نوشته‌ها

استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی به تبادل و خرید و فروش انرژی بین کشورها یا انجمن‌های اقتصادی مختلف اشاره دارد. انرژی ممکن است از منابع مختلفی مانند نفت، گاز، زغال‌سنگ، انرژی هسته‌ای، انرژی خورشیدی و باد به دست آید. در تجارت انرژی، کشورها سعی می‌کنند نیازهای انرژی خود را برطرف کنند، همزمان با بهره‌مندی از منابع داخلی و یا از طریق واردات انرژی از منابع خارجی.

تجارت انرژی می‌تواند بر اساس قراردادهای ثابت (مثل قراردادهای بلندمدت) یا معاملات کوتاه‌مدت (مثل خرید و فروش روزانه) انجام شود. در بسیاری از موارد، قراردادهای تجارت انرژی به صورت طولانی‌مدت منعقد می‌شوند تا اطمینان از تأمین پایدار انرژی برای طرفین باشد.

کشورهای صادرکننده انرژی می‌توانند منابع طبیعی خود را به دیگر کشورها صادر کرده و درآمد حاصل از این تجارت را به دست آورند. در عین حال، کشورهای وابسته به واردات انرژی ممکن است به دنبال تنوع منابع و کاهش وابستگی به یک منبع خاص باشند.

تاثیرات سیاسی، اقتصادی، و محیطی تجارت انرژی بسیار گسترده است و می‌تواند به تعیین نقشه قدرت و روابط بین‌المللی نیز تأثیر بگذارد. همچنین، مسائلی مانند تغییرات اقلیمی، امنیت انرژی، و توسعه پایدار نیز به طور مستقیم در این زمینه تأثیرگذارند.

تجارت انرژی مبتنی بر نیروگاه‌های تجدیدپذیر به تبادل و خرید و فروش انرژی، که از منابع تجدیدپذیر مانند انرژی خورشیدی، باد، هیدروپاور، گرمای زمین، و سایر منابع پاک تولید می‌شود، اشاره دارد که از منابعی مانند نور خورشید ( نیروگاه خورشیدی فتوولتائیک ) ، باد ( نیروگاه بادی متشکل از توربین های مگاواتی )، آب‌های سطحی و زیرزمینی ( نیروگاه های برق آبی )، و سایر منابع تجدیدپذیر بهره می‌برد. این منابع به دلیل اینکه قابلیت تجدید خود را دارند، تامین انرژی پایدار و دوستدار محیط زیست را فراهم می‌کنند.

توسعه نیروگاه‌های تجدیدپذیر می‌تواند اشتغال، توسعه فناوری، و رشد اقتصادی را تحت تأثیر قرار دهد. همچنین، این تجارت می‌تواند به کاهش وابستگی به منابع انرژی سنتی و کاهش هزینه‌های انرژی کمک کند.

استفاده از نیروگاه‌های تجدیدپذیر به معنای کاهش انتشار گازهای گلخانه‌ای و دیگر آلودگی‌های زیست محیطی است. این تجارت می‌تواند به حفاظت از محیط زیست و کاهش تأثیرات منفی تغییرات اقلیمی کمک کند.

 

تجارت انرژی می‌تواند منافع اقتصادی زیادی برای کشورها فراهم کند. در زیر به برخی از این منافع اشاره شده است:

  1. افزایش درآمد ناخالص داخلی (GDI): صادرات انرژی، می‌تواند منبع اصلی درآمد برای کشورها باشد. درآمدهای حاصل از تجارت انرژی می‌تواند به افزایش GDI و توسعه اقتصادی کشورها کمک کند.

 

  1. ایجاد فرصت‌های اشتغال: صنایع انرژی، از جمله نیروگاه‌ها و زیرساخت‌های مرتبط، ایجاد فرصت‌های شغلی زیادی را برای جمعیت فراهم می‌کنند. این شغل‌ها اغلب در زمینه‌های مهندسی، تکنولوژی، حمل و نقل، و خدمات پشتیبانی فراهم می‌شوند.

 

  1. توسعه زیرساخت‌ها: برای تولید، انتقال، و صادرات انرژی، زیرساخت‌های حمل و نقل و انتقال انرژی نیاز است. سرمایه‌گذاری در این زیرساخت‌ها می‌تواند به توسعه زیرساخت‌های کلان و تقویت اقتصاد منطقه انرژی‌زا کمک کند.

 

  1. تحقق استقلال انرژی: بسیاری از کشورها سعی دارند با داشتن منابع انرژی داخلی قوی، استقلال بیشتری در تأمین نیازهای انرژی خود داشته باشند. این استقلال انرژی می‌تواند زیرساخت‌های اقتصادی و امنیت ملی را تقویت کند.

 

  1. تبادل تخصص و فناوری: تجارت انرژی ممکن است باعث تبادل تخصص و فناوری در زمینه‌های نوین انرژی شود. این تبادل می‌تواند به توسعه فناوری‌های پایدار و بهبود بهره‌وری در زمینه انرژی منجر شود.

 

  1. تأمین امنیت انرژی: کشورهای وابسته به واردات انرژی ممکن است از تجارت انرژی برای تأمین امنیت انرژی استفاده کنند. تنوع منابع انرژی و دسترسی به منابع انرژی پایدار از طریق تجارت می‌تواند به کاهش ریسک وابستگی به یک منبع خاص کمک کند.
    تصویر تابلو سبز بورس 1402 araniroo 1 آرانیرو copy - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی، اگر به درستی مدیریت شود، می‌تواند به توسعه اقتصادی، اشتغالزایی، و امنیت انرژی یک کشور کمک کند. همچنین، این تجارت می‌تواند بستری برای همکاری بین المللی و تبادل تجاری فراهم کند.

برای توسعه تجارت انرژی از منابع تجدیدپذیر، لازم است زیرساخت‌های مناسبی در نظر گرفته شوند از جمله احداث نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، بادی، هیدروپاور، و گاهی حتی نیروگاه‌های انرژی دریاها (مانند نیروگاه‌های موج و جاری). این نیروگاه‌ها به تولید برق از منابع تجدیدپذیر کمک می‌کنند. به منظور مدیریت موثر تولید انرژی از منابع تجدیدپذیر، زیرساخت‌های ذخیره‌سازی انرژی نیز حائز اهمیت هستند. این زیرساخت‌ها شامل سیستم‌های باتری، انرژی ذخیره‌شده در شکل گاز، یا حتی ساختارهای ذخیره‌سازی گرما می‌شوند و از تعادل سیستم انرژی استفاده می‌کنند و در مدیریت نیاز به انرژی در ساعات اوج و کم‌بار تاثیرگذار هستند.

انرژی، به عنوان رگ حیات صنایع، خانه‌ها و اقتصادها، ارتباط زیادی با فرصت‌های فراوانی برای کارآفرینان دارد. درک جزئیات بازار انرژی و مقابله با چالش‌ها گام‌های اساسی برای یک ورود موفق به این حوزه می‌باشد.

ایران، با منابع غنی و تقاضای رو به رشد برای انرژی، زمینهٔ خوبی را برای تجارت انرژی فراهم می‌کند. دینامیک بازار، تحت تأثیر عوامل داخلی و بین‌المللی، نقش مهمی در شکل‌گیری فرصت‌ها دارد. شناخت بازیگران اصلی و آگاهی از روندهای بازار برای تصمیم‌گیری مطلوب بسیار حائز اهمیت است.

تأمین مجوزها و پروانه‌های لازم و اطمینان از رعایت مقررات زیست‌محیطی، جنبه حیاتی یک تجارت انرژی است. درک چارچوب حقوقی و گنجاندن آن در استراتژی کسب و کار گام مهمی است.

کسب و کارهای انرژی به سرمایه‌گذاری قابل توجهی نیاز دارند. کارآفرینان باید با دقت مناسب به بررسی منابع سرمایه‌ای بپردازند، گزینه‌های تأمین مالی را بررسی کنند و مدل مالی قوی ایجاد کنند تا بتوانند از نوسانات بازار جلوگیری کنند.

تکنولوژی نقش تحول‌آفرینی در حوزه انرژی دارد. کارآفرینان باید از پیشرفت‌های فناورانه بهره‌مند شوند تا به بهبود کارایی عملیاتی و ادغام فناوری‌های هوشمند برای تداوم شیوه‌های پایدار بپردازند.

شناسایی و کاهش ریسک‌ها جزء مؤلفه‌های اصلی یک تجارت انرژی موفق است. از ناپایداری‌های جغرافیایی تا نوسانات بازار، داشتن استراتژی‌های مدیریت ریسک قوی و برنامه‌های آمادگی ضروری است. شناخت و بهره‌مندی از سیاست‌های حمایتی دولت و انگیزه‌ها برای کارآفرینان انرژی، گام استراتژیکی است. کارآفرینان باید از این ایمنی‌ها، مانند معافیت مالیاتی و حمایت‌ها، بازدید کنند و بررسی کنند چگونه می‌توانند از آنها بهره‌مند شوند.

 

نتیجه‌گیری

در نتیجه، ورود به تجارت انرژی در ایران نیازمند یک رویکرد چندجانبه است. از فهم دینامیک بازار تا بهره‌گیری از نوآوری‌های فناورانه و ایجاد شراکت‌های استراتژیک، کارآفرینان باید در منظومه پیچیده‌ای حرکت کنند.

حضور در تجارت انرژی‌های تجدیدپذیر، به ویژه در زمینه نیروگاه خورشیدی در ایران، می‌تواند یک فرصت عالی برای سرمایه‌گذاری و توسعه کسب و کار باشد. قبل از ورود به این صنعت، تحقیقات دقیقی در مورد بازار انرژی تجدیدپذیر و نیروگاه‌ خورشیدی در ایران انجام دهید. ارزیابی نیازهای بازار، میزان تقاضا، قوانین و مقررات مرتبط با تجارت انرژی و دیگر عوامل بازاریابی می‌تواند کمک شایانی به شناخت بازار کند. آگاهی از قوانین و مقررات مرتبط با تولید و تجارت انرژی تجدیدپذیر در ایران بسیار حائز اهمیت است. بررسی مجوزها، حقوق ارتعاشی، تسهیلات دولتی و دیگر الزامات قانونی از جمله مسائلی هستند که باید به آنها توجه کنید.

   انتخاب مکان مناسب برای نصب نیروگاه خورشیدی از اهمیت بسیاری برخوردار است. بررسی شدت تشعشعات خورشیدی، نقشه‌های باد، دمای محل، ارتفاع و سایر شرایط جوی می‌تواند تأثیر زیادی در عملکرد نیروگاه داشته باشد.

   برای شروع یک پروژه نیروگاه خورشیدی، تأمین منابع مالی ضروری است. می‌توانید از تسهیلات بانکی، سرمایه‌گذاری‌های خصوصی یا حتی برنامه‌های حمایتی دولتی بهره‌مند شوید.

   برقراری همکاری با شرکت‌ها و متخصصان معتبر در زمینه نیروگاه‌ خورشیدی، از جمله مهندسان، مشاوران حقوقی و مدیران پروژه، به شما کمک می‌کند تا با چالش‌ها بهتر کنار بیایید و بهترین نتیجه را بگیرید.

   استفاده از تکنولوژی‌های به‌روز در نیروگاه خورشیدی شما را قادر به بهره‌مندی از کارایی بالاتر و هزینه‌های کمتر می‌کند.

   در تجارت انرژی، مسئولیت اجتماعی بازیگر کلیدی است. توجه به اثرات زیست‌محیطی، ایمنی کارگران، اشتغال محلی و سایر ابعاد مسئولیت اجتماعی می‌تواند تصمیم‌گیری‌های شما را بهبود بخشد.

   برنامه‌ریزی مناسب برای بازاریابی و فروش انرژی تولیدی از نیروگاه خورشیدی را انجام دهید. ایجاد روابط با خریداران محتمل، شرکت‌های انرژی، گروه‌های صنعتی و دیگر بازارهای هدف از این قسمت حائز اهمیت است.

   برنامه‌ریزی برای پایش و نگهداری نیروگاه خورشیدی به منظور حفظ عملکرد بهینه و کاهش هزینه‌ها بسیار ضروری است.

با رعایت این نکات و برنامه‌ریزی دقیق، حضور در تجارت انرژی تجدیدپذیر، به ویژه در زمینه نیروگاه‌ خورشیدی، می‌تواند فرصتی موفق‌ برای سرمایه‌گذاری و توسعه کسب و کار شما باشد.

ضمن اینکه با ورود به الگوی تجارت انرژی منطقه‌ای در قالب صادرات انرژی به کشورها یا مناطق همسایه میتوانید تجارت خود را بین المللی کنید. هچنین ما به عنوان شرکت آرا نیرو آمادگی داریم در این الگو، ارتباط شما را به طور گسترده در زمینه تجارت انرژی برقرار کنیم. این شامل صادرات و واردات انرژی به وسیله سیستم‌های انتقال برق بین‌المللی است. در دهه‌های اخیر، با توسعه انرژی‌های تجدیدپذیر، الگوهای تجارت انرژی نیز تغییر کرده است. کشورها و شرکت‌ها اکنون می‌توانند انرژی تولید شده از منابع تجدیدپذیر را تجارت کنند و به اشتراک بگذارند.

البته در دنیا اشکال دیگری از تجارت انرژی نیز مرسوم میباشد که نمونه آن تجارت انرژی همتا به همتا است و نیازمند شبکه هوشمند انرژی است که متاسفانه در ایران از ساختار شبکه هوشمند برق بی بهره هستیم.

Renewable Energy Business - استراتژی‌ها و دیدگاه‌های کلیدی برای ورود موفق به حوزه تجارت انرژی در ایران

تجارت انرژی همتا به همتا، یک مفهوم در زمینه انرژی است که به معنای تبادل مستقیم انرژی بین افراد یا واحدهای تولید انرژی می‌باشد، بدون واسطه‌های مرسوم چون شرکت‌های توزیع و انتقال انرژی. در این مدل، افراد یا واحدهای تولید انرژی مستقیماً با سایر افراد یا واحدها تبادل انرژی می‌کنند، بدون نیاز به شبکه‌های مرکزی یا شرکت‌های متعلق به دولت.

 

این رویکرد به منظور افزایش کارآیی، کاهش هزینه‌ها، و حمایت از تولید انرژی پایدار مطرح شده است. این سیستم می‌تواند باعث ایجاد یک بازار محلی برای انرژی شود که در آن تولید کنندگان و مصرف‌کنندگان می‌توانند به طور مستقیم با یکدیگر معامله کنند.

به عنوان مثال، یک فرد یا شرکتی که انرژی را از منابع تجدیدپذیر تولید می‌کند، می‌تواند این انرژی را به صورت مستقیم به همسایگان یا دیگر افراد در یک منطقه فرستاده و با آنها تبادل کند، بدون اینکه نیاز به انتقال انرژی از طریق شبکه‌های مرکزی باشد.

تجارت انرژی همتا به همتا به توسعه انرژی‌های تجدیدپذیر، افزایش بهره‌وری و کاهش اثرات منفی بر محیط زیست کمک می‌کند. این مدل همچنین می‌تواند اقتصاد محلی را تقویت کرده و به ایجاد یک سیستم انرژی مستقل و پایدار کمک کند.

جلوتر ماندن از منحنی فناوری به معنای تقویت مزیت رقابتی شماست. به همین دلیل است که ما بینش های نوآوری مبتنی بر داده در صنعت انرژی را به شما ارائه می دهیم. در پایان با امید به شکل گیری زیرساخت های شبکه هوشمند برق در ایران، 5 راه حل دستچین شده برای تجارت انرژی همتا به همتا را با ذکر مثال از چند شرکت و استارت آپ موفق جهانی ارائه میدهیم:

 

  1. Hygge یک بازار انرژی مستقل ایجاد می کند

سال تاسیس: 2017

مکان: تورنتو، کانادا

شریک: تجارت انرژی های تجدیدپذیر

استارتاپ کانادایی Hygge Energy یک بازار تجارت انرژی های تجدیدپذیر را ارائه می دهد که در سراسر جهان قابل دسترسی است. پلت فرم استارت آپ خدمات تراکنشی را هم در جلو و هم در پشت کنتور فعال می کند. اولی به شرکت های خدمات شهری اجازه می دهد تا از دارایی های توزیع شده خود با افزایش معاملات انرژی استفاده کنند، در حالی که دومی از رویکرد تجارت همتا به همتا استفاده می کند که مبتنی بر جامعه، بازار، و توسعه دهنده است. Hygge از طریق باکس سفارشی خود که ترکیبی از هوش مصنوعی AI، بلاکچین خصوصی و قدرت محاسباتی بالا است، به این مهم دست می یابد. این استارت‌آپ همچنین یک برنامه کاربردی تلفن هوشمند ارائه می‌کند که به تولیدکنندگان انرژی خصوصی اجازه می‌دهد تا تولید مازاد خود را به شرکت‌های برق بفروشند و انرژی کم‌هزینه را با همسایگان معامله کنند. این امر بازده سرمایه گذاری را برای نیروگاه های خصوصی افزایش می دهد و درآمد شرکت های برق را از طریق بهبود توان عملیاتی انرژی افزایش می دهد.

 

  1. Exodus یک برنامه تجارت همتا به همتا را ارائه می دهد

سال تاسیس: 2018

مکان: لیدز، انگلستان

شریک برای: اشتراک انرژی خانه به خانه

Exodus یک استارت‌آپ مستقر در بریتانیا است که ExodusHOME را توسعه می‌دهد، برنامه‌ای برای گوشی‌های هوشمند برای فعال کردن تجارت همتا به همتا در جوامع محلی. ExodusHOME به صاحبان خانه با واحدهای تولید برق محلی اجازه می دهد تا بر تولید، مصرف و سطوح ذخیره انرژی نظارت کنند. با این بینش، مصرف کنندگان می توانند انرژی مازاد خود را با سایر خریداران و مصرف کنندگان مبادله کنند و همچنین آن را به شبکه برق انتقال دهند. این بازار انرژی به نفع جامعه است و راه اندازی واحدهای تولید انرژی تجدیدپذیر محلی را از طریق مشوق های مالی ترویج می کند. بنابراین، منجر به توسعه راه‌حل‌های سخت‌افزاری در دسترس برای تولید انرژی‌های تجدیدپذیر خارج از شبکه می‌شود و انتقال انرژی را تسریع می‌کند. این همچنین بار هزینه های سرمایه ای را بر اپراتورهای شبکه و واحدهای تولید برق کاهش می دهد.

 

  1. سوئیچ تجارت انرژی خورشیدی را فعال می کند

سال تاسیس: 2018

مکان: کیپ تاون، آفریقای جنوبی

شریک: بازرگانی انرژی خورشیدی

استارت‌آپ انرژی سوئیچ انرژی مستقر در آفریقای جنوبی راه‌حل‌های هوشمند اندازه‌گیری و مدیریت انرژی را ارائه می‌دهد. مودم استارت‌آپ برق را در زمان واقعی مشاهده و کنترل می‌کند، تعویض لوازم خانگی را زمان‌بندی می‌کند و تجارت برق خورشیدی را فعال می‌کند. Switch Energy همچنین یک پلت فرم نرم افزاری را توسعه می دهد که شامل یک برنامه تلفن همراه و یک کنسول مدیریت برای تسهیل نظارت بر تولید و مصرف انرژی در زمان واقعی است. علاوه بر این، به کاربران اجازه می دهد تا انرژی را بین ساختمان های دارای تولید خورشیدی در شبکه های زیر متری مبادله کنند، بنابراین وابستگی خانوارها به شبکه اصلی کاهش می یابد.

 

  1. TroonDx تبادل برق غیرمتمرکز را توسعه می دهد

سال تاسیس: 2019

مکان: چنای، هند

شریک: تجارت غیرمتمرکز انرژی، بازار انرژی مبتنی بر بلاک چین

TroonDx یک استارت آپ هندی است که یک پلتفرم نرم افزاری مبتنی بر بلاک چین را فراهم می کند که زیرساخت های حیاتی را در شبکه انرژی برای تبادل نیرو به هم متصل می کند. پلتفرم تبادل برق غیرمتمرکز این استارت آپ، تراکنش های دیجیتالی امن را بدون وابستگی به یک نقطه مرکزی قدرت امکان پذیر می کند. این پلتفرم قراردادهای هوشمندی را ارائه می‌کند که اجرای تراکنش‌ها را خودکار می‌کند و شفافیت در توافق‌نامه‌های خریدار و فروشنده را افزایش می‌دهد و امکان معاملات بی‌درنگ را فراهم می‌کند. این باعث ایجاد چندین بازار انرژی ابرمحلی خودکفا با حداقل وابستگی به شبکه اصلی می شود. علاوه بر این، بلاک چین یک مسیر حسابرسی تغییرناپذیر از هر تراکنش انرژی را حفظ می کند که به حسابداری، حل و فصل صورتحساب و فرآیندهای حل اختلاف خودکار کمک می کند.

 

  1. nyway یک بازار انرژی های تجدیدپذیر ایجاد می کند

سال تاسیس: 2017

مکان: هامبورگ، آلمان

شریک: بازار انرژی های تجدیدپذیر

استارت‌آپ آلمانی به هر حال بازار انرژی‌های تجدیدپذیر را برای معاملات انرژی همتا به همتا ایجاد می‌کند. پلت فرم این استارت آپ به مصرف کنندگان انرژی این امکان را می دهد که فروشنده های خصوصی برق را انتخاب و انتخاب کنند. این به مشتریان اجازه می دهد تا انرژی پاک را با قیمت های پایین در محل خود خریداری کنند. enyway همچنین از فناوری مبتنی بر بلاک چین برای ثبت و حسابرسی این تراکنش ها استفاده می کند. علاوه بر این، بازار استارت آپ نیازی به نصب دستگاه یا زیرساخت جدیدی برای تامین انرژی خریداری شده به مشتریان خود ندارد. راه حل enyway تضمین می کند که انرژی کاملاً پایدار، شفاف و ایمن است، بنابراین از هرگونه وقفه در عرضه جلوگیری می کند.

 

نویسنده: مهدی پارساوند

 

 

تراکر یا ردیاب خورشیدی( Solar Tracker )

تراکر یا ردیاب خورشیدی(Solar Tracker)  یک سیستم مکانیزه یا الکترونیکی است که جهت پنل‌های خورشیدی را به‌طور اتوماتیک تنظیم می‌کند تا همیشه به سمت نور خورشید باشند. این سیستم باعث افزایش بازدهی و بهره‌وری تولید انرژی در نیروگاه‌های خورشیدی می‌شود. تراکرها می‌توانند به دو دسته الکترونیکی (سنسور میزان نور و رگولاتورهای الکترونیکی) و مکانیکی (با استفاده از سیستم‌های مکانیکی و قطعات حرکتی) تقسیم شوند.

 

ویژگی‌ها و عملکرد تراکرها در نیروگاه خورشیدی:

پیگیری خورشید:

   تراکرها دارای سنسورهای نوری هستند که مقدار نور دریافتی را اندازه‌گیری می‌کنند و پنل‌ها را به سمت نور خورشید جهت می‌دهند. این عمل باعث افزایش مستمر و بهینه در تولید انرژی در نیروگاه‌ خورشیدی می‌شود.

 

تنظیم در دو جهت:

   برخی از تراکرها به دو جهت، یعنی افقی(Azimuth)  و عمودی (Elevation)، قابل تنظیم هستند. افقی تنظیم موقعیت پنل‌ها در جهت شرق و غرب را مشخص می‌کند، در حالی که عمودی نسبت به زاویه شیب خورشید، موقعیت پنل‌ها را در نیروگاه‌ خورشیدی تنظیم می‌کند.

 

افزایش بازدهی:

   با دنبال کردن مسیر خورشید، تراکرها باعث افزایش بازدهی و تولید بیشتر انرژی در مقایسه با پنل‌های ثابت می‌شوند. این افزایش تولید در نیروگاه‌ خورشیدی معمولاً 20 تا 30 درصد می‌تواند باشد.

 

کاهش سایه:

   تراکرها می‌توانند تاثیرات سایه را کاهش دهند. زمانی که یک شیء سایه بر سطح پنل ایجاد کند، تراکر به سرعت پنل را جابجا می‌کند تا از اثرات سایه در تولید نیروگاه‌ خورشیدی کاسته شود.

 

سازگاری با مکان‌های مختلف:

   تراکرها به راحتی در مکان‌های مختلف و با زوایا و میزان شیب‌های مختلف قابل نصب هستند، که این امکان را فراهم می‌کند تا در مناطق مختلف جغرافیایی نیز مورد استفاده قرار گیرند.

 

معایب استفاده از تراکرها در نیروگاه خورشیدی

درسته استفاده از تراکرها در نیروگاه‌های خورشیدی با ویژگی‌های مثبت همراه است، اما دارای برخی معایب نیز میباشد. در زیر به برخی از معایب استفاده از تراکرها اشاره می‌شود:

  1. هزینه بالا:

   نصب و نگهداری تراکرها هزینه‌های اضافی به سیستم نیروگاه خورشیدی افزوده و هزینه نهایی پروژه را افزایش می‌دهد. این هزینه‌ها شامل هزینه نصب، نگهداری مکانیزم‌ها، انرژی مصرفی برای حرکت تراکرها و سایر هزینه‌های مرتبط می‌شود.

هزینه بالا در مورد نصب و نگهداری تراکرها در نیروگاه‌های خورشیدی به علت عوامل مختلفی افزایش می‌یابد. در زیر به برخی از عوامل اصلی و افزایش درصدی که ممکن است برای هر یک از این عوامل ایجاد شود، اشاره می‌شود:

1-1. هزینه نصب:

   نصب تراکرها نیاز به کارگران ماهر و تجهیزات خاص دارد. همچنین، ساختار پایه‌ها و مکانیزم‌های مکانیکی نیز باید به‌صورت دقیق و محکم نصب شوند. همه این عوامل باعث افزایش هزینه نصب می‌شوند.

 

1-2. هزینه تجهیزات:

   تجهیزات الکترونیکی و مکانیکی تراکرها نیازمند تکنولوژی پیشرفته و دقت بالا هستند. این تجهیزات هزینه تولید و تهیه بالایی به نیروگاه‌ خورشیدی تحمیل میکنند.

 

1-3. نیاز به انرژی برای حرکت:

   تراکرها نیاز به انرژی برای حرکت دارند. این انرژی ممکن است از منابع مختلفی تأمین شود از جمله اتصال به شبکه برق یا استفاده از پنل‌های خورشیدی اضافی. هزینه مصرف این انرژی نیز به هزینه نهایی نیروگاه‌ خورشیدی اضافه می‌شود.

 

1-4. نیاز به نگهداری مکانیکی:

   مکانیکی بودن تراکرها به دلیل قطعات متحرک، نیاز به نگهداری و تعمیرات بیشتری دارد. این نگهداری ها باعث افزایش هزینه نگهداری و تعمیرات در نیروگاه‌ خورشیدی می‌شود.

 

1-5. نیاز به سیستم کنترل:

   نصب و بهره‌برداری از یک سیستم کنترل پیچیده برای ردیابی دقیق خورشید نیز هزینه‌ها را در نیروگاه‌ خورشیدی افزایش می‌دهد.

 

به‌طور کلی، افزایش هزینه بستگی به شرایط خاص هر پروژه دارد. اما به طور تقریبی، هزینه نصب و نگهداری تراکرها می‌تواند به میزان 20 تا 30 درصد هزینه کل پروژه نیروگاه خورشیدی را افزایش دهد. این مقدار بسته به شرایط محیطی، تکنولوژی مورد استفاده و اقتصاد منطقه متغیر می باشد.

تراکر ردیاب خورشیدی آرا نیرو  solar tracker system bracket efficiency - تراکر یا ردیاب خورشیدی (Solar Tracker)

 

  1. نیاز به فضای بیشتر:

   نصب تراکرها نیازمند فضای بیشتری است، چرا که پنل‌ها در طی حرکتشان نیاز به فضای آزاد دارند. این امر ممکن است در مکان‌های با محدودیت فضا به چالش بخورد.

نیاز به فضای بیشتر در نصب تراکرها در نیروگاه‌های خورشیدی از دو جهت مهم مطرح می‌شود: اولاً، فضای فیزیکی برای نصب سازه‌ها و تجهیزات مکانیکی؛ دوماً، فضای زیستی و زمین‌های مورد نیاز.

 

2-1. فضای فیزیکی برای نصب سازه‌ها و تجهیزات:

   – ساختار پایه‌ها: نصب تراکرها نیازمند ساختار پایه‌های قوی است که به پایداری و عملکرد بهینه تراکرها کمک کنند. برای هر تراکر نیازمند یک ساختار پایه و پشتیبانی مناسب است.

   – حرکت مکانیکی: وجود سیستم‌های حرکتی و مکانیکی نیازمند فضای بیشتری برای جابجایی پنل‌ها به سمت خورشید است. این امر به معنای فضای آزاد اطراف تراکرها و پنل‌ها در نیروگاه‌ خورشیدی می‌باشد.

 

2-2. فضای زیستی و زمین‌های مورد نیاز:

   – فضای زیستی: ممکن است در صورت نیاز به اجرای تغییرات زیست محیطی یا انجام اقدامات مرتبط با حفاظت از محیط زیست و گیاهان محلی نیاز به فضای زیستی افزایش یابد.

   – زمین‌های مورد نیاز: برای نصب تراکرها نیازمند زمین‌های بیشتری هستیم و باید مساحت‌های بزرگتری از زمین را اختصاص دهیم. این امر به خصوص در نیروگاه‌های خورشیدی با ظرفیت بالا به وجود می‌آید.

درصد افزایش فضای مورد نیاز بر اساس نوع و تعداد تراکرها، ابعاد ساختارهای مکانیکی، و شرایط محیطی متغیر است. به طور کلی، افزایش مساحت فضایی بر اثر نصب تراکرها می‌تواند به میزان حداقل 10 تا 20 درصد از مساحت نیروگاه خورشیدی بیافزاید. این میزان ممکن است بسته به شرایط خاص هر پروژه، نوع تراکر، ویژگی‌های زمین، و نیازمندی‌های محیط زیستی، متغیر باشد.

 

  1. پیچیدگی سیستم:

   تراکرها دارای سیستم‌های پیچیده مکانیکی یا الکترونیکی هستند. این پیچیدگی سیستم می‌تواند باعث افزایش احتمال خرابی و کاهش قابلیت اطمینان سیستم شود.

پیچیدگی سیستم تراکرها در نیروگاه‌های خورشیدی به دلیل وجود عناصر مکانیکی و الکترونیکی بسیار است. در زیر به برخی از عوامل مهم توجیه کننده پیچیدگی این سیستم پرداخته می‌شود:

3-1. ساختار مکانیکی:

   ساختار مکانیکی تراکرها در نیروگاه‌های خورشیدی بر اساس نوع و مدل تراکر متفاوت است، اما برخی از جزئیات مشترک در ساختار مکانیکی تراکرها عبارتند از:

3-1-1. پایه‌ها و ستون‌ها: ساختار پایه‌های تراکرها نیازمند طراحی و ساخت قوی و پایدار است. این پایه‌ها ممکن است به اندازه یک سازه مهندسی ساخته شوند و نیازمند مهندسی دقیق هستند.

– پایه‌ها معمولاً از مواد قوی مانند فولاد یا بتن ساخته می‌شوند. این پایه‌ها ممکن است به صورت استوانه‌ای یا مستطیلی طراحی شده باشند.

   – ستون‌ها بخشی از پایه‌ها هستند و از میان پایه بلندتر برآمده و به پنل‌های خورشیدی اتصال داده می‌شوند.

 

 3-1-2. سیستم‌های حرکتی:

سیستم حرکتی تراکرها در نیروگاه‌های خورشیدی برای بهینه کردن تابش خورشیدی بر سطح پنل‌های خورشیدی به‌کار می‌رود. وجود سیستم‌های مکانیکی برای حرکت تراکرها نیازمند موتورهای الکتریکی ، چرخ دنده‌ها، رولرها، و سیستم‌های جلوگیری از سایش است که این عناصر افزوده علاوه بر اینکه باعث حرکت دقیق تراکرها می‌شوند، میزان پیچیدگی را افزایش می‌دهند.

 

توجیه اقتصادی تراکر نیروگاه خورشیدی:

به طور کلی، استفاده از تراکرها نیاز به ارزیابی دقیق هزینه‌ها و مزایا، و توجیه اقتصادی دقیق در پروژه نیروگاه‌های خورشیدی دارد. عملکرد تراکرها نیازمند مصرف انرژی برای حرکت مکانیکی و تنظیمات الکترونیکی است. این مصرف انرژی اضافی ممکن است به اندازه تولید انرژی اضافی توسط پنل‌ها نباشد و موجب کاهش بهره‌وری نهایی شود.

فرایند تولید، نصب و نگهداری تراکرها ممکن است تأثیرات محیطی منفی داشته باشد. این مشکلات شامل مصرف منابع زیاد، تولید پسماندهای الکترونیکی، و تأثیرات بر زیستگاه‌های محلی می‌شود.

هزینه بالا و نیاز به سرمایه گذاری اضافی، ممکن است بازگشت سرمایه پروژه نیروگاه خورشیدی با تراکر را با تاخیر مواجه کند و باعث افزایش زمان بازگشت سرمایه شود.

startak TCU 2020 600px - تراکر یا ردیاب خورشیدی (Solar Tracker)

راهکارهای جایگزین استفاده از تراکر خورشیدی

استفاده از تراکرهای خورشیدی برای پیگیری حرکت خورشید و بهبود بازدهی پنل‌های خورشیدی یکی از راهکارهای موثر در نیروگاه‌های خورشیدی است، اما در برخی موارد ممکن است به دلیل محدودیت‌های مالی، فنی یا محیطی، استفاده از راهکارهای جایگزین مورد توجه قرار گیرد. در زیر به برخی از راهکارهای جایگزین برای تولید انرژی خورشیدی بدون استفاده از تراکرها اشاره شده است:

 

  1. سامانه‌های ثابت (Fixed-tilt PV Systems):

   – در این روش، پنل‌های خورشیدی به یک زاویه ثابت نسبت به سطح زمین تنظیم می‌شوند. این سیستم‌ها عموماً برای مناطق با تغییرات کمتر در مسیر خورشید مناسب هستند.

مزایا:

سادگی ساختار و نصب، کاهش هزینه‌ها.

نیاز به نگهداری کمتر در مقایسه با سیستم‌های پیچیده‌تر.

کمترین تلفات انرژی در اثر حرکت گیربکس یا ردیاب.

معایب:

کارایی پایین‌تر در شرایط نور کم یا زوایای خورشیدی متغیر.

عدم تطابق با مسیر حرکت خورشید.

 

  1. پنل‌های خورشیدی با تکنولوژی‌های پیشرفته:

   – استفاده از پنل‌های خورشیدی با تکنولوژی‌های پیشرفته که به دنبال بهبود بازدهی در شرایط نور کمتر و زوایای متغیر هستند، می‌تواند نیاز به تراکرها در نیروگاه‌ خورشیدی را کاهش دهد.

مزایا:

بهبود در کارایی در شرایط نور کم.

افزایش بازدهی در تکنولوژی‌های نوین سلول‌های خورشیدی.

معایب:

هزینه بالا برای تکنولوژی‌های پیشرفته.

ریسک تکنولوژی جدید و نقص‌های احتمالی.

این تکنولوژی‌ها شامل چندین نوع سلول و پنل مختلف می‌شوند. در زیر به برخی از پیشرفت‌های تکنولوژی‌های پنل‌های خورشیدی اشاره می‌شود:

  1. سلول‌های پروسکایتی (Perovskite Solar Cells):

   – این سلول‌ها از مواد معدنی به نام پروسکایت استفاده می‌کنند و توانایی بهبود عملکرد در شرایط نور کم، هوای محیط و دماهای متغیر را دارند. سلول‌های پروسکایتی به دلیل هزینه تولید پایین و کارایی بالا، توجه زیادی را به خود جلب کرده‌اند.

  1. سلول‌های Organic Photovoltaic Cells – OPV :

   – این سلول‌ها از مواد آلی به نام اروتنین استفاده می‌کنند و به دلیل انعطاف‌پذیری بیشتر و وزن کمتر، مناسب برای استفاده در سطوح منحنی و انعطاف‌پذیر هستند. سلول‌های OPV می‌توانند در شرایط نور کم و حتی در محیط‌های داخلی نیز عملکرد خوبی داشته باشند.

  1. سلول‌های آلی-انرژی‌های چسبنده (Perovskite-Silicon Tandem Solar Cells):

   – این تکنولوژی از ترکیب سلول‌های پروسکایتی با سلول‌های خورشیدی سیلیکونی استفاده می‌کند. این ترکیب بهبود کارایی در تولید انرژی و حذف نقاط ضعف هر یک از تکنولوژی‌ها را فراهم می‌کند.

  1. سلول‌های خورشیدی رنگی (Colored Solar Cells):

   – این سلول‌ها به دلیل طراحی‌های خاص و رنگ‌های متنوع، امکان استفاده از آنها در معماری و نمای ساختمان‌ها را فراهم کرده‌اند. این پنل‌ها علاوه بر تولید انرژی، نقش دکوراتیو و زیبایی را نیز دارند.

  1. سلول‌های خورشیدی نانوساختار (Nanostructured Solar Cells):

   – این تکنولوژی از ساختارهای نانومتری در سلول‌های خورشیدی استفاده می‌کند تا باعث افزایش سطح جذب نور و بهبود کارایی در نیروگاه‌ خورشیدی گردد. این سلول‌ها می‌توانند در شرایط نور کمتر نیز بهترین عملکرد را ارائه دهند.

  1. سلول‌های خورشیدی با اتصال بیشتر (Multi-junction Solar Cells):

   – این سلول‌ها از لایه‌های مختلف سلول‌های خورشیدی با انرژی‌های متفاوت استفاده می‌کنند تا انرژی از بیشترین محدوده طول موج را جذب کنند. این باعث افزایش بازدهی و عملکرد در شرایط متنوع نوری می‌شود.

  1. سلول‌های خورشیدی گرافن (Graphene Solar Cells):

   – این سلول‌ها از مواد گرافن برای بهبود هدایت الکتریکی و افزایش انعطاف‌پذیری استفاده می‌کنند. گرافن به عنوان یک ماده نانوتکنولوژیکی باعث افزایش حرکت الکترون‌ها می‌شود.

  1. سلول‌های خورشیدی Tandem Solar Cells :

   – این سلول‌ها از ترکیب چندین لایه سلول با انرژی‌های مختلف برای بهبود بازدهی استفاده می‌کنند. این ترکیب این امکان را فراهم می‌کند که انرژی خورشید را از طیف وسیعی از طول‌های موج جذب کنند.

  1. سلول‌های خورشیدی تراکمی (Concentrator Photovoltaics):

    – این سلول‌ها از عدسی‌ها یا آینه‌ها برای تمرکز نور بر روی سلول‌های خورشیدی استفاده می‌کنند. این روش مناسب برای مناطق با تابش نور خورشید زیاد است و باعث افزایش تولید انرژی می‌شود.

  1. پنل‌های خورشیدی شفاف (Transparent Solar Panels):

    – این نوع پنل‌ها به عنوان سلول‌های خورشیدی شفاف یا شیشه‌های خورشیدی شناخته می‌شوند. آنها به صورت شفاف بر روی سطوح شیشه‌ای نصب می‌شوند و این امکان را فراهم می‌کنند که ساختمان‌ها انرژی خورشیدی تولید کنند و همچنین نور خورشید را وارد محیط داخلی ساختمان کنند.

  1. پنل‌های خورشیدی دوطرفه (Bifacial Solar Panels):

پنل‌های خورشیدی دو طرفه(Bifacial)  یک نوع پنل خورشیدی هستند که قابلیت جذب نور از هر دو طرف را دارند، به این معنا که هم از سمت جلوی پنل (از طریق تابش مستقیم خورشید) و هم از سمت پشت پنل (از طریق تابش پراکنده و بازتابی از محیط) نور خورشید را تبدیل به انرژی الکتریکی می‌کنند. این ویژگی باعث افزایش بازدهی و تولید بیشتر انرژی در مقایسه با پنل‌های یک طرفه معمولی می‌شود. از مزایای این پنل ها میتوان به موارد زیر اشاره کرد:

  1. افزایش بازدهی به دلیل جذب نور از هر دو سمت
  2. کاهش هزینه تولید انرژی با افزایش بازدهی و تولید بیشتر انرژی
  3. تناسب با محیط زیست به طوریکه این نوع پنل‌ها در محیط‌های با بیشترین تغییرات در شدت نور (مثل مناطق ابری و مناطق با تغییرات جوی فصلی زیاد) عملکرد بهتری دارند.

در نتیجه، پنل‌های خورشیدی دو طرفه به عنوان یک فناوری پیشرفته و با تأثیر مثبت در افزایش بازدهی و تولید انرژی در نیروگاه‌ خورشیدی برجسته هستند.

 

  1. تکنولوژی‌های تجمعی زیاد (High Concentration Technologies):

   – این تکنولوژی‌ها از عدسی‌ها یا آینه‌ها برای جمع‌آوری نور خورشید و تمرکز آن بر روی سلول‌های خورشیدی استفاده می‌کنند. این راهکارها برای تولید انرژی با کارایی بالا در مناطق با تابش نور خورشید زیاد مناسب هستند.

مزایا:

بازدهی بالا در مناطق با تابش خورشید زیاد.

استفاده مؤثر از فضا و کاهش نیاز به پنل بزرگ.

معایب:

هزینه بالا و پیچیدگی در ساخت و نگهداری.

تأثیرات حرارتی بیشتر برای سلول‌ها.

single axis solar tracking تراکر آرانیرو ردیاب خورشیدی  - تراکر یا ردیاب خورشیدی (Solar Tracker)

  1. سیستم‌های ردیابی تک محوره (Single-axis Tracking Systems):

   – در مقایسه با تراکرهای دو محوره، سیستم‌های ردیابی تک محوره ساده‌تر هستند و همچنان امکان اصلاح زاویه تابش خورشید در فصول مختلف سال را فراهم می‌کنند. این سیستم‌ها باعث بهبود در بازدهی نسبت به سامانه‌های ثابت هستند.

مزایا:

افزایش بازدهی در مقایسه با سامانه‌های ثابت.

تطابق بیشتر با حرکت خورشید و تغییرات زاویه نور در فصول مختلف.

معایب:

هزینه بالا در نصب و نگهداری.

راندمان پایین تر در بازدهی نسبت به تراکرهای دو محوره.

توصیه نهایی به استفاده یا عدم استفاده از تراکر تک یا دو محوره در نیروگاه‌های خورشیدی در ایران ممکن است بستگی به شرایط خاص هر پروژه داشته باشد، اما می‌توان به برخی از نکات زیر اشاره کرد:

  1. هزینه بالا:

   – استفاده از تراکر دو محوره باعث افزایش هزینه‌های نصب، نگهداری و عملکرد سیستم می‌شود. در صورتی که شرایط آب و هوایی ایران و تابش خورشید متداول در این منطقه، توانایی کافی برای بهره گیری پنل‌ها در شرایط نصب ثابت را فراهم می‌کنند، افزایش هزینه به نسبت بازدهی افزوده شده ممکن است منطقی نباشد.

  1. مصرف آب:

   – عملکرد تراکر دو محوره نیازمند مصرف آب برای خنک‌کردن مکانیسم حرکتی و حفظ سیستم است. در مناطق کم آب و با توجه به مشکلات مدیریت منابع آب در ایران، استفاده از تراکر دو محوره ممکن است به مسائل زیست محیطی منفی منجر شود.

  1. پیچیدگی سیستم:

   – تراکر دو محوره سیستم‌های پیچیده‌تری نسبت به سیستم‌های ثابت هستند و نیازمند نگهداری و تعمیرات بیشتری می‌باشند. این موضوع می‌تواند در مدت زمان طولانی موجب افزایش هزینه‌های نگهداری شود.

  1. تغییرات جوی:

   – شرایط هوایی متنوع ایران، از جمله بادهای شدید، گردوغبار و دمای بالا می‌تواند بر عملکرد و پایداری تراکر دو محوره تأثیر بگذارد. سیستم‌های ثابت معمولاً مقاومتر به شرایط جوی هستند.

 

در نهایت، تصمیم در مورد استفاده یا عدم استفاده از تراکر در نیروگاه‌های خورشیدی در ایران باید با توجه به مشخصات فنی پروژه، شرایط جغرافیایی منطقه، و تحلیل دقیق هزینه-سود اتخاذ شود. همواره مهندسان آرا نیرو در زمینه انرژی خورشیدی و اطلاعات به‌روز مرتبط با پروژه مورد نظرتان، آماده ارائه مشاوره تخصصی به شما می باشد.

نویسنده: مهدی پارساوند

سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

 

سیستم ارتینگ در نیروگاه خورشیدی فتوولتائیک به منظور بهره‌وری بیشتر از پتانسیل انرژی خورشیدی و افزایش عمر مفید تجهیزات نیروگاه خورشیدی استفاده می‌شود. این سیستم معمولاً شامل یک سری عملیات و تجهیزات می‌شود که به صورت هوشمندانه و با استفاده از داده‌های محیطی و تجهیزات نیروگاه، کنترل و مدیریت می‌شوند. در زیر چند مرحله اصلی برای اجرای سیستم ارتینگ در نیروگاه خورشیدی فتوولتائیک آورده شده است:

 

  1. سنجش داده‌ها و شناسایی نیازها:

   – نصب سنسورها و دستگاه‌های اندازه‌گیری در نقاط مختلف نیروگاه خورشیدی برای جمع‌آوری داده‌های مرتبط با شدت نور، دما، سرعت باد و سایر پارامترهای محیطی.

   – استفاده از سامانه‌های نرم‌افزاری برای تحلیل دقیق این داده‌ها و شناسایی نیازها و شرایط بهینه.

در این مرحله، سنسورها و دستگاه‌های اندازه‌گیری در نیروگاه خورشیدی فتوواتائیک نصب می‌شوند تا داده‌های محیطی مرتبط با عملکرد تجهیزات و شرایط زیست‌محیطی جمع‌آوری شود. این داده‌ها ممکن است شامل موارد زیر باشد:

 

1-1. شدت نور:

   – سنسورهای تشخیص نور جهت اندازه‌گیری شدت نور خورشید در موقعیت‌های مختلف نیروگاه خورشیدی نصب می‌شوند.

 

2-1. دما:

   – سنسورها برای اندازه‌گیری دما در نقاط مختلف نیروگاه خورشیدی نصب می‌شوند تا تأثیر حرارت بر عملکرد تجهیزات را نظارت کنند.

 

3-1. سرعت باد:

   – دستگاه‌های اندازه‌گیری سرعت باد جهت ارزیابی تأثیر باد بر روی پنل‌های خورشیدی و سایر تجهیزات نیروگاه خورشیدی استفاده می‌شوند.

 

4-1. فشار جو:

   – اندازه‌گیری فشار جو برای مشخص کردن تأثیر ارتفاع از سطح دریا نیروگاه خورشیدی بر عملکرد تجهیزات از اهمیت بالایی برخوردار است.

 

5-1. رطوبت:

   – سنسورهای رطوبت جهت نظارت بر رطوبت محیط و تأثیر آن بر کارایی تجهیزات نیروگاه خورشیدی به کار گرفته میشوند.

 

6-1. داده‌های الکتریکی:

   – اندازه‌گیری و نظارت بر ولتاژ، جریان و توان تولیدی توسط پنل‌های خورشیدی جز داده های اساسی نظارت برعملکرد نیروگاه خورشیدی میباشد.

 

پس از جمع‌آوری این داده‌ها، سیستم‌های نرم‌افزاری مخصوص برای تحلیل این اطلاعات و شناسایی نیازها به کار می‌روند. با تحلیل این داده‌ها، برای سیستم ارتینگ نیروگاه خورشیدی می‌توانیم تصمیمات هوشمندانه‌ای اتخاذ کنیم و تنظیمات نیروگاه را بهینه‌سازی کنیم تا عملکرد بهتری داشته باشد.

استراکچر خورشیدی  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

نیروگاه خورشیدی آرانیرو

  1. کنترل تجهیزات:

   – نصب سیستم‌های خودکار و هوشمند کنترلی بر روی تجهیزات نیروگاه خورشیدی برای تنظیم بهینه عملکرد آنها.

   – اجرای الگوریتم‌های هوشمند برای بهینه‌سازی جریان انرژی در تجهیزات مختلف نیروگاه خورشیدی.

در مرحله کنترل تجهیزات در نیروگاه خورشیدی فتوولتائیک، از سیستم‌های هوشمند و نرم‌افزارهای پیشرفته برای مدیریت بهینه تجهیزات استفاده می‌شود. این فرآیند شامل چند جنبه اصلی است:

 

1-2. نصب سیستم‌های کنترلی:

   – انجام نصب دستگاه‌ها و سنسورهای هوشمند بر روی تجهیزات نیروگاه خورشیدی به منظور اندازه‌گیری و کنترل عملکرد آنها.

   – نصب سیستم‌های کنترلی مبتنی بر میکروکنترلرها یا PLC  (کنترلر منطقه‌ای برنامه‌پذیر) جهت اتصال و کنترل تجهیزات نیروگاه خورشیدی.

 

2-2. تنظیمات بهینه:

   – استفاده از الگوریتم‌ها و مدل‌های هوش مصنوعی برای تحلیل داده‌های جمع‌آوری شده و اعمال تنظیمات بهینه بر روی تجهیزات نیروگاه خورشیدی.

   – تنظیمات بهینه شامل تغییر زوایای پنل‌های خورشیدی، جریان الکتریکی تولیدی، و سایر پارامترهای مرتبط با تجهیزات نیروگاه خورشیدی است.

 

3-2. سیستم‌های خودکار:

   – پیاده‌سازی سیستم‌های خودکار برای اجرای تصمیمات اتوماتیک در مورد کنترل تجهیزات نیروگاه خورشیدی.

   – این سیستم‌ها می‌توانند به صورت خودکار به تغییرات در شرایط محیطی و داده‌های جمع‌آوری شده واکنش نشان دهند.

 

4-2. مدیریت انرژی:

   – بهینه‌سازی مصرف انرژی توسط تجهیزات نیروگاه خورشیدی با استفاده از سیستم‌های مدیریت انرژی.

   – کنترل تولید انرژی و مصرف آن بر اساس نیازهای نیروگاه خورشیدی و شرایط محیطی.

 

5-2. ردیابی و نظارت:

   – پیاده‌سازی سیستم‌های ردیابی و نظارت برای پیگیری دقیق تر حرکت خورشید و تنظیم زاویه پنل‌های خورشیدی.

   – نظارت به صورت زنده بر عملکرد تجهیزات و ارتباط با سیستم مرکزی جهت اطلاع‌رسانی و مدیریت بهینه نیروگاه خورشیدی.

 

با این رویکرد، کنترل تجهیزات در نیروگاه خورشیدی فتوولتائیک به صورت هوشمندانه و خودکار صورت می‌گیرد، که منجر به افزایش بهره‌وری و بهینه‌تر شدن عملکرد نیروگاه می‌شود.

با اجرای این مراحل و استفاده از تکنولوژی‌های هوشمند، نیروگاه خورشیدی فتوولتائیک می‌تواند به بهترین شکل ممکن از انرژی خورشید بهره‌مند شود و عمرمفید تجهیزات را افزایش دهد.

 

  1. انواع روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی:

 

1-3. مقاومت زمین سیستمی (System Grounding):

   – در این روش، یکی از نقاط تجهیزات به عنوان نقطه مشترک زمین برای کل سیستم انتخاب می‌شود.

   – مزایا: سادگی و انطباق با استانداردهای ملی.

   – معایب: احتمال اختلال در نقطه زمین وابسته به مواقع مختلف نیروگاه.

مقاومت زمین سیستمی یکی از روش‌های حفاظت الکتریکی است که در آن یک نقطه مشترک برای زمین‌کردن کل سیستم الکتریکی یک نیروگاه یا سیستم تولید انرژی استفاده می‌شود. در این روش، نقطه زمین به عنوان نقطه مشترکی برای اتصال به زمین انتخاب می‌شود تا از جریان‌های ناخواسته جلوگیری کرده و ایمنی تجهیزات و افراد را تضمین کند. مهمترین ویژگی‌های مقاومت زمین سیستمی به خصوص در نیروگاه خورشیدی عبارتند از:

1-3-1. نقطه مشترک زمین:

   – یک نقطه مشترک به عنوان نقطه زمین برای کل سیستم الکتریکی انتخاب می‌شود. این نقطه معمولاً به عنوان “نقطه نیازمندی” نیز شناخته می‌شود.

 

1-3-2. کاهش ولتاژ به زمین:

   – هدف اصلی از استفاده از مقاومت زمین سیستمی، کاهش ولتاژ‌های ناخواسته به زمین است تا از خطرات احتمالی در نیروگاه خورشیدی جلوگیری شود.

 

1-3-3. حفاظت از تجهیزات:

   – مقاومت زمین به عنوان یک مسیر سهل‌العبور برای جریان‌های ناخواسته عمل می‌کند و در نتیجه، تجهیزات و دستگاه‌های نیروگاه خورشیدی را از خطرات احتمالی مرتبط با افزایش ولتاژ حفاظت می‌کند.

 

1-3-4. کنترل جریان زمین:

   – مقاومت زمین سیستمی با کنترل جریان زمین مواجه شده و از افزایش ناگهانی جریان‌ها در نیروگاه خورشیدی جلوگیری می‌کند.

 

1-3-5. تنظیم ولتاژ:

   – از طریق تنظیم ولتاژها و جلوگیری از افزایش ناگهانی آنها، ایمنی سیستم در نیروگاه خورشیدی تامین می‌شود.

 

1-3-6. تأثیر بر مدل توزیع:

   – استفاده از مقاومت زمین سیستمی ممکن است تأثیراتی بر مدل توزیع جریان و ولتاژ در سیستم نیروگاه خورشیدی داشته باشد و این تأثیرات می‌تواند بر ایمنی و بهره‌وری نیروگاه تأثیر بگذارد.

مقاومت زمین سیستمی به عنوان یکی از روش‌های اصلی حفاظت الکتریکی در نیروگاه‌ها و سیستم‌های تولید انرژی استفاده می‌شود و با توجه به ویژگی‌های خود، می‌تواند به بهبود ایمنی و کارایی سیستم الکتریکی کمک کند.

پنل خورشیدی به روز آرانیرو  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

2-3. مقاومت زمین مکانیکی (Physical Grounding):

   – در این حالت، از سیستم مقاومت زمین برای تجهیزات خاصی استفاده می‌شود و هر تجهیز به طور جداگانه زمین می‌شود.

   – مزایا: کنترل بهتر اختلالات مختلف.

   – معایب: پیچیدگی نصب و نگهداری.

مقاومت زمین مکانیکی یکی دیگر از روش‌های حفاظت الکتریکی است که در آن مقاومت زمین بر اساس مکانیک ساختار و تجهیزات انجام می‌شود. این روش به منظور کنترل و مدیریت جریان‌های ناخواسته و حفاظت از تجهیزات و افراد در مقابل خطرات الکتریکی به کار می‌رود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین مکانیکی عبارتند از:

 

2-3-1. ساختار مکانیکی:

   – در این روش، از ساختارهای مکانیکی یا اجزای سازه برای ایجاد مسیرهای زمین‌کردن استفاده می‌شود. این ممکن است شامل فولادهای مقاوم در برابر خوردگی یا دیگر مواد سازه‌ای باشد.

 

2-3-2. زمین‌کردن اجزای ساختار:

   – اجزای ساختاری که به عنوان اجزای غیر الکتریکی در سیستم وجود دارند، به منظور زمین‌کردن استفاده می‌شوند. این اجزا می‌توانند پایه‌ها، ستون‌ها، پایه‌های مستقیم، یا سایر عناصر سازه باشند.

 

2-3-3. استفاده از مصالح مخصوص:

   – مقاومت زمین مکانیکی ممکن است با استفاده از مصالح خاصی که خاصیت زمین‌کردن مناسبی دارند، ایجاد شود. این مصالح می‌توانند شامل آهن‌آلات، فولادهای ضدخوردگی و یا سایر مواد مشابه باشند.

 

2-3-4. کاهش مقاومت:

   – هدف اصلی از استفاده از مقاومت زمین مکانیکی، کاهش مقاومت مسیرهای زمین‌کردن است تا جریان‌های الکتریکی به سرعت به زمین تخلیه شوند و از افزایش ولتاژهای خطرناک جلوگیری شود.

 

2-3-5. پیچیدگی کمتر نسبت به روش‌های دیگر:

   – نسبت به برخی روش‌های دیگر مانند مقاومت زمین سیستمی، اجرای مقاومت زمین مکانیکی ممکن است به لحاظ فنی و عملی کمی پیچیده‌تر باشد.

 

2-3-6. کنترل جریانهای ناخواسته:

   – با استفاده از ساختارهای مکانیکی به عنوان مسیر زمین، می‌توان جریان‌های الکتریکی ناخواسته را کنترل کرد و از تجهیزات و افراد را در مقابل این جریان‌ها حفاظت کرد.

 

هر یک از روش‌های حفاظت الکتریکی از جمله مقاومت زمین مکانیکی بسته به نیازها و شرایط خاص سیستم الکتریکی انتخاب می‌شود و همگی به بهبود ایمنی و عملکرد سیستم کمک می‌کنند.

 

3-3. مقاومت زمین تجهیزات (Equipment Grounding):

   – در این روش، هر تجهیز به یک نقطه زمین مستقل متصل می‌شود.

   – مزایا: جداگانه‌سازی اختلالات و جلوگیری از انتقال جریانهای ناخواسته.

   – معایب: زمین‌های متعدد ممکن است موجب ایجاد اختلال شوند.

 

مقاومت زمین تجهیزات یکی از روش‌های حفاظت الکتریکی است که برای محافظت از تجهیزات الکتریکی در برابر خطرات الکتریکی مورد استفاده در نیروگاه خورشیدی قرار می‌گیرد. در این روش، هر تجهیز به یک نقطه زمین خاص متصل می‌شود تا در صورت وقوع اختلال یا خطای الکتریکی، جریان الکتریکی به سمت زمین تخلیه شود و از ایجاد خسارت به تجهیزات و افراد جلوگیری شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین تجهیزات عبارتند از:

 

3-3-1. زمین‌کردن تجهیزات:

   – هر تجهیز الکتریکی، از جمله دستگاه‌ها، دستورالعمل‌ها، و ابزارها، به یک نقطه زمین خاص متصل می‌شود. این نقطه زمین به عنوان مسیر بازگشت جریان الکتریکی ناخواسته به زمین عمل می‌کند.

 

3-3-2. کاهش ولتاژ:

   – استفاده از مقاومت زمین تجهیزات به منظور کاهش ولتاژهای ناخواسته و جلوگیری از افزایش ناگهانی آنها موثر است.

 

3-3-3. جلوگیری از جریانهای خطرناک:

   – هدف اصلی این روش، جلوگیری از ایجاد جریانهای خطرناک از تجهیزات به سمت افراد یا دیگر تجهیزات است.

 

3-3-4. افزایش ایمنی:

   – با زمین‌کردن تجهیزات، ایمنی افراد کارکننده با تجهیزات و دستگاه‌ها افزایش می‌یابد، زیرا جریان‌های الکتریکی به سمت زمین تخلیه می‌شوند و از تماس مستقیم با افراد جلوگیری می‌کنند.

 

3-3-5. پیشگیری از خسارات مالی:

   – استفاده از این روش می‌تواند از خسارات مالی ناشی از خرابی تجهیزات در اثر جریان‌های الکتریکی ناخواسته جلوگیری کند.

 

3-3-6. مطابقت با استانداردها:

   – استفاده از مقاومت زمین تجهیزات باعث مطابقت با استانداردها و مقررات ایمنی الکتریکی مربوطه می‌شود.

 

3-3-7. نظارت و بازرسی:

   – سیستم‌ها و تجهیزات باید به طور دوره‌ای تحت بازرسی و نظارت قرار گیرند تا اطمینان حاصل شود که مقاومت زمین تجهیزات همواره به درستی عمل می‌کند.

 

مقاومت زمین تجهیزات به عنوان یکی از روش‌های حفاظت الکتریکی به خصوص در سیستم‌ها و محیط‌های صنعتی و نیروگاهی به ویژه نیروگاه خورشیدی مورد استفاده قرار می‌گیرد و با توجه به خصوصیات آن، به ارتقاء ایمنی و بهره‌وری تجهیزات کمک می‌کند.

کنترل تجهیزات - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

4-3. مقاومت زمین دقیق (Precision Grounding):

   – این روش از مقاومت زمین با دقت بالا برخوردار است که جهت کاهش نویزهای الکتریکی و جریان‌های پارازیتی از آن استفاده می‌شود.

   – مزایا: حداقل کردن نویزهای الکتریکی.

   – معایب: نیاز به نگهداری دقیق و هزینه‌بر بودن.

مقاومت زمین دقیق یک روش پیشرفته در حوزه حفاظت الکتریکی است که برای بهبود دقت و کارایی در زمین‌کردن سیستم‌های الکتریکی مورد استفاده قرار می‌گیرد. در این روش، مقاومت زمین با دقت بسیار بالا و با کنترل دقیق بر ارزش مقاومت تنظیم می‌شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین دقیق عبارتند از:

 

4-3-1. دقت بالا:

   – یکی از ویژگی‌های بارز مقاومت زمین دقیق، دقت بالا در تنظیم مقاومت آن است. این روش برای حصول بهینه‌ترین نتایج در کنترل جریان‌های زمین استفاده می‌شود.

 

4-3-2. استفاده از مواد با کیفیت:

   – مقاومت زمین دقیق از مواد با کیفیت بالا و خصوصیات الکتریکی خوب ساخته می‌شود. این مواد ممکن است شامل آلیاژهای خاص یا فولادهای ویژه باشد.

 

4-3-3. تنظیم الکترونیکی:

   – برخی از سیستم‌های مقاومت زمین دقیق دارای امکانات تنظیم الکترونیکی هستند که به کنترل دقیق و تنظیم مقاومت کمک می‌کنند.

 

4-3-4. مدیریت هوشمند:

   – سیستم‌های مقاومت زمین دقیق معمولاً دارای مدیریت هوشمند هستند که با استفاده از الگوریتم‌ها و سنسورهای مختلف، بهینه‌سازی جریان‌های زمین را انجام می‌دهند.

 

4-3-5. کاهش نویزهای الکتریکی:

   – استفاده از مقاومت زمین دقیق به منظور کاهش نویزهای الکتریکی و افزایش پایداری سیستم‌های الکتریکی موثر است.

 

4-3-6. تنظیم ولتاژ:

   – این روش می‌تواند به طور دقیق ولتاژها را تنظیم کرده و از افزایش ناگهانی آنها جلوگیری نماید.

 

4-3-7. کاربردهای حساس:

   – مقاومت زمین دقیق معمولاً در سیستم‌های الکتریکی حساس به ولتاژها و جریان‌های ناخواسته، مانند سیستم‌های الکترونیکی پیشرفته و تجهیزات پزشکی، به کار می‌رود.

 

4-3-8. تطبیق با شرایط محیطی:

   – این سیستم‌ها به خوبی با شرایط محیطی مختلف تطبیق می‌شوند و می‌توانند در شرایط مختلف دما، رطوبت، و فشار به صورت موثر عمل کنند.

 

مقاومت زمین دقیق به عنوان یک روش پیشرفته حفاظت الکتریکی به خصوص در سیستم‌های الکتریکی حساس و نیازمند دقت بالا به کار می‌رود و به ارتقاء ایمنی و عملکرد این سیستم‌ها کمک می‌کند.

نیروگاه های خورشیدی در ایران  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

5-3. مقاومت زمین فعال (Active Grounding):

   – در این حالت از تجهیزات فعال به منظور ترتیب و تنظیم مقاومت زمین استفاده می‌شود.

   – مزایا: امکان کنترل دقیق‌تر مقاومت زمین و جلوگیری از افزایش غیرهمسانی ولتاژ.

   – معایب: پیچیدگی و هزینه بالا.

مقاومت زمین فعال یک روش پیشرفته در حوزه حفاظت الکتریکی است که برای بهبود دقت و کارایی در زمین‌کردن سیستم‌های الکتریکی مورد استفاده قرار می‌گیرد. در این روش، علاوه بر استفاده از یک نقطه زمین، تجهیزات الکترونیکی فعال (مانند آمپلیفایرها یا تقویت‌کننده‌ها) نیز به کار گرفته می‌شوند تا به نحوی مداخله کنند که مقاومت زمین به صورت فعال تنظیم و کنترل شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین فعال عبارتند از:

 

5-3-1. استفاده از تجهیزات فعال:

   – این روش از تجهیزات الکترونیکی فعال به عنوان بخشی از سیستم زمین‌کردن استفاده می‌کند. این تجهیزات معمولاً به عنوان تقویت‌کننده‌های جریان یا ولتاژ عمل می‌کنند.

 

5-3-2. کنترل دقیق مقاومت زمین:

   – با استفاده از تجهیزات فعال، مقاومت زمین به نحو دقیق تنظیم و کنترل می‌شود. این امکان به مدیران سیستم اجازه می‌دهد که مقدار مقاومت زمین را به صورت دینامیک تطبیق دهند.

 

5-3-3. کاهش نویزهای الکتریکی:

   – استفاده از تجهیزات فعال به عنوان بخشی از مقاومت زمین فعال می‌تواند به کاهش نویزهای الکتریکی و افزایش پایداری سیستم کمک کند.

 

5-3-4. اصلاح ولتاژهای ناخواسته:

   – با استفاده از تجهیزات فعال، امکان اصلاح ولتاژهای ناخواسته و افزایش کنترل بر ولتاژهای سیستم وجود دارد.

 

5-3-5. پاسخ سریع به تغییرات:

   – سیستم‌های مقاومت زمین فعال معمولاً با پاسخ سریع به تغییرات در شرایط سیستم شناخته می‌شوند، که این امکان را فراهم می‌کند تا به بهترین شکل مقاومت زمین تنظیم شود.

 

5-3-6. مناسب برای بارهای پویا:

   – این روش به ویژه برای سیستم‌ها و بارهای الکتریکی پویا یا متغیر مناسب است.

 

5-3-7. مدیریت هوشمند:

   – بسیاری از سیستم‌های مقاومت زمین فعال دارای مدیریت هوشمند هستند که با استفاده از الگوریتم‌ها و سنسورها، بهینه‌سازی جریان‌های زمین را انجام می‌دهند.

 

5-3-8. کاربردهای حساس:

   – مقاومت زمین فعال معمولاً در سیستم‌های الکتریکی حساس به ولتاژها و جریان‌های ناخواسته، مانند سیستم‌های الکترونیکی پیشرفته، به کار می‌رود.

مقاومت زمین فعال به عنوان یک روش پیشرفته حفاظت الکتریکی برای سیستم‌های الکتریکی حساس و نیازمند دقت بالا به کار می‌رود و به بهبود ایمنی و عملکرد این سیستم‌ها کمک می‌کند.

تجهیزات نیروگاه خورشیدی آرانیرو - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

6-3. مقاومت زمین به صورت توزیع شده (Distributed Grounding):

   – در این روش، مقاومت زمین به صورت گسترده در سراسر نیروگاه توزیع می‌شود.

   – مزایا: کاهش احتمال افزایش ولتاژ و جریان‌های غیرهمسانی.

   – معایب: هزینه نصب و نگهداری بالا.

مقاومت زمین به صورت توزیع شده یک روش زمین‌کردن پیشرفته است که در آن مفهوم زمین‌کردن به صورت یکنواخت در سطح گسترده‌ای اعمال می‌شود. در این روش، نقاط مختلف سیستم به صورت مستقل به زمین متصل می‌شوند، و این اتصالات توزیع شده‌ای دارند که از مزایای این نوع زمین‌کردن بهره‌مند می‌شوند. ویژگی‌ها و جزئیات مربوط به مقاومت زمین به صورت توزیع شده عبارتند از:

 

6-3-1. توزیع یکنواخت:

   – در مقاومت زمین به صورت توزیع شده، نقاط مختلف سیستم به صورت مستقل به زمین متصل می‌شوند و این توزیع به یکنواختی در زمین‌کردن سیستم منجر می‌شود.

 

6-3-2. کاهش مقاومت:

   – با توزیع یکنواخت زمین، مقاومت کل سیستم به صورت کلی کاهش می‌یابد که این موجب افزایش کارایی و کاهش ولتاژهای ناخواسته می‌شود.

 

6-3-3. پیشگیری از جریان‌های ناخواسته:

   – این روش می‌تواند بهبودی در جلوگیری از جریان‌های ناخواسته و افزایش ایمنی سیستم ایجاد کند.

 

6-3-4. مدیریت جریان:

   – توزیع یکنواخت جریان زمین بهبود مدیریت جریان‌های الکتریکی را فراهم می‌کند و از تجاوز جریان به نقاط حساس سیستم جلوگیری می‌کند.

 

6-3-5. قابلیت اطمینان بالا:

   – به دلیل توزیع یکنواخت زمین، سیستم با قابلیت اطمینان بالا و عملکرد پایدار روبرو می‌شود.

 

6-3-6. سازگار با تغییرات:

   – این روش سازگاری بالایی با تغییرات سیستم، اندازه‌ی گسترش یا تغییرات در تجهیزات دارد.

 

6-3-7. مناسب برای سیستم‌های بزرگ:

   – مخصوصاً در سیستم‌های الکتریکی بزرگ که از ابعاد گسترده استفاده می‌کنند، توزیع یکنواخت زمین می‌تواند یک گزینه موثر باشد.

 

6-3-8. پیاده‌سازی نسبت به استانداردها:

   – این روش معمولاً با استانداردها و مقررات الکتریکی سازگاری دارد و می‌تواند در پیاده‌سازی‌های مختلف به کار گرفته شود.

مقاومت زمین به صورت توزیع شده با توجه به مزایای مطرح شده، به عنوان یک گزینه کارآمد در زمینه حفاظت الکتریکی در سیستم‌های الکتریکی گسترده استفاده می‌شود.

 

هرکدام از این روش‌ها بسته به نیازها و شرایط خاص هر نیروگاه ممکن است انتخاب شود. انتخاب بهترین روش باید با توجه به استانداردها، اهداف حفاظتی، و شرایط محیطی انجام شود.

نویسنده: مهدی پارساوند

یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه با وجود بانک باتری

 

خلاصه

این مقاله روشی را، به ویژه برای مناطق با پتانسیل انرژی خورشیدی، برای طراحی و توسعه موثر نیروگاه های فتوولتائیک خورشیدی یکپارچه با بانک های باتری متصل به شبکه برق به عنوان یک پشتیبان اضافی برای حفظ پایداری و قابلیت اطمینان مورد بحث قرار می دهد. برای اثبات اثربخشی این روش در استفاده از آن برای طراحی و توسعه سیستم پیشنهادی، شهر کینشاسا در جمهوری دموکراتیک کنگو با کسری انرژی عظیم (5425 مگاوات ساعت) به عنوان مطالعه موردی در نظر گرفته شده است. در واقع روش به کار گرفته شده در این مطالعه داده های آب و هوا، انتخاب مکان، تحلیل توان بار ساعتی و تقاضای انرژی، مشخصات فناوری های PV و سایر اجزای سیستم را در نظر گرفته است. تحلیل اقتصادی نیز برای ارزیابی قابلیت حیات سیستم پیشنهادی انجام شده است. با LCOE رقابتی، SPP کمتر از 10 سال، NPV˃0، SIR˃1، و ROI ˃10 درصد، و خروجی انرژی PV سالانه بیشتر از کسری انرژی شهر، سیستم پیشنهادی عملی و قابل اجرا است. در جستجوی عملکرد بهتر، راندمان بالاتر و ارزش اقتصادی بهتر، روش پیشنهادی به شدت توصیه می‌شود و می‌تواند به عنوان یکی از مؤثرترین و ساده‌ترین روش‌ها برای راه اندازی سیستم‌های نیروگاه خورشیدی PV در مقیاس بزرگ در نظر گرفته شود.

 

معرفی

موضوع تغییر اقلیم، کاهش پیش بینی شده منابع انرژی متعارف در سال های آینده، نگرانی در مورد آلودگی هوا ناشی از استفاده از این سوخت های متعارف و ناامنی انرژی از عوامل اصلی افزایش سهم بسیاری از کشورها از انرژی های تجدیدپذیر در خود است. (مینگ و همکاران، 2018). در سال 2015، حدود 86 درصد از مصرف انرژی در سراسر جهان از سوخت‌های معمولی تولید می‌شد  (Musa et al., 2018)این سوخت ها جایگاه قابل توجهی در بخش انرژی برای بهبود رشد اقتصادی کشورها دارند، اما استفاده گسترده از آنها نگرانی های زیست محیطی را افزایش می دهد. به طور خاص، آلودگی هوا ناشی از استفاده گسترده از سوخت‌های فسیلی و تغییرات آب و هوایی مرتبط و گرمایش جهانی، مشارکت گسترده در سراسر جهان و پذیرش گسترده فناوری‌های انرژی‌های تجدیدپذیر را ضروری می‌کند. در نتیجه، ادغام نیروی الکتریکی مهار شده از باد، نور خورشید و انرژی آبی، به منظور پرداختن به این مسائل و پاسخگویی به تقاضای فزاینده انرژی در ساختمان‌ها، حمل‌ونقل و صنعت، یک الزام مطلق است (فاضل پور و همکاران، 2016; غنایی و همکاران، 2020). با این افزایش جهانی در مصرف انرژی، تحقیقات پیشرفته تری در زمینه انرژی های تجدیدپذیر بسیار مورد نیاز است و باید به طور مستمر توسط محققان در سراسر جهان انجام شود. این همچنین به مقابله با مشکلات زیست محیطی فزاینده در نتیجه سوخت های فسیلی کمک می کند. با توجه به این واقعیت که این منابع انرژی متعارف دیگر امیدی برای پوشش تقاضای روزافزون جهانی برای انرژی در دو دهه آینده که عمدتاً به دلیل تخلیه سریع منابع آنهاست، به نظر نمی رسد، افزایش نفوذ راه حل های انرژی پایدار ضروری است. به بخش برق نیروگاه‌های انرژی تجدیدپذیر که انرژی را به شیوه‌ای پاک از نظر زیست‌محیطی تولید می‌کنند، تعادل بین عرضه و تقاضای انرژی را حفظ می‌کنند، شبکه برق را با توجه به قابلیت اطمینان آن تثبیت می‌کنند و نیازهای بار را برای کاربردهای مسکونی، تجاری، حمل‌ونقل و صنعتی برآورده می‌کنند (Ghenai et al. ، 2020؛ ماهش و ساندو، 2015).

grec rawhide - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

منابع انرژی تجدیدپذیر مانند باد، آبی و خورشیدی را می توان در بسیاری از نقاط جهان یافت، اگرچه پتانسیل منابع بسته به مکان متفاوت است. با این وجود، به نظر می رسد در دسترس بودن آنها برای بشریت از نظر مسائل زیست محیطی و همچنین به عنوان جایگزینی برای اهداف هزاره در آینده امیدوارکننده باشد. این اهداف شامل، اما نه محدود به کاهش/حذف انتشار گازهای گلخانه ای ناشی از انرژی الکتریکی تولید شده از منابع انرژی متعارف و همچنین وابستگی انرژی کشورها به این سوخت ها است. با این حال، در میان منابع تجدیدپذیر ذکر شده در بالا، باد و خورشید توسط اکثر محققان برای برآوردن نیازهای روزافزون انرژی در بسیاری از جوامع در سراسر جهان انتخاب می‌شوند. همانطور که مشخص است، تولید برق از یک فناوری خورشیدی به شدت به شدت خورشید بستگی دارد و تولید مورد انتظار ممکن است تنها با توجه به دقت پیش‌بینی آب و هوا برنامه‌ریزی شود (گیلانزا و همکاران، 2018؛ ماهش و ساندو، 2015). یکی از راه‌های غلبه بر ماهیت متناوب انرژی خورشیدی، استفاده از یک واحد ذخیره‌سازی یا ترکیب آن با یک منبع انرژی تجدیدپذیر دیگر با استفاده از قدرت یکی برای تکمیل ضعف دیگری است (گیلانزا و همکاران، 2018). این مطالعه یک سیستم هیبریدی را با استفاده از ترکیبی از سیستم‌های ذخیره‌سازی باتری با نیروگاه خورشیدی فتوولتائیک PV در نظر می‌گیرد. سیستم‌های PV با ذخیره‌سازی، منبع تغذیه را قابل اطمینان‌تر می‌سازند و هر زمان که در طول تولید برق تغییری در تابش خورشیدی وجود داشته باشد، بانک‌های باتری سهم خود را برای متعادل کردن منبع افزایش می‌دهند. پایداری و قابلیت اطمینان «سیستم منبع تغذیه خورشیدی جدا از شبکه» به تأسیسات نیروگاه خورشیدی PV بزرگ و سیستم‌های ذخیره باتری بزرگ نیاز دارد. از سوی دیگر، در نظر گرفتن ذخیره سازی و باتری برای یک “سیستم نیروگاه خورشیدی متصل به شبکه” PV نیازهای ذخیره سازی را کاهش می دهد و امنیت و امکان سنجی تامین را بهبود می بخشد. چند مطالعه بر اساس مجموعه‌ای از ترکیبی از سیستم‌های برق متعارف و سیستم‌های انرژی تجدیدپذیر مانند نیروگاه خورشیدی PV، باد و آبی قبلاً برای جمهوری دموکراتیک کنگو(DRC)  انجام شده است. هدف اصلی این مطالعات برآوردن نیازهای تقاضای توان بارهای خاص متصل و/یا غیر متصل به شبکه برق و در نتیجه بهبود قابلیت اطمینان آن سیستم ها بود.

کوساکانا و ورماک (2011) امکان استفاده از سیستم های هیبریدی PV-Wind را در DRC به عنوان راه حلی برای تامین برق تاسیسات مخابراتی از راه دور، به ویژه برای Mbuji-Mayi که در آن ژنراتور دیزلی در حال استفاده است، بررسی کردند. آنها در بررسی های خود نشان دادند که وجود منابع خورشیدی و بادی در تمام نقاط کشور می تواند پاسخگوی نیاز انرژی اپراتورهای شبکه باشد. بر اساس نتایج شبیه‌سازی به‌دست‌آمده از نرم‌افزار HOMER، با استفاده از نامطلوب‌ترین ماه برای اندازه‌گیری سیستم، سیستم قدرت هیبریدی پیشنهادی نسبت به سیستم دیزل ژنراتور مقرون به صرفه‌تر و از نظر زیست‌محیطی بهتر است. با این حال، با LCOE 0.26 $/kWh همانطور که توسط نویسندگان گزارش شده است، سیستم قدرت هیبریدی پیشنهادی آنها بسیار کمتر از نیروگاه های برق آبی Inga و Zongo امکان پذیر است.

 

Vermaak و Kusakana (2014) امکان استفاده از منابع انرژی تجدیدپذیر، اعم از سیستم نیروگاه خورشیدی فتوولتائیک یا بادی، را برای توسعه و استقرار ایستگاه‌های شارژ برقی Tuk-tuk در مناطق روستایی و دورافتاده جمهوری کنگو بررسی کردند. نویسندگان در مطالعات خود از نامطلوب ترین ماه برای اندازه گیری اجزای سیستم استفاده کردند. در مطالعه آنها از نرم افزار HOMER برای انجام شبیه سازی ها با در نظر گرفتن متغیرهای ورودی اصلی استفاده شد. مانند منابع انرژی تجدیدپذیر، هزینه قطعات، مشخصات فنی و تقاضای بار.

download 1 - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

کوساکانا و ورماک (2013) تحقیقاتی را در مورد امکان استفاده از سیستم‌های قدرت هیبریدی تجدیدپذیر به عنوان منابع اولیه انرژی برای تامین برق تاسیسات تلفن همراه در مناطق روستایی جمهوری کنگو انجام دادند. این مطالعات سه منطقه را شامل می شود، یعنی Kabinda، Mbuji-Mayi و Kamina که هنوز به شبکه برق ملی متصل نیستند. مناطق فوق با توجه به پتانسیل خوب خورشیدی و بادی به عنوان سایت آزمایشی برای انجام این تحقیقات انتخاب شدند. چهار گزینه مختلف شامل «سیستم PV-Wind هیبریدی»، «سیستم دیزل ژنراتور»، «سیستم نیروگاه خورشیدی  PV و سیستم باد» پیشنهاد و مورد بررسی قرار گرفت. نتایج شبیه سازی سیستم هیبریدی PV-Wind پیشنهادی به دست آمده از نرم افزار HOMER با سایر گزینه های منبع تغذیه ذکر شده مقایسه شد. در طول عمر اقتصادی پروژه، سیستم هیبریدی PV-WIND پیشنهادی به‌عنوان اقتصادی و از نظر زیست‌محیطی بهترین در بین گزینه‌های در نظر گرفته شده بود. در این مطالعات، محققان همچنین سیستم‌هایی را پیشنهاد کرده‌اند که سیستم‌های انرژی مختلف را با یک سیستم دیزلی به عنوان یک پشتیبان قابل اعتماد ترکیب می‌کنند. اگرچه سیستم دیزل هزینه رقابتی انرژی را ارائه می دهد، اما دوستدار محیط زیست نیست زیرا انرژی را از سوخت های فسیلی تولید می کند. هنگامی که هزینه های دیگر در نظر گرفته شود، سیستم های تجدیدپذیر با باتری مقرون به صرفه تر می شوند. با این حال، پایداری و قابلیت اطمینان برای تامین برق تمیز و مقرون به صرفه به بار از طریق یک نیروگاه PV خورشیدی روی شبکه (با باتری) که از شبکه اصلی به عنوان پایه استفاده می‌کند، در ادبیات مربوط به مطالعات موردی انرژی در DRC یا جاهای دیگر مورد توجه قرار نگرفته است. آفریقا با این وجود، تعداد زیادی از مطالعات در سراسر جهان در مورد طراحی و توسعه سیستم های PV خورشیدی تاکنون توسط بسیاری از محققین انجام شده است (آدام و فاشینا، 2019؛ Ayodele و همکاران، 2019؛ Domínguez & Geyer، 2019؛ غفور و Munir، 2015؛ کمالی، 2016؛ Khatri، 2016؛ Kolhe و همکاران، 2015؛ Okoye & Oranekwu-Okoye، 2018؛ Owolabi و همکاران، 2019؛ Sharma و همکاران، 2019؛ Werulkar,20kar و Kul15.)

 

برخلاف روش‌های تحقیقاتی پیشنهاد شده در مطالعات قبلی برای نیروگاه‌های فتوولتاییک خورشیدی، روش پیشنهادی مصاحبه‌های نیمه ساختاریافته، داده‌های آب‌وهوای مکان، پارامترهای ضروری برای انتخاب مکان، عوامل تعیین‌کننده برای تخمین واقعی بار روزانه در یک مکان را در نظر می‌گیرد. بدون سوابق تقاضای انرژی، پروفیل های تقاضای برق و انرژی شهر (ساختمان های مسکونی، تجاری و صنعتی) به صورت ساعتی، روزانه و ماهانه. این روش همچنین مشخصات فناوری ها و سایر پارامترهای کلیدی تصمیم گیری را برای طراحی بهتر و تحلیل اقتصادی نیروگاه خورشیدی PV در نظر می گیرد. مقایسه‌های ماژول‌های PV انتخاب شده در رابطه با خروجی انرژی، PRنسبت عملکرد، CF ضریب ظرفیت، و LCOE  هزینه یکسان‌سازی شده برق نیز ارائه شده‌اند.

 

اهداف این مطالعه عبارتند از:

 

  • ارائه یک روش طراحی موثر برای توسعه نیروگاه‌های خورشیدی PV خورشیدی با باتری‌های ذخیره‌سازی که به‌عنوان واحد پشتیبان/پایه به موازات شبکه موجود کار می‌کنند تا پایداری تامین و قابلیت اطمینان شبکه حفظ شود.
  • پتانسیل انرژی خورشیدی را در یک مکان ارزیابی کنید و سپس سهم آن در تامین برق را بررسی کنید.
  • انجام مطالعه امکان سنجی نیروگاه خورشیدی PV پیشنهادی برای تامین برق کینشاسا.
  • نشان دهید که چگونه “کارایی ماژول خورشیدی PV و تعیین زاویه شیب بهینه” در محل انتخاب شده، امکان به دست آوردن انرژی خروجی بهینه، PR و CF بالاتر و LCOE رقابتی را فراهم می کند.
  • تامین برق تمیز و مقرون به صرفه برای کینشاسا و رفع قطعی برق، کاهش بار و خاموشی در حال حاضر اکثر ساکنان و صنعت کینشاسا با آن مواجه هستند.
  • یک سیستم پشتیبان قابل اعتماد برای منبع تغذیه بدون وقفه پیشنهاد کنید.

 

داده‌های جمع‌آوری‌شده از منابع معتبر مختلف و آن‌هایی که بازسازی شده‌اند، بر اساس مصاحبه‌های نیمه ساختاریافته انجام‌شده با سهامداران کلیدی بخش برق DRC، در طراحی و تحلیل اقتصادی برای این مطالعه موردی مورد بررسی و تحلیل قرار گرفته‌اند.

 

وضعیت برق در کینشاسا

کینشاسا، پایتخت جمهوری دموکراتیک کنگو، به شدت بر برق تولید شده در استان همسایه خود، کنگو مرکزی، برای تامین برق ساکنان و صنایع خود متکی است. منبع اصلی تامین برق در شهر انرژی آبی است که 98 درصد از کل مصرف برق را به خود اختصاص می دهد. تقاضای برق در شهر حدود 1000 مگاوات برآورد شد و تنها 45 درصد از این تقاضا توسط شرکت ملی تاسیسات (SNEL) تامین می شود. این باعث کسری برق برای برق می شود

 

روش شناسی

این مقاله یک رویکرد جدید از طریق یک روش طراحی موثر برای توسعه نیروگاه‌های PV خورشیدی با باتری‌های ذخیره‌سازی ارائه می‌دهد که به‌عنوان واحد پشتیبان/پایه به موازات ژنراتورهای برق موجود برای حفظ ثبات و قابلیت اطمینان عرضه می‌شوند. تازگی این مقاله بر روی یک روش مهندسی نهفته است که قادر به تعیین موثر خروجی انرژی PV و باتری “زمان واقعی”، نسبت عملکرد سیستم پیشنهادی، ضریب ظرفیت آن، NPV، LCOE و SPP با توجه به

wHandNews Image - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

نتایج و بحث

در این مطالعه، از ماژول‌های PV SunPower برای تامین برق شهر کینشاسا استفاده می‌شود تا کسری انرژی آن را پوشش دهد و وابستگی آن به منبع تغذیه نیروگاه‌های برق آبی Inga و Zongo را کاهش دهد. نیروگاه خورشیدی PV پیشنهادی برای تداوم تامین به باتری ها متکی است و از شبکه اصلی به عنوان نیروی پشتیبان دوم استفاده می کند. بر اساس محاسبات مهندسی، ظرفیت تولید مورد نیاز این نیروگاه فتوولتاییک 1560 مگاوات پیک برای تامین کسری انرژی 5425 مگاوات ساعت در روز مشخص شد.

 

نتیجه گیری و توصیه ها

این مقاله روشی مبتنی بر یک رویکرد ریاضی را مورد بحث قرار می‌دهد که می‌تواند در همه جای دنیا توسط نصاب‌های PV برای طراحی و توسعه نیروگاه‌های PV خورشیدی در مقیاس بزرگ، با تکیه بر باتری‌ها و شبکه اصلی برای تداوم و قابلیت اطمینان، استفاده شود. مطالعه انجام شده تاکیدی بر وضعیت برق شهر کینشاسا دارد که در آن تنها 45 درصد از مشتریان نهایی به برق دسترسی دارند. با وجود پتانسیل عظیم سیستم های برق آبی در کشور و کنگو

 

بیانیه مشارکت نویسنده CRediT

Arcell Lelo Konde داده‌ها را جمع‌آوری و تجزیه و تحلیل کرد، تجزیه و تحلیل شبیه‌سازی و یافته‌های تحقیقاتی گزارش‌شده در این دست‌نوشته را انجام داد و نتایج را تفسیر کرد، کل محتوای این دست‌نوشته را نوشت و بازبینی‌های عمده‌ای را در این مقاله انجام داد. مصطفی دغباسی و مهمت کوسف کار را بررسی کردند و بر یافته‌های پژوهشی به‌دست‌آمده نظارت کردند تا مطمئن شوند که داده‌های جمع‌آوری‌شده، محتوا و ساختار این نسخه از استانداردهای انتشار پیروی می‌کند.

 

اعلامیه منافع رقابتی

نویسندگان اعلام می‌کنند که هیچ منافع مالی یا روابط شخصی رقیب‌ای ندارند که به نظر می‌رسد بر کار گزارش‌شده در این مقاله تأثیر بگذارد.

Arcell Lelo Konde دارای مدرک کارشناسی ارشد در مهندسی سیستم های انرژی از دانشگاه بین المللی قبرس با تخصص در سیستم های برق هیبریدی تجدید پذیر است. حوزه‌های تخصص او شامل انرژی‌های تجدیدپذیر، طراحی، مدل‌سازی، توسعه، بهره‌برداری، برنامه‌ریزی و راه‌اندازی سیستم‌های PV خورشیدی از کاربردهای برق کوچک تا مقیاس بزرگ، مزارع بادی و نیروگاه‌های برق آبی است.

نویسندگان: Arcell LeloKonde, MehmetKusaf, MustafaDagbasi

مترجم: مهدی پارساوند

 

 

 

ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺳﺒﺰوار و ﯾﺰد ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ 10 درﺻﺪ از ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮار

ﻣﻘﺎﻟﻪي ﺣﺎﺿـﺮ ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار و ﯾﺰد را ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ ده درﺻﺪ از
ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮارﻫﺎي اﯾﻦ دو ﺷﻬﺮﺳﺘﺎن ﺑﺮرﺳﯽ ﻣﯽﮐﻨﺪ. از ﻧﺮم اﻓﺰار ﮐﺎﻣﻔﺎر ﺑﺮاي ﻣﻄﺎﻟﻌﺎت اﻣﮑﺎن ﺳـﻨﺠﯽ اﺳـﺘﻔﺎده ﺷـﺪه اﺳـﺖ. ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎه در دو ﺷـﻬﺮﺳﺘﺎن اﻗﺘﺼﺎدي

ﺑﻪ ﺗﺮﺗﯿﺐ 36,39 و 37,67 درﺻﺪ

ارزﯾﺎﺑﯽ ﺷـﺪه اﺳﺖ. ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﻧﯿﺮوﮔﺎهﻫﺎي 14,5 و 42,5 ﻣﮕﺎواﺗﯽ ﺳﺒﺰوار و ﯾﺰد
ﺑﻮده و دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﺑﺮاي ﭘﺮوژهﻫﺎي ﻣﻮرد ﻧﻈﺮ 6,4 و 6,17 ﺳﺎل ﺑﺮآورد ﺷﺪه اﺳﺖ.

1 ﻣﻘﺪﻣﻪ

در ﺳﺎلﻫﺎي اﺧﯿﺮ، ﺑﺎ ﺗﻮﺳﻌﻪ ﺳﺮﯾﻊ ﺟﺎﻣﻌﻪ و اﻗﺘﺼﺎد، ﻧﯿﺎز ﺑﺸﺮ ﺑﻪ اﻧﺮژي ﺑﻪ ﻃﻮر ﭼﺸﻤﮕﯿﺮي اﻓﺰاﯾﺶ ﯾﺎﻓﺘﻪ اﺳﺖ . ﺑﻪ دﻟﯿﻞ ﮐﺎﻫﺶ ﻣﻨﺎﺑﻊ ﻓﺴﯿﻠﯽ در اﺛﺮ اﻓﺰاﯾﺶ ﻣﺼﺮف اﻧﺮژي و ﻫﻢ ﭼﻨﯿﻦ ﻣﺴﺎﺋﻞ زﯾﺴﺖ ﻣﺤﯿﻄﯽ ، اﺳﺘﻔﺎده از ﻣﻨﺎﺑﻊ اﻧﺮژي ﺗﺠﺪﯾﺪﮐﺸﻮر اﯾﺮان ﺑﺎ داﺷﺘﻦ ﻣﯿﺎﻧﮕﯿﻦ 300 روز آﻓﺘﺎﺑﯽ در ﺳﺎل ، ﭘﺘﺎﻧﺴﯿﻞ ﺑﺴﯿﺎر ﺧﻮﺑﯽ ﺑﺮاي ﺑﻬﺮهﮔﯿﺮي از اﻧﺮژي ﺧﻮرﺷﯿﺪي را داراﺳﺖ. ﯾﮑﯽ از ﻣﻬﻢﺗﺮﯾﻦ ﻣﺰاﯾﺎي ﺳﯿﺴﺘﻢﻫﺎي ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ، ﻗﺎﺑﻠﯿﺖ اﺳﺘﻔﺎده ﺑﻪ ﺻﻮرت ﻣﺘﺼﻞ ﺑﻪ ﺷﺒﮑﻪ و ﻣﺴﺘﻘﻞ از ﺷﺒﮑﻪ اﺳﺖ[1] . در ﮔﺰارش ﺣﺎﺿﺮ، ﻃﺮح اﺣﺪاث ﻧﯿﺮوﮔﺎهﻫﺎي ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺳﺒﺰوار و ﯾﺰد ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ ده درﺻﺪ از ﺑﺮق ﻣﻮرد ﻧﯿﺎز ﺧﺎﻧﻮارﻫﺎي اﯾﻦ دو ﺷﻬﺮﺳﺘﺎن ، ﻣﻮرد ارزﯾﺎﺑﯽ ﻣﺎﻟﯽ ﻗﺮار ﺧﻮاﻫﺪ ﮔﺮﻓﺖ.

اﻧﺘﺨﺎب ﺻﺤﯿﺢ ﻣﺎژول، اﯾﻨﻮرﺗﺮ، ﻇﺮﻓﯿﺖ و ﭼﯿﺪﻣﺎن، ﺳﺒﺐ اﻓﺰاﯾﺶ ﺑﻬﺮهوري ﻧﯿﺮوﮔﺎه و ﮐﺎﻫﺶ ﻫﺰﯾﻨﻪ ﺗﻤﺎمﺷﺪه ﻣﯽﮔﺮدد. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﻮﻗﻌﯿﺖ ﺟﻐﺮاﻓﯿﺎﯾﯽ ﻣﺤﻞ اﺣﺪاث ﻧﯿﺮوﮔﺎه، آراﯾﺶ آراﯾﻪﻫﺎي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ، ﺳﻄﺢ اﺷﻐﺎل ﺷﺪه و ﺟﻠﻮﮔﯿﺮي از ﺳﺎﯾﻪ اﻓﮑﻨﯽ ﻣﺎژولﻫﺎ ﺑﺮ روي ﻫﻢ، زاوﯾﻪي ﺑﻬﯿﻨﻪ ﭘﻨﻞﻫﺎ ﻗﺎﺑﻞ اﺳﺘﺨﺮاج اﺳﺖ[2].ﺑﻌﺪ از اﻧﺘﺨﺎب ﻣﺪل ﻣﺎژول و ﻣﺒﺪل، ﻗﯿﻤﺖ و ﺗﻌﺪاد ﭘﻨﻞﻫﺎي ﻣﻮرد ﻧﯿﺎز، ﺗﻮان ﺧﺮوﺟﯽ ﻧﯿﺮوﮔﺎه، ﻣﺴﺎﺣﺖ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎز،ﻫﺰﯾﻨﻪﻫﺎي ﺟﺎﻧﺒﯽ و …، ﺑﺮرﺳﯽ اﻗﺘﺼﺎدي ﺻﻮرت ﻣﯽﮔﯿﺮد.

2 ﻣﻮﻗﻌﯿﺖ ﺟﻐﺮاﻓﯿﺎﯾﯽ و ﺷﺮاﯾﻂ اﻗﻠﯿﻤﯽ ﻣﻨﻄﻘﻪ

ارﺗﻔﺎﻋﺎت اﻃﺮاف ﻣﺤﻞ اﺣﺪاث و آﻧﺎﻟﯿﺰ ﺳﺎﯾﻪاﻧﺪازي دور در اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ از اﻫﻤﯿﺖ زﯾﺎدي ﺑﺮﺧﻮردار اﺳﺖ. [2]ﻣﯿﺰان ﺗﺎﺑﺶ ﺧﻮرﺷﯿﺪ ﮐﻪ ﺑﻪ ﺳﻄﺢ ﻣﺎژولﻫﺎي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﻣﯽﺗﺎﺑﺪ، ﻧﻘﺶ ﮐﻠﯿﺪي در ﻋﻤﻠﮑﺮد ﻓﻨﯽ و اﻗﺘﺼﺎدي ﻧﯿﺮوﮔﺎهﺧﻮرﺷﯿﺪي اﯾﻔﺎ ﻣﯽﮐﻨﺪ.

ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار:

ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار ﯾﮑﯽ از ﺷﻬﺮﺳﺘﺎنﻫﺎي ﺑﺰرگ اﺳﺘﺎن ﺧﺮاﺳﺎن رﺿﻮي اﺳﺖ. ﻣﺮﮐﺰ اﯾﻦ ﺷﻬﺮﺳﺘﺎن، ﺷﻬﺮ ﺳﺒﺰوار اﺳﺖ. اﯾﻦﺷﻬﺮﺳﺘﺎن ﺑﺎ ﻣﺴﺎﺣﺖ 16,038 ﮐﯿﻠﻮﻣﺘﺮ ﻣﺮﺑﻊ در ﻣﺨﺘﺼﺎت 13 درﺟﻪ ﺷﺮﻗﯽ و 36 درﺟﻪ ﺷﻤﺎﻟﯽ ﻗﺮار دارد. ﻗﺴﻤﺖ ﺷﻤﺎﻟﯽ وﺷﺮﻗﯽ اﯾﻦ ﺷﻬﺮﺳﺘﺎن ﮐﻮﻫﺴﺘﺎﻧﯽ و داراي اﻗﻠﯿﻢ ﻣﻌﺘﺪل و در ﻗﺴﻤﺖﻫﺎي ﺟﻠﮕﻪاي ﺑﺎ ﻫﻮاي ﮔﺮم ﻫﻤﺮاه اﺳﺖ. ﺑﺨﺶ ﻣﺮﮐﺰي ﺳﺒﺰوار ﺑﺎ ﻣﻘﺪار 90,201,150 و ﺑﺨﺶ ﺷﺸﺘﻤﺪ ﺑﺎ 66,910,770 وات ﺑﺮ ﻣﺘﺮﻣﺮﺑﻊ، ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﯿﺸﺘﺮﯾﻦ وﮐﻤﺘﺮﯾﻦ ﻣﯿﺰان ﺗﺎﺑﺶ ﮐﻞ را دارﻧﺪ. [3] ﻧﺘﯿﺠﻪي ﻣﻄﺎﻟﻌﻪاي ﮐﻪ در ﺳﺎل 2017 اﻧﺠﺎم ﺷﺪه اﺳﺖ، ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ 95,82 درﺻﺪ از ﺳﻄﺢ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار داراي ﭘﺘﺎﻧﺴﯿﻞ ﻋﺎﻟﯽ، 4,01 درﺻﺪ داراي ﭘﺘﺎﻧﺴﯿﻞ ﺧﯿﻠﯽ ﺧﻮب و 0,15 درﺻﺪ داراي ﭘﺘﺎﻧﺴﯿﻞ ﺧﻮب ﻫﺴﺘﻨﺪ .

ﺷﻬﺮﺳﺘﺎن ﯾﺰد:

ﺷﻬﺮ ﯾﺰد، در 630 ﮐﯿﻠﻮﻣﺘﺮي ﺟﻨﻮب ﺷﺮﻗﯽ ﺗﻬﺮان، ﺑﯿﻦ دو ﺑﯿﺎﺑﺎن دﺷﺖ ﮐﻮﯾﺮ و دﺷﺖ ﻟﻮت و روي ﮐﻤﺮﺑﻨﺪ زرد ﺗﺎﺑﺸﯽ ﻗﺮار دارد ﮐﻪ ﯾﮑﯽ از داغﺗﺮﯾﻦ ﻣﮑﺎن ﻫﺎي ﺟﻬﺎن اﺳﺖ. آب و ﻫﻮاي ﮔﺮم و ﺧﺸﮏ در ﯾﺰد ﺑﺮاي ﺗﻮﻟﯿﺪ اﻧﺮژي ﺧﻮرﺷﯿﺪي ﻣﻨﺎﺳﺐ اﺳﺖ.

ﺑﺮاﺳﺎس ﺑﺮآوردﻫﺎي اﻧﺠﺎم ﺷﺪه، اﻧﺮژي ﺗﺎﺑﺸﯽ ورودي ﺑﻪ ﯾﺰد در ﺣﺪود 7,787 ﻣﮕﺎژول ﺑﺮ ﻣﺘﺮ ﻣﺮﺑﻊ اﺳﺖ[5].

1 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ :1 ﭘﺘﺎﻧﺴﯿﻞ ﺗﺎﺑﺶ ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﺑﺮ ﺳﻄﺢ اﯾﺮان [4]

 

.3 ﻃﺮاﺣﯽ

ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ دادهﻫﺎي ﺑﻪدﺳﺖ آﻣﺪه از ﺷﻬﺮﺳﺘﺎنﻫﺎ و ﻣﺎژول ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ، ﺗﻌﺪاد ﻣﺎژول، اﯾﻨﻮرﺗﺮ و ﻣﺴﺎﺣﺖ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎزﻣﺤﺎﺳﺒﻪ ﻣﯽﮔﺮدد. ﺳﭙﺲ ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي ﻃﺮح ﺻﻮرت ﻣﯽﮔﯿﺮد.

ﺟﺪول :1 ﻣﺸﺨﺼﻪﻫﺎي ﻋﻤﻮﻣﯽ ﺷﻬﺮﺳﺘﺎنﻫﺎ

 

ﻧﺎم ﺷﻬﺮ ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻻﻧﻪ[4] ﺑﺮق ﻣﺼﺮﻓﯽ ﺧﺎﻧﻮار در

ﺳﺎل )ﻣﮕﺎوات[6,7](

ﻣﯿﺎﻧﮕﯿﻦ ﻗﯿﻤﺖ زﻣﯿﻦ ﺑﺮاي

اﺣﺪاث)ﻫﺰار ﺗﻮﻣﺎن[8](

ﺳﺒﺰوار 1,750 220,000 12-10
ﯾﺰد 1,890 700,000 20

 

ﺟﺪول 2 : ﻣﺸﺨﺼﺎت ﭘﻨﻞ و ﻣﺒﺪل )اﯾﻨﻮرﺗﺮ[9](

 

ﻧﺎم ﻣﺤﺼﻮل ﻣﺪل ﺷﺮﮐﺖ ﺗﻮﻟﯿﺪ

ﮐﻨﻨﺪه

ﻣﺤﺪوده ﺗﻮان اﺑﻌﺎد(mm3) ﻗﯿﻤﺖ

($/Wp)

ﺑﺎزده

(%)

ﻣﺎژول NS-250-290p6 Polycrown

solar tech

250-290Wp 35*992*1640 0,1165 18
ﻣﺒﺪل اﯾﻨﻮرﺗﺮ CNS330 Constant

technology

160-250KW 0,0391 92

ﻣﻌﺎدﻻت ﺣﺎﮐﻢ :

ﺑﻪ ﻣﻨﻈﻮر ﻃﺮاﺣﯽ ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﻓﺮﺿﯿﺎت زﯾﺮ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ :

  • ﻫﺪف ﺗﺎﻣﯿﻦ 10 درﺻﺪ اﻧﺮژي اﻟﮑﺘﺮﯾﮑﯽ ﻣﺼﺮﻓﯽ ﺧﺎﻧﻮار ﻣﯽ ﺑﺎﺷﺪ.
  • ﻣﺠﻤﻮع ﺧﻄﺎي ﺳﺎزﻧﺪه، دﻣﺎ، ﮔﺮد و ﻗﺒﺎر ﻣﺎژول ﻫﺎ 10 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺑﻪ ﻣﻨﻈﻮر ﻣﺸﺨﺺ ﻧﻤﻮدن ﻣﺎﮐﺰﯾﻤﻢ اﻧﺮژي ﻣﻮرد ﻧﯿﺎز، ﺗﺎﺛﯿﺮ ﺗﻠﻔﺎت 5 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺗﻮان ﺗﻮﻟﯿﺪي ﻣﺎژولﻫﺎ 250 وات در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.

 

𝑃   =              𝑀

𝑇      (1 − 0.05) ∗ 𝜂𝜂𝑖𝑖𝑛𝑣

(۱)

 

ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﯿﺎﻧﮕﺮ اﻧﺮژي ﮐﻞ، ﺗﻮان ﮐﻞ و ﺑﺎزده ﻣﺒﺪل ﻫﺴﺘﻨﺪ. ﻣﻘﺪار ﮐﻞ اﻧﺮژي ﮐﻪ ﺑﺎﯾﺪ

𝜂𝜂𝑖𝑖𝑛𝑣

در ﻣﻌﺎدﻟﻪ (1)، 𝑀 ، 𝑃𝑇 و

ﺳﺎﻻﻧﻪ ﺗﺎﻣﯿﻦ ﺷﻮد از ﺗﻘﺴﯿﻢ اﻧﺮژي ﻣﻮرد ﻧﯿﺎز ﺑﺮ ﺑﺎزده ﻣﺒﺪل و ﺿﺮﯾﺐ ﺗﻠﻔﺎت ﺑﺪﺳﺖ ﻣﯽ آﯾﺪ.

𝑃𝑚 = 250 ∗ (1 − 0.1)

𝑃𝑚 = 250 ∗ (1 − 0.1) (۲)

 

ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار ﺗﻮان ﺗﻮﻟﯿﺪي ﯾﮏ ﻣﺎژول اﺳﺖ.

در ﻣﻌﺎدﻟﻪ (2)، 𝑃

𝑁    = 𝑃 ∗ 1,000,000

𝑚        𝑇     𝐴𝑌𝑆 ∗ 𝑃𝑚

(۳)

ﺑﻪ ﺗﺮﺗﯿﺐ ﻧﺸﺎن دﻫﻨﺪهي ﺗﻌﺪاد ﻣﺎژولﻫﺎ، ﺗﻮان ﮐﻞ، ﻣﺘﻮﺳﻂ ﺗﺎﺑﺶ ﺳﺎﻟﯿﺎﻧﻪ و

در ﻣﻌﺎدﻟﻪ (3)، 𝑁𝑚، 𝑃𝑇، 𝐴𝑌𝑆 و 𝑃

ﺗﻮان ﻣﺎژول ﻫﺴﺘﻨﺪ. ﺗﻌﺪاد ﻣﺎژولﻫﺎ، ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻮان ﮐﻞ، ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻟﯿﺎﻧﻪ و ﺗﻮان ﺗﻮﻟﯿﺪي ﻫﺮ ﻣﺎژول ﺑﻪدﺳﺖ ﻣﯽآﯾﺪ.ﭘﺲ از ﺑﻪدﺳﺖ آوردن ﺗﻌﺪاد ﻣﺎژولﻫﺎي ﻣﻮرد ﻧﯿﺎز ﺑﺮاي ﺗﺎﻣﯿﻦ اﻧﺮژي، ﺑﺎﯾﺪ ﺗﻌﺪاد ﻣﺒﺪلﻫﺎ و ﭼﯿﺪﻣﺎن ﻣﺎژولﻫﺎ را ﻣﺸﺨﺺ ﻧﻤﻮد.ﺑﺎﯾﺪ ﺗﻮﺟﻪ ﺷﻮد در ﭼﯿﺪﻣﺎن ﻣﺎژولﻫﺎ، ﺗﻮان ورودي ﺑﻪ ﻣﺒﺪل از ﺗﻮان ﻧﺎﻣﯽ آن ﺑﯿﺸﺘﺮ ﻧﺸﻮد ، ﻟﺬا ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ  160kw ﺑﻪ ﻋﻨﻮان ﺗﻮان ﻧﺎﻣﯽ ﻣﺒﺪل ، ﻣﯽﺗﻮان ﺗﻌﺪاد 23 ﻣﺎژول را ﺑﻪ ﺻﻮرت رﺷﺘﻪاي و 27 رﺷﺘﻪ را ﺑﻪ ﺻﻮرت ﻣﻮازي ﺑﻪ ﻫﻢ اﺗﺼﺎلداد و ﺧﺮوﺟﯽ را ﺑﻪ ورودي ﯾﮏ ﻣﺒﺪل ﻣﺘﺼﻞ ﻧﻤﻮد. ﺑﻪ اﯾﻦ ﺗﺮﺗﯿﺐ ﺑﺮآﯾﻨﺪ ﺗﻮان ورودي ﺑﻪ ﻣﺒﺪل ﺑﺮاﺑﺮkw 155ﺧﻮاﻫﺪ ﺑﻮد ﮐﻪﮐﻤﺘﺮ از ﺗﻮان ﻧﺎﻣﯽ ﻣﺒﺪل اﺳﺖ[10]. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻌﺪاد ﻣﺎژولﻫﺎ و ﭼﯿﺪﻣﺎن آنﻫﺎ ﺑﺮاي اﺗﺼﺎل ﺑﻪ ﯾﮏ ﻣﺒﺪل ﻣﯽﺗﻮان ﺗﻌﺪاد ﮐﻞ ﻣﺒﺪل ﻣﻮرد ﻧﯿﺎز را از ﺗﻌﺪاد ﮐﻞ ﻣﺎژولﻫﺎ ﺑﻪدﺳﺖ آورد. 𝑁𝑚 و 𝑁𝑖𝑖𝑛𝑣 ﻧﺸﺎن دﻫﻨﺪهي ﺗﻌﺪاد ﮐﻞ ﻣﺎژولﻫﺎ و ﻣﺒﺪلﻫﺎ ﻫﺴﺘﻨﺪ.

𝑁𝑖𝑖𝑛𝑣 = 𝑁𝑚/(23 ∗ 27) (۴)

ﯾﮑﯽ از ﻣﻮارد ﻗﺎﺑﻞ ﺗﻮﺟﻪ، ﺗﻘﺴﯿﻢ ﮐﺮدن ﺗﻮان ﺗﻮﻟﯿﺪي ﻧﯿﺮوﮔﺎه ﺑﻪ ﭼﻨﺪ ﺑﺨﺶ ﺑﺮاي ﺳﻬﻮﻟﺖ در ﺗﻌﻤﯿﺮ و ﻧﮕﻪ داري و ﺗﻮﻟﯿﺪ اﻟﮑﺘﺮﯾﺴﯿﺘﻪ ﺑﻪ ﻫﻨﮕﺎم ﺗﻌﻮﯾﺾ اﺳﺖ. ﺑﻪ اﯾﻦ ﻣﻨﻈﻮر ﻧﯿﺮوﮔﺎه را ﺑﻪ ﺑﺨﺶ ﻫﺎي ﯾﮏ ﻣﮕﺎواﺗﯽ ﺗﻘﺴﯿﻢ ﻣﯽ ﮐﻨﯿﻢ.ﺑﻪ ﻃﻮري ﮐﻪ ﻫﺮ ﻗﺴﻤﺖ ﻣﺠﺰا از ﺳﺎﯾﺮ ﻗﺴﻤﺖﻫﺎ ﺑﺎﺷﺪ.   ﺑﺮاي ﭼﯿﺪﻣﺎن ﮐﻞ ﻣﺎژولﻫﺎ و ﻣﺤﺎﺳﺒﻪ زﻣﯿﻦ ﻣﻮرد ﻧﯿﺎز، ﺑﺎﯾﺪ زاوﯾﻪ ﻣﻨﺎﺳﺐ ﻗﺮارﮔﯿﺮي ﻣﺎژول و ﻓﺎﺻﻠﻪ ﻫﺮ رﺷﺘﻪ ﺑﺎ رﺷﺘﻪ ﻣﻘﺎﺑﻞ ﻣﺸﺨﺺ ﺷﻮد. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﭘﮋوﻫﺶﻫﺎي اﻧﺠﺎم ﺷﺪه، [11] ﺑﻬﺘﺮﯾﻦ زاوﯾﻪ 22 درﺟﻪ اﺳﺖ ﮐﻪ ﺑﺮ اﺳﺎس اﺑﻌﺎد ﻣﺎژول، زاوﯾﻪ ﺗﺎﺑﺶ در آن ﻣﻨﻄﻘﻪ و ﭼﯿﺪﻣﺎن ﺗﮏ ﻃﺒﻘﻪ ﻣﺎژولﻫﺎ ﻧﯿﺎز اﺳﺖ ﻫﺮ رﺷﺘﻪ ﻣﺎژول ﺣﺪود 3 ﻣﺘﺮ از رﺷﺘﻪ ﻣﺎژول ﻗﺒﻞ از ﺧﻮد ﻓﺎﺻﻠﻪ داﺷﺘﻪ ﺑﺎﺷﺪ ﺗﺎ از ﺳﺎﯾﻪ اﻓﺘﺎدن ﺻﻔﺤﺎت ﺑﺮ روي ﻫﻢ ﺟﻠﻮﮔﯿﺮي ﮔﺮدد . ﺑﺎ اﯾﻦ اوﺻﺎف و ﺗﻌﺪاد ﻣﺎژول در ﻫﺮ رﺷﺘﻪ و ﺗﻌﺪاد رﺷﺘﻪ ﻫﺎ، ﻣﯽﺗﻮان ﻣﺴﺎﺣﺖ ﻣﻮرد ﻧﯿﺎز ﺑﺮاي اﺣﺪاث ﻧﯿﺮوﮔﺎه را ﻣﺤﺎﺳﺒﻪ ﮐﺮد.

ﺟﻨﺒﻪﻫﺎي اﻗﺘﺼﺎدي :

ﯾﮑﯽ از ﻣﻬﻢﺗﺮﯾﻦ ﺟﻨﺒﻪﻫﺎي اﺣﺪاث ﻧﯿﺮوﮔﺎهﻫﺎ، ﺟﺪا از اﻫﻤﯿﺖ اﺳﺘﻔﺎده از اﻧﺮژيﻫﺎي ﺗﺠﺪﯾﺪﭘﺬﯾﺮ ،ﻧﯿﺎز ﮐﺸﻮر ﺑﻪ ﺗﻮﻟﯿﺪ ﺑﺮق و، ﺟﻨﺒﻪﻫﺎي اﻗﺘﺼﺎدي آنﻫﺎ ﻧﻈﯿﺮ زﻣﺎن ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﯾﺎ ﻧﺮخ ﺳﻮد ﺳﺎﻟﯿﺎﻧﻪ اﺳﺖ.

ﻓﺮﺿﯿﺎت :

  • ﻧﺮخ ﺗﻮرم 25 درﺻﺪ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﻗﯿﻤﺖ دﻻر 23,000 و ﻗﯿﻤﺖ ﯾﻮرو 30,000 ﺗﻮﻣﺎن در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﺗﻌﺮﻓﻪ ﻓﺮوش ﺑﺮق 890 ﺗﻮﻣﺎن ﺑﻪ ازاي ﻫﺮ ﮐﯿﻠﻮوات ﺳﺎﻋﺖ اﺳﺖ[12].
  • وام ﺑﻠﻨﺪ ﻣﺪت ﻣﯽﺗﻮاﻧﺪ از ﺑﺎﻧﮏﻫﺎي دوﻟﺘﯽ ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻧﺮخ ﻧﺎﻣﯽ ﺗﻮرم داﺧﻠﯽ ﮔﺮﻓﺘﻪ ﺷﻮد.
  • زﻣﺎن ﺳﺎﺧﺖ دو ﺳﺎل و زﻣﺎن ﺑﻬﺮه ﺑﺮداري 15 ﺳﺎل در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ.
  • ﻧﺮخ ﺗﻌﻤﯿﺮ و ﻧﮕﻪ داري $/KWh 0,001454 در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ[13].

ﺑﺎﯾﺪ ﺑﻪ اﯾﻦ ﻧﮑﺘﻪ ﺗﻮﺟﻪ ﺷﻮد ﮐﻪ ﻫﺰﯾﻨﻪ ﮐﻞ ﭘﻨﻞﻫﺎ 60 درﺻﺪ از ﻫﺰﯾﻨﻪ ﮐﻞ اﺣﺪاث ﻧﯿﺮوﮔﺎه را ﺷﺎﻣﻞ ﻣﯽﺷﻮد و ﻣﺎﺑﻘﯽﻫﺰﯾﻨﻪﻫﺎ ﺷﺎﻣﻞ ﻫﺰﯾﻨﻪ ﻣﺒﺪل، دﺳﺖ ﻣﺰد و ﺳﯿﻢ ﮐﺸﯽ و … ﻣﯽ ﺑﺎﺷﺪ[10].از ﻧﺮم اﻓﺰار COMFAR ﺑﺮاي اﻣﮑﺎنﺳﻨﺠﯽ و ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي ﭘﺮوژه اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ.

.4 ﻧﺘﺎﯾﺞ

وژه وار:

ﭘﺮوژهي ﺳﺎﺧﺖ ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﺳﺒﺰوار، از ﻧﻈﺮ اﻗﺘﺼﺎدي ارزﯾﺎﺑﯽ ﺷﺪه اﺳﺖ. ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ36,39 درﺻﺪ ﺑﺮآورد ﺷﺪه اﺳﺖ ﮐﻪ در 6,4 ﺳﺎل رخ ﻣﯽدﻫﺪ .

2 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ :2ﻧﻤﻮدار ﮐﻞ ﻓﺮوش و ﻫﺰﯾﻨﻪﻫﺎي ﺗﻮﻟﯿﺪ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

ﺷﮑﻞﻫﺎي 2 و 6 راﺑﻄﻪي ﺑﯿﻦ ﻓﺮوش، ﺗﻮﻟﯿﺪ و ﻫﺰﯾﻨﻪﻫﺎي ﺑﺎزارﯾﺎﺑﯽ را ﻧﺸﺎن ﻣﯽدﻫﻨﺪ ﮐﻪ ﺑﯿﺎﻧﮕﺮ ﺗﻮاﻧﺎﯾﯽ ﭘﺮوژه در ﺗﺒﺪﯾﻞﻓﺮوش ﺑﻪ ﺳﻮد ﭘﺲ از در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻫﺰﯾﻨﻪﻫﺎي ﻋﻤﻠﯿﺎﺗﯽ اﺳﺖ.

3 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 3 :ﻧﻤﻮدار ﺟﺮﯾﺎن ﺧﺎﻟﺺ ﺳﺮﻣﺎﯾﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

 

ﺟﺮﯾﺎنﻫﺎي ﻣﺎﻟﯽ ﺷﮑﻞﻫﺎي 3 و 7، ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار ، زﻣﺎنﺑﻨﺪي ﻣﻨﺎﺑﻊ ﻣﺎﻟﯽ اراﺋﻪ ﺷﺪه ﺑﺮاي ﭘﺮوژه و ﺗﻌﻬﺪات ﻣﺎﻟﯽ در ﻃﻮلاﻓﻖ ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﺷﺪه اﺳﺖ .

4 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

 

ﺷﮑﻞ 4 : ﻧﻤﻮدار ﺟﺮﯾﺎن ﻧﻘﺪي  ﺑﺮاي ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﻣﺎﻟﯽ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

ﺟﺮﯾﺎن ﻧﻘﺪي ﺳﺎﻻﻧﻪ ﺷﮑﻞﻫﺎي 4 و 8، ﻣﺎزاد ﯾﺎ ﮐﺴﺮي ﺑﻮدﺟﻪ ﺣﺎﺻﻞ از اﺳﺘﻔﺎدهي ﺗﻤﺎم ﻣﻨﺎﺑﻊ  و ﺑﻮدﺟﻪي ﭘﺮوژه اﺳﺖ. ﻣﺎزاد ﺑﻮدﺟﻪ در ﻫﺮ دوره ﺑﯿﺎﻧﮕﺮ ﻣﻘﺪار در دﺳﺘﺮس ﺑﺮاي آﺗﯽ اﺳﺖ. ﮐﺴﺮي ﺑﻮدﺟﻪ در ﻫﺮ دوره ، ﺑﯿﺎﻧﮕﺮ ﻣﯿﺰان ﺑﻮدﺟﻪاي اﺳﺖ ﮐﻪ ﺑﺎﯾﺪاز ﺳﺮﻣﺎﯾﻪﻫﺎي ﻣﻮﺟﻮد ﯾﺎ ﺳﺎﯾﺮ ﻣﻨﺎﺑﻊ ﺧﺎرﺟﯽ ﺗﺎﻣﯿﻦ ﺷﻮد .

 

5 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 5 : ﻧﻤﻮدار ﺧﺎﻟﺺ ارزش ﻓﻌﻠﯽ ﺗﺠﻤﻌﯽ-دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ

 

در ﺷﮑﻞﻫﺎي 5 و 9، دوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ ﻧﺸﺎن داده ﺷﺪه اﺳﺖ ﮐﻪ ﺑﯿﺎﻧﮕﺮ دورهاي اﺳﺖ ﮐﻪ در آن ﮐﻞ ﻫﺰﯾﻨﻪﻫﺎيﭘﺮوژه ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺣﻔﻆ ارزش ﭘﻮﻟﯽ، ﺑﺎزﻣﯽﮔﺮدد .

ﭘﺮوژه ﯾﺰد:

ﭘﺮوژهي ﺳﺎﺧﺖ ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﯾﺰد، اﻗﺘﺼﺎدي ارزﯾﺎﺑﯽ ﺷﺪه اﺳﺖ .  ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ 37,67 درﺻﺪ ﺑﺮآورد ﺷﺪه اﺳﺖ ﮐﻪ در6,17 ﺳﺎل رخ ﻣﯽدﻫﺪ.

6 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

 

ﺷﮑﻞ :6ﻧﻤﻮدار ﮐﻞ ﻓﺮوش و ﻫﺰﯾﻨﻪﻫﺎي ﺗﻮﻟﯿﺪ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

 

 

 

7 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 7 :ﻧﻤﻮدار ﺟﺮﯾﺎن ﺧﺎﻟﺺ ﺳﺮﻣﺎﯾﻪ ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار

8 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 8 : ﻧﻤﻮدار ﺟﺮﯾﺎن ﻧﻘﺪي  ﺑﺮاي ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﻣﺎﻟﯽ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

9 - ارزﯾﺎﺑﯽ اﻗﺘﺼﺎدي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﺧﻮرﺷﯿﺪي ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ

ﺷﮑﻞ 9 : ﻧﻤﻮدار ﺧﺎﻟﺺ ارزش ﻓﻌﻠﯽ ﺗﺠﻤﻌﯽدوره ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ دﯾﻨﺎﻣﯿﮑﯽ ﺷﻬﺮﺳﺘﺎن ﯾﺰد

 

ﺑﺎ ﺑﻪ ﮐﺎرﮔﯿﺮي ﻣﻌﺎدﻻت و داده ﻫﺎي اوﻟﯿﻪ داده ﺷﺪه در ﺑﺨﺶ ﻗﺒﻞ ﻗﺎدر ﺑﻪ ﻃﺮاﺣﯽ ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ ﺧﻮاﻫﯿﻢ ﺑﻮد ﮐﻪﺗﻌﺪاد ﻣﺎژول ، ﻣﺴﺎﺣﺖ زﻣﯿﻦ ، ﺗﻌﺪاد اﯾﻨﻮرﺗﺮ و ﻫﻤﭽﻨﯿﻦ ﻫﺰﯾﻨﻪ ﮐﻞ و ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ  در ﺟﺪول زﯾﺮ ﺑﺮاي دو ﺷﻬﺮ ﯾﺰد و ﺳﺒﺰوار آورده ﺷﺪه اﺳﺖ.

 

ﺟﺪول 3 : ﻣﻘﺎدﯾﺮ ﺣﺎﺻﻞ از ﻃﺮاﺣﯽ

 

ﻧﺎم ﺷﻬﺮ ﺗﻮان ﻧﺎﻣﯽ ﻧﯿﺮوﮔﺎه(MW) ﺗﻌﺪاد ﻣﺎژول ﺗﻌﺪاد ﻣﺒﺪل ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ

ﺳﺎﻟﯿﺎﻧﻪ

ﻣﺴﺎﺣﺖ زﻣﯿﻦ

(m2)

ﻫﺰﯾﻨﻪ ﮐﻞ )ﻣﯿﻠﯿﺎرد

ﺗﻮﻣﺎن(

ﻧﺮخ ﺑﺎزﮔﺸﺖ

ﺳﺮﻣﺎﯾﻪ

ﺳﺒﺰوار 14,5 63820 103 1750 105000 114,257 36,39
ﯾﺰد 42,5 188340 304 1890 310000 341,582 37,67

 

.5 ﻧﺘﯿﺠﻪ ﮔﯿﺮي

 

  • ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﭘﺮوژهي اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﯾﯿﮏ در ﺷﻬﺮ ﯾﺰد ﻧﺴﺒﺖ ﺑﻪ ﺳﺒﺰوار ﺑﯿﺸﺘﺮ اﺳﺖ و ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ در زﻣﺎن ﮐﻮﺗﺎهﺗﺮي رخ ﻣﯽدﻫﺪ.
  • ﺑﻪ دﻟﯿﻞ ﺗﻔﺎوت اﻧﺮژي ﻣﺼﺮﻓﯽ دو ﺷﻬﺮﺳﺘﺎن ﺗﻮان ﻧﺎﻣﯽ ﻧﯿﺮوﮔﺎه و ﺑﻪ ﻃﺒﻊ آن ﻫﺰﯾﻨﻪ اوﻟﯿﻪ ﻣﺘﻔﺎوت دارﻧﺪ. از ﻃﺮﻓﯽ ﺑﻪ دﻟﯿﻞ ﺑﯿﺸﺘﺮ ﺑﻮدن ﻣﯿﺎﻧﮕﯿﻦ ﺗﺎﺑﺶ ﺳﺎﻻﻧﻪ ﺷﻬﺮﺳﺘﺎن ﯾﺰد ﻧﺮخ ﺑﺎزﮔﺸﺖ ﺳﺮﻣﺎﯾﻪ ﺑﯿﺸﺘﺮ ازﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار اﺳﺖ.

.6 ﻣﺮاﺟﻊ

 

۱.   ﭘﮋوﻫﺸﮕﺎه ﻧﯿﺮو، راﻫﻨﻤﺎي ﻃﺮاﺣﯽ ﺳﯿﺴﺘﻢﻫﺎي ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ ﺑﻪ ﻣﻨﻈﻮر ﺗﺎﻣﯿﻦ اﻧﺮژي اﻟﮑﺘﺮﯾﮑﯽ ﺑﻪ ﺗﻔﮑﯿﮏ اﻗﻠﯿﻢ و ﮐﺎرﺑﺮي،

ﻣﻌﺎوﻧﺖ ﻧﻈﺎرت راﻫﺒﺮدي، 1393

۲.   ﻣﻨﺼﻒ، ﻋﻠﯿﺮﺿﺎ؛ ﮐﺎوه ﺣﺒﯿﺒﯽ ﺳﺮاﺳﮑﺎﻧﺮود ؛ اﻣﯿﺮ ﮐﯿﻮان ﻣﻤﺘﺎز، 1394، ﺑﺮرﺳﯽ اﻣﮑﺎنﺳﻨﺠﯽ اﺣﺪاث ﻧﯿﺮوﮔﺎه ﻓﺘﻮوﻟﺘﺎﺋﯿﮏ 6

ﻣﮕﺎواﺗﯽ در ﺷﻬﺮﺳﺘﺎن ﺑﺴﺘﮏ اﺳﺘﺎن ﻫﺮﻣﺰﮔﺎن، ﻣﺠﻤﻮﻋﻪ ﻣﻘﺎﻻت ﻫﻔﺘﻤﯿﻦ ﮐﻨﻔﺮاﻧﺲ ﻣﻠﯽ اﻧﺮژيﻫﺎي ﺗﺠﺪﯾﺪﭘﺬﯾﺮ ۳. زﻧﺪي ، رﺣﻤﺎن؛ ﻣﺤﻤﺪ ﺟﻮاد ﺻﻔﺎﯾﯽ ؛ ﻣﺮﯾﻢ ﺧﺴﺮوﯾﺎن، 1398، ﭘﺘﺎﻧﺴﯿﻞ ﺳﻨﺠﯽ اﺳﺘﻔﺎده از اﻧﺮژي ﺧﻮرﺷﯿﺪي در ﻣﻨﺎﻃﻖ

روﺳﺘﺎﯾﯽ ﻣﻄﺎﻟﻌﻪ ﻣﻮردي: ﺷﻬﺮﺳﺘﺎن ﺳﺒﺰوار، ﻓﺼﻠﻨﺎﻣﻪ ﺟﻐﺮاﻓﯿﺎ و ﺗﻮﺳﻌﻪ، ﺷﻤﺎره 57، ﺻﻔﺤﺎت 13-14

نویسندگان مقاله: مهندس ﺑﻬﻨﺎم ﮐﯿﺎﻧﯽ، مهندس اﻣﯿﺮرﺿﺎ ﻋﺒﺪي ﻗﺎﺳﻢ ﺧﯿﻠﯽ، مهندس ﺷﯿﻤﺎ ﻧﺠﻔﯽ ﻧﻮﺑﺮ