﺣﺖ زﻣﯿﻦ ، ﺗﻌﺪاد اﯾﻨﻮرﺗﺮ و ﻫﻤﭽﻨﯿﻦ ﻫﺰﯾﻨﻪ ﮐﻞ و ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ  در ﺟﺪول زﯾﺮ ﺑﺮاي دو ﺷﻬﺮ ﯾﺰد و ﺳﺒﺰوار آورده ﺷﺪه اﺳﺖ.

 

ﺟﺪول 3 : ﻣﻘﺎدﯾﺮ ﺣﺎﺻﻞ از ﻃﺮاﺣﯽ

 

ﻧﺎم ﺷﻬﺮ ﺗﻮان ﻧﺎﻣﯽ ﻧﯿﺮوﮔﺎه(MW) ﺗﻌﺪاد ﻣﺎژول ﺗﻌﺪاد ﻣﺒﺪل ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ

ﺳﺎﻟﯿﺎﻧﻪ

ﻣﺴﺎﺣﺖ زﻣﯿﻦ

(m2)

ﻫﺰﯾﻨﻪ ﮐﻞ )ﻣﯿﻠﯿﺎرد

ﺗﻮﻣﺎن(

ﻧﺮخ ﺑﺎزﮔﺸﺖ

ﺳﺮﻣﺎﯾﻪ

ﺳﺒﺰوار 14,5 63820 103 1750 105000 114,257 36,39
ﯾﺰد 42,5 188340 304 1890 310000 341,582 37,67

 

.5 ﻧﺘﯿﺠﻪ ﮔﯿﺮي

 

  • ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﭘﺮوژهي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﯾﺰد ﻧﺴﺒﺖ ﺑﻪ ﺳﺒﺰوار ﺑﯿﺸﺘﺮ اﺳﺖ و ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ در زﻣﺎن ﮐﻮﺗﺎهﺗﺮي رخ ﻣﯽدﻫﺪ.
  • ﺑﻪ دﻟﯿﻞ ﺗﻔﺎوت اﻧﺮژي ﻣﺼﺮﻓﯽ دو ﺷﻬﺮﺳﺘﺎن ﺗﻮان ﻧﺎﻣﯽ ﻧﯿﺮوﮔﺎه و ﺑﻪ ﻃﺒﻊ آن ﻫﺰﯾﻨﻪ اوﻟﯿﻪ ﻣﺘﻔﺎوت دارﻧﺪ. از ﻃﺮﻓﯽ ﺑﻪ دﻟﯿﻞ ﺑﯿﺸﺘﺮ ﺑﻮدن ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﯾﺰد ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﺑﯿﺸﺘﺮ ازﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار اﺳﺖ.

.6 ﻣﺮاﺟﻊ

 

۱.   ﭘﮋوﻫﺸﮕﺎه ﻧﯿﺮو، راﻫﻨﻤﺎي ﻃﺮاﺣﯽ ﺳﯿﺴﺘﻢﻫﺎي ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ اﻧﺮژي اﻟﮑﺘﺮﯾﮑﯽ ﺑﻪ ﺗﻔﮑﯿﮏ اﻗﻠﯿﻢ و ﮐﺎرﺑﺮي،

ﻣﻌﺎوﻧﺖ ﻧﻈﺎرت راﻫﺒﺮدي، 1393

۲.   ﻣﻨﺼﻒ، ﻋﻠﯿﺮﺿﺎ؛ ﮐﺎوه ﺣﺒﯿﺒﯽ ﺳﺮاﺳﮑﺎﻧﺮود ؛ اﻣﯿﺮ ﮐﯿﻮان ﻣﻤﺘﺎز، 1394، ﺑﺮرﺳﯽ اﻣﮑﺎنﺳﻨﺠﯽ اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ 6

ﻣﮕﺎواﺗﯽ در ﺷﻬﺮﺳﺘﺎن ﺑﺴﺘﮏ اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن، ﻣﺠﻤﻮﻋﻪ ﻣﻘﺎﻻت ﻫﻔﺘﻤﯿﻦ ﮐﻨﻔﺮاﻧﺲ ﻣﻠﯽ اﻧﺮژيﻫﺎي ﺗﺠﺪﯾﺪﭘﺬﯾﺮ ۳. زﻧﺪي ، رﺣﻤﺎن؛ ﻣﺤﻤﺪ ﺟﻮاد ﺻﻔﺎﯾﯽ ؛ ﻣﺮﯾﻢ ﺧﺴﺮوﯾﺎن، 1398، ﭘﺘﺎﻧﺴﯿﻞ ﺳﻨﺠﯽ اﺳﺘﻔﺎده از اﻧﺮژي ﺧﻮرﺷﯿﺪي در ﻣﻨﺎﻃﻖ

روﺳﺘﺎﯾﯽ ﻣﻄﺎﻟﻌﻪ ﻣﻮردي: ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار، ﻓﺼﻠﻨﺎﻣﻪ ﺟﻐﺮاﻓﯿﺎ و ﺗﻮﺳﻌﻪ، ﺷﻤﺎره 57، ﺻﻔﺤﺎت 13-14

نویسندگان مقاله: مهندس ﺑﻬﻨﺎم ﮐﯿﺎﻧﯽ، مهندس اﻣﯿﺮرﺿﺎ ﻋﺒﺪي ﻗﺎﺳﻢ ﺧﯿﻠﯽ، مهندس ﺷﯿﻤﺎ ﻧﺠﻔﯽ ﻧﻮﺑﺮ

 

کالیفرنیا روز چهارشنبه به اتفاق آرا یک برنامه تاریخی را تصویب کرد که بیشتر خانه های جدید در آن به کمک دولت نیاز دارد که پنل های خورشیدی را در پشت بام گذاشته وتا سال 2020 به کلی این مصوبه انجام خواهد شد تا نور خورشید به انرژی تجدید پذیر تبدیل شود.

کالیفرنیا در حال حاضر اولین دولت در کشور است که مجوز تاسیسات انرژی خورشیدی را در خانه های تک خانواده و همچنین خانه های چند خانواده ای که تا سه طبقه شامل آپارتمان ها و مجتمع های آپارتمانی که هستند را میدهد. اما بعضی از کارشناسان هشدار می دهند که افزایش هزینه های ساخت خانه های جدید تنها بحران مسکن ارزان قیمت دولت را بدتر خواهد کرد.

انتظار میرود که خورشید به طور متوسط حدود 9،500 دلار به هزینه خانه های جدید اضافه شود اما پیش بینی می شود که صرفه جویی در انرژی طولانی مدت انرژی خورشیدی باشد.

این مأموریتی که توسط کمسیون انرژی کالیفرنیا تایید شده است، بخشی از به روزسانی استانداردهای بهره وری انرژی در سال 2019 و تلاش های مداوم برای کاهش گازهای گلخانه ای است. بخش ساختمان دولتی دومین منبع بزرگ انتشار گازهای گلخانه ای است که نیروگاه های سوخت فسیلی در آن قرار دارند.

ابيگيل هپپر، مدير اجرايي صنايع انرژي خورشيدي، يک انجمن تجارتي با حدود 1000 عضو، گفت: “اين يک تصميم غيرقابل انکار تاريخي براي دولت و ايالات متحده است.” “کالیفرنیا بزرگترین قهرمان خورشیدی کشور ما بوده و تصویب توده ای از انرژی خورشیدی، مزایای اقتصادی و زیست محیطی فراوانی را شامل می شود، از جمله آوردن ده ها میلیارد دلار سرمایه گذاری در دولت”.

از پرطرفدار ترین اخبار کشور نیروگاه خورشیدی در خانه های جدید، پیروزی برای شرکت ها و کارشناسان این صنعت است .

“به طور کلی، ما انتظار داریم که با مجوز کالیفرنیا، برخی از شرکت های خورشیدی و صنایع تجدید پذیر بیشتر در معرض دید مثبت قرار بگیرند، از جمله افرادی که پنل ها و اجزای سازنده را تشکیل می دهند، و همچنین کسانی که به نصب و تأمین انرژی کارآمد کمک می کنند، ، مدیر عامل شرکت سرمایه گذاری Swell، دارنده سهام خورشیدی و مرتبط با اوراق قرضه سبز و انرژی های تجدید پذیر، Fanger گفت:

اقدام کمیسیون در مورد جدیدترین استانداردهای بهره وری انرژی ساختمان 2019 نیز برای همه چیز از سیستم های تهویه فعلی تا کیفیت هوا در محیط داخلی استفاده می شود. کالیفرنیا استانداردهای بهره وری را هر سه سال یکبار به روز می کند و هدف نهایی دولت ، خانه های خالص انرژی است که باعث کاهش اثرات کربن در ساختمان ها می شود و آنها را به طور مؤثری انرژی را خودکفا می کند.