نوشته‌ها

موجودی بیش از حد پنل های خورشیدی قیمت ها را در سال گذشته به نصف کاهش داد – البته نه در ایالات متحده

 

قیمت جهانی پنل های خورشیدی تا 50 درصد سقوط کرده است زیرا چین بازار را با ماژول های فتوولتائیک پر کرده است.

اما با توجه به موانعی که بر سر راه تجارت این کشور با چین وجود داشت، قیمت‌های آمریکا کاهش بسیار کمتری را تجربه کردند.

در عوض، جهش تقاضای داخلی به کاهش قیمت ها کمک کرده است، اگرچه ممکن است این وضعیت در سال 2024 تغییر کند.

 

به گزارش آرا نیرو انباشت انبوه پنل های خورشیدی در سال گذشته میانگین قیمت این ماژول ها را به نصف کاهش داده است، زیرا تولید فوران در چین باعث افزایش عرضه شده است.

به گفته آژانس بین‌المللی انرژی، این کشور در مسیری قرار دارد که تا سال 2028 به میزان 85 درصد از تولید ماژول‌های خورشیدی در جهان را به خود اختصاص دهد. خروجی آن به قدری قوی بوده است که اخیراً منجر به تعطیلی یکی از بزرگترین کارخانه‌های تولید پنل خورشیدی اروپا شده است.

 

دیوید فلدمن از آزمایشگاه ملی انرژی های تجدیدپذیر به Business Insider گفت: «قیمت ها در اروپا به دلیل عرضه بیش از حد و ذخیره سازی به طور قابل توجهی کاهش یافته است. در ایالات متحده، داستان متفاوت است.

در عوض، بازار خورشیدی ایالات متحده تا حد زیادی در برابر این سیل عرضه، ایزوله مانده و کمتر از 0.1 درصد از ماژول مصرفی از چین وارد می شود. وود مکنزی در ماه دسامبر گزارش داد که بین سه ماهه اول و سوم سال گذشته، قیمت ماژول های ایالات متحده تنها 10٪ – 15٪ کاهش یافته است.

این در حالی است که قوانین ایالات متحده به طور موثر تجارت پنل های خورشیدی با چین را ممنوع می‌کند. محدودیت‌ها شامل تعرفه‌ها و همچنین قانون پیشگیری از کار اجباری اویغورهای ایالات متحده (UFLPA) می‌شود، قانون 2022 که واردات از منطقه سین کیانگ چین را ممنوع می‌کند.

 

فلدمن گفت، با این حال، این مقدار کاهش ارزش داخلی در نتیجه اثرات ناشی از تولید چین بوده است. برخی از شرکت‌های چینی در سایر بخش‌های آسیای جنوب شرقی تولید خود را راه‌اندازی کرده‌اند و به آنها امکان دسترسی به بازارهای آمریکا را می‌دهد.

 

اما در بیشتر موارد، کاهش قیمت و ذخیره سازی ایالات متحده ناشی از تغییرات داخلی است.

 

در واقع مقداری مازاد عرضه وجود داشت، زیرا تصویب UFLPA و سایر موانع تجاری با چین نگرانی‌هایی را برای کاهش عرضه ایجاد کرد.

 

فلدمن گفت: «فقط نگرانی هایی در مورد دریافت پنل توسط نصاب ها وجود داشت. بنابراین توسعه‌دهندگان و نصب‌کنندگان در تلاش بودند تا یک زنجیره تامین مناسب به دست آورند.

 

در همین حال، به‌دلیل قانون کاهش تورم و افزایش کارایی و ارزانی این فناوری، تقاضای نصب پنل به طور کلی افزایش یافته است.

 

فلدمن گفت، اما سرعت پروژه های جدید به طور قابل توجهی کند شده است. در سطح ملی، تقاضا برای انرژی خورشیدی به دلیل نرخ بهره بالاتر کاهش یافته است و تامین مالی بدهی بسیار گران‌تر شده است.

 

وود مکنزی تخمین می‌زند که از آنجایی که پروژه‌ها در کالیفرنیا و همچنین شمال شرق به پایان می‌رسند، تأسیسات خورشیدی مسکونی ممکن است امسال 12 درصد کاهش یابد.

اما شرکت تحقیقاتی انتظار دارد که این یک افت منحصر به فرد باشد و بازار بین سال‌های 2025 تا 2028 با نرخ سالانه 10 درصد بهبود یابد.

فلدمن گفت: “[تحلیلگران] انتظار افزایش قابل توجهی دارند، اما گفته می شود، احتمالاً تولید بیش از این رشد کرده است. بنابراین ممکن است چند سال طول بکشد تا تقاضا به میزان تولیدی که اتفاق افتاده است برسد.”

نویسنده: Filip De Mott

ایالات متحده 22 میلیون هکتار را با پنل های خورشیدی پوشش می دهد

 

چند روز پیش، دولت بایدن اعلام کرد که 22 میلیون هکتار از زمین های عمومی را برای توسعه خورشیدی در دسترس قرار می دهد. «کار وزارت کشور برای توسعه مسئولانه و سریع پروژه های انرژی های تجدیدپذیر برای دستیابی به هدف دولت بایدن- هریس برای آلودگی کربنی بسیار مهم است. لورا دانیل دیویس، معاون موقت وزیر، گفت: بخش برق رایگان تا سال 2035 – و این نقشه راه خورشیدی به روز شده به ما کمک می کند در ایالت های بیشتری و در سرزمین های بیشتری در غرب اقدام کنیم. وزارت کشور از طریق سرمایه‌گذاری‌های تاریخی، به ایجاد زیرساخت‌های آب و هوایی مدرن و انعطاف‌پذیر کمک می‌کند که از جوامع ما در برابر تأثیرات بدتر تغییرات آب و هوایی محافظت می‌کند.

 

 

بلافاصله، کسانی که به Faux News گوش می‌دادند وارد میدان شدند و شروع به زاری کردند که چگونه طرح بایدن بخش‌های عظیمی از زمین را بی‌ارزش می‌کند. (اگر این اعلامیه حفاری چاه‌های نفت و گاز در آن 22 میلیون جریب باشد، همین افراد خوشحال می‌شوند.) حتی روزنامه گاردین که معمولاً قابل اعتماد است، با این تیتر به هیستری پرداخت: «ایالات متحده به 22 میلیون هکتار برای توسعه انرژی خورشیدی نیاز دارد. ”

 

در واقع، ایالات متحده به پنل های خورشیدی در حدود 700,000 جریب زمین نیاز دارد تا به هدف دولت مبنی بر انتقال کشور به انرژی 100% تجدیدپذیر تا سال 2035 دست یابد. در حال حاضر حدود 34,000 هکتار از زمین های عمومی به انرژی خورشیدی اختصاص داده شده است. همچنین، توجه داشته باشید که در طرح انرژی پاک بایدن تمام آن انرژی تجدیدپذیر از مزارع خورشیدی پر نمی‌شود. انتظار می رود منابع بادی نیز سهم عمده ای در این هدف داشته باشند.

 

700,000 هکتار به 1100 مایل مربع تبدیل می شود. این مقدار زیادی به نظر می رسد، اما در مجموع، ایالات متحده 3،532،316 مایل مربع را پوشش میدهد، که به این معنی است که تنها 0.031115 درصد آن مورد نیاز است تا هر فرد و کسب و کار در آمریکا برق را از منبعی دریافت کند که تهدیدی برای ایجاد شرایط اضطراری آب و هوایی نباشد. وقتی به زمین بزرگ کشور نگاه می کنید اعداد چندان ترسناک به نظر نمی رسند.

 

نگرانی های NIMBY نقش مهمی در تعیین اینکه کدام یک از آن 22 میلیون هکتار زمین عمومی به پروژه های انرژی خورشیدی اختصاص داده می شود، ایفا می کند. رهنمودهای گنجانده شده در طرح دولت، اولویت را برای تأسیساتی که در فاصله 10 مایلی یک سایت اتصال به شبکه موجود، هستند، قرار می دهد. هزینه ساخت خط انتقال از یک مزرعه خورشیدی در فاصله 100 مایلی از نزدیکترین محل اتصال شبکه ممکن است بیشتر از هزینه خود مزرعه خورشیدی باشد.

 

 

بدخواهان برای از دست دادن زمین های کشاورزی عزاداری می کنند و متوجه نیستند که درآمد حاصل از تاسیسات خورشیدی و بادی به کشاورزان در ایالات متحده کمک می کند تا از ورشکستگی جلوگیری کنند زیرا قیمت تجهیزات کشاورزی، بذر و کود سر به فلک کشیده است.  ممکن است قیمت مواد غذایی افزایش یابد، اما کشاورزی هنوز یکی از سخت ترین راه ها برای امرار معاش است. این قیمت‌های بالا در قفسه‌های فروشگاه‌های مواد غذایی همیشه به پول بیشتر در جیب کشاورزان تبدیل نمی‌شود.

 

پروژه Edwards & Sanborn Solar & Storage Online نمونه ای از این تاسیسات خورشیدی جدید در زمین های عمومی است. اکنون در پایگاه نیروی هوایی ادواردز و بخش هایی از شهرستان کرن کالیفرنیا در حال بهره برداری کامل است.  این پروژه در سال 2021 آغاز شده و به صورت مرحله ای فعال شده است، اکنون در حال بهره برداری کامل است. این پروژه بیش از 4600 هکتار را پوشش می دهد و شامل بیش از 1.9 میلیون پنل خورشیدی ساخته شده توسط First Solar است.  در مجموع، این پروژه می تواند 875 مگاوات انرژی خورشیدی تولید کند و دارای 3287 مگاوات ساعت ذخیره انرژی با ظرفیت کل اتصال 1300 مگاوات است.

 

این پروژه برق شهر سن خوزه، ادیسون کالیفرنیای جنوبی، گاز اند الکتریک اقیانوس آرام، اتحاد برق پاک و استارباکس را تامین می کند. بخشی از این پروژه در پایگاه نیروی هوایی ادواردز واقع شده است و بزرگترین همکاری عمومی و خصوصی در تاریخ وزارت دفاع ایالات متحده بود. این پروژه از باتری هایLG Chem، Samsung و BYD استفاده می کند.

 

در مجموع، بیش از 1000 کارگر ماهر به این پروژه کمک کردند و به نتایج ایمنی برجسته ای دست یافتند که شامل بیش از یک میلیون ساعت بدون آسیب و جایزه ایمنی توسط انجمن پیمانکاران عمومی کالیفرنیا بود. مارک دوناهو، معاون ارشد مورتنسون، گفت: «مورتنسون مفتخر است که به Terra-Gen در ارائه پروژه ادواردز و سنبورن و ارائه انرژی پاک و انعطاف‌پذیر به منطقه کمک می‌کند. من به تاسیسات در سطح جهانی که تیم ما برای Terra-Gen طراحی، ساخت و راه اندازی کرده افتخار می کنم.

شاید بالاترین افتخار برای پارک انرژی و انرژی خورشیدی ادواردز و سنبورن که به تازگی تکمیل شده است را سرتیپ ویلیام کیل، فرمانده مرکز مهندسی عمران نیروی هوایی در پایگاه نیروی هوایی ادواردز کسب کند. «در آمریکا می‌توانیم در زمین‌های بایر، نیروی خورشید را در آغوش بگیریم و یک شگفتی مهندسی خلق کنیم.  بنابراین، وقت بگذارید و فکر کنید، کارهای بزرگی را که انجام شده است ببینید، و اهمیت این پروژه و آنچه می تواند منجر به آن شود را درک کنید.  امیدوارم این فقط جرقه باشد.»

غذای آماده

 وضعیت اضطراری آب و هوا از اهمیت کمتری برخوردار نیست. انتشار جهانی گازهای گلخانه ای همچنان در حال افزایش است زیرا کشورهای جهان آلودگی های بیشتری را به جو می ریزند. هدف بایدن برای 100 درصد برق پاک تا سال 2035 جسورانه است.

 

ما به عنوان یک جامعه، دیگر نمی توانیم از منابع انرژی خود به شکلی بی رویه استفاده کنیم. برای نسل های آینده چیزهای زیادی در خطر است. انرژی‌های تجدیدپذیر در زمین‌های عمومی می‌تواند برد-برد باشد. جاستین میوس، یکی از مبارزان انجمن Wilderness به گاردین گفت: این امری ضروری است و ممکن است.

 

آیا در مورد مکان و نحوه ساخت پروژه های جدید خورشیدی در زمین های عمومی بحث و اختلاف نظر وجود خواهد داشت؟ البته که وجود خواهد داشت. نیازهای جامعه بزرگتر و همچنین حفاظت از گیاهان و جانوران بومی باید در نظر گرفته شود. اما همانطور که پرزیدنت کندی در ابتدای پروژه آپولو به ما توصیه کرد، “ما این کارها را انتخاب می کنیم نه به این دلیل که آسان هستند، بلکه به این دلیل که سخت هستند.”

 

کربن زدایی از اقتصاد کشورهای جهان سخت ترین کاری است که بشر تاکنون انجام داده است و البته ضروری ترین.

منبع: CleanTechnica

نویسنده: Steve Hanley

زنجیره تولید پنل خورشیدی:

از فراوری سیلیس تا تولید ماژول فتوولتائیک

 

معرفی

زنجیره تولید پنل خورشیدی عبارت است از مراحل مختلفی که در فرآیند تولید پنل‌های خورشیدی از ابتدا تا انتها به کار گرفته میشوند. در این مقاله به اختصار به این مراحل که شامل فرآوری سیلیس، تولید سلول‌های خورشیدی، تولید ماژول‌های خورشیدی، تست و کنترل کیفیت های پس از تولید سل و ماژول و در نهایت بسته‌بندی و حمل و نقل پنل خورشیدی اشاره میکنیم.

photo 2024 01 27 21 58 12 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

زنجیره تولید پنل خورشیدی – آرا نیرو

  1. فرآوری سیلیس:

   ابتدای زنجیره تولید پنل خورشیدی، با فرآوری سیلیس آغاز می‌شود. سیلیس یکی از مواد اصلی برای تولید سلول‌های خورشیدی سلیکونی است. در این مرحله، سیلیس استخراج شده از منابع معدنی تصفیه و پالایش می‌شود. این فرایند جهت تصفیه و آماده‌سازی سیلیس (سلیسیوم) از چند مرحله مهم تشکیل شده است:

استخراج سیلیس

   ابتدا، سیلیس از منابع معدنی مختلف استخراج می‌شود. معادن سنگ‌های کوارتز اغلب به عنوان منابع اصلی برای سیلیس استفاده می‌شوند.

خردایش و سایش

   سیلیس استخراج شده به اندازه مناسب خرد می‌شود و سپس در دستگاه‌های سایش، طی فرآیند آسیاب‌کاری تحت فشار قرار می‌گیرد تا به اندازه دقیقتر و به شکل مشخصی تبدیل شود.

پالایش سیلیس

   سپس، سیلیس خرد شده به فرآیند پالایش می‌رود. در این مرحله، از روش‌های مختلفی نظیر شستشو با آب یا اسیدهای قوی برای حذف آلودگی‌ها و ناخالصی‌ها استفاده می‌شود.

تصفیه سیلیس

   در این مرحله، سیلیس تصفیه می‌شود تا ناخالصی‌ها و مواد غیرمطلوب حذف شوند. این ممکن است شامل فرآیندهای فیلتراسیون، تقطیر یا فرآیندهای شیمیایی باشد.

تولید اسلایس (سلیسیوم)

   سیلیس پاک‌شده به اسلایس (سلیسیوم) تبدیل می‌شود. در این مرحله، سیلیس از آلاینده‌های معدنی و مواد غیرضروری دیگر پاک‌سازی می‌شود تا به خلوص مطلوب برای تولید سلول‌های خورشیدی برسد.

آماده‌سازی برای استفاده

   اسلایس حاصل از مراحل قبلی در این مرحله آماده‌سازی می‌شود. این شامل پردازش‌هایی نظیر خشکاندن ، ذوب، و یا دیگر فرآیندهایی است که سلیس به شکل مناسبی جهت استفاده در تولید سلول‌های خورشیدی آماده می‌شود.

  1. تولید سلول‌های خورشیدی:

   پس از فرآوری سیلیس، سلیس تبدیل به اسلایس (سلیسیوم) می‌شود که به سلول‌های خورشیدی تبدیل می‌شود. سلول‌های خورشیدی عملکرد اصلی تبدیل نور خورشید به انرژی الکتریکی را دارند. فرآیند تولید سلول‌های خورشیدی از چند مرحله اصلی تشکیل شده است. در ادامه به این مراحل با جزئیات بیشتر اشاره می‌شود:

تهیه و پالایش اسلایس

   ابتدا، اسلایس (سلیسیوم) که از مراحل فرآوری سیلیس به دست آمده است، تمیز شده و پالایش می‌شود تا از هر گونه ناخالصی و آلاینده حذف شود.

تولید اکسید سیلیسیم (SiO2)

   اسلایس پالایش شده به صورت پودر درآمده و با حرارت بالا تحت فشار به مخلوطی از گازهای هیدروژن و سیلان (SiH4) تبدیل می‌شود. این فرآیند منجر به تولید اکسید سیلیسیم (SiO2) می‌شود.

تهیه پلی سیلیکون (Poly-Silicon)

   اکسید سیلیسیم حاصل از مرحله قبل به واکنش با فرایند کاربوراسیون (Carburization) تحت دماهای بالا قرار می‌گیرد و پلی سیلیکون تولید می‌شود. پلی سیلیکون ماده اصلی سلول‌های خورشیدی است.

تولید اسلاب پلی سیلیکون

   پلی سیلیکون به شکل اسلاب درآمده و به سپتون‌هایی به ضخامت خاص برش داده می‌شود. این اسلاب‌ها به عنوان مواد اولیه برای ساخت سلول‌های خورشیدی استفاده می‌شوند.

تولید و پالایش ورقه سیلیکونی

   اسلاب‌های پلی سیلیکون به ورقه‌هایی با ضخامت معین برش داده و سپس این ورقه‌ها تحت فرآیندهای پالایشی قرار می‌گیرند تا به خلوص و کیفیت مطلوب برسند.

پوشش دهی با لایه های ناقل (N-Type و P-Type)

   سپس به ورقه‌های سیلیکونی لایه‌های ناقل مثبت (P-Type) و لایه‌های ناقل منفی (N-Type) اعمال می‌شود. این لایه‌ها با استفاده از فرآیندهای تفکیکی تحت دماهای خاص و از طریق تزریق موادی مثل فسفر و کلر به سطح سلول افزوده می‌شوند.

تولید الکترودها و اتصالات

   در این مرحله، الکترودها و اتصالات لازم جهت جمع‌آوری جریان الکتریکی تولید شده در لایه‌های ناقل به سلول افزوده می‌شوند.

تست و کنترل کیفیت

   سلول‌های خورشیدی تولید شده در مراحل قبل تحت تست‌های دقیق و کنترل کیفیت قرار می‌گیرند تا اطمینان حاصل شود که عملکرد آنها در شرایط مختلف به درستی انجام می‌شود. کمی پایین تر از جزئیات تست ها و استاندارد های سل های خورشیدی بیشتر خواهم گفت.

  1. تولید ماژول‌های خورشیدی:

   سلول‌های خورشیدی به ماژول‌های خورشیدی تبدیل می‌شوند. این ماژول‌ها علاوه بر سلول‌های خورشیدی، دارای لایه‌های محافظ و سیستم‌های مدیریت حرارت هستند. این لایه‌ها نقش مهمی در محافظت و بهینه کردن عملکرد ماژول دارند. پس از تولید سلول‌های خورشیدی، مراحل تولید ماژول فتوولتائیک (پنل خورشیدی) شامل چند مرحله اصلی است. در ادامه به جزئیات این مراحل اشاره می‌شود:

تهیه ماژول‌های سلولی

   ابتدا، سلول‌های خورشیدی که در مراحل قبلی تولید شده‌اند، به شکل‌های مختلف ماژول‌های سلولی گروه‌بندی می‌شوند. این مراحل شامل قرار دادن سلول‌ها در قالب‌ها و اتصالات مورد نیاز است.

پیوندگذاری (Interconnection)

   سلول‌های خورشیدی درون ماژول به وسیله سیم‌های فلزی به یکدیگر متصل می‌شوند. این پیوندگذاری باعث ایجاد یک مدار الکتریکی مناسب برای جمع‌آوری جریان تولیدی توسط سلول‌ها می‌شود که آن را باسبار هم میگویند.

لایه‌گذاری محافظ

   یک لایه محافظ معمولاً از شیشه یا مواد پلاستیکی نشری بر روی سلول‌های خورشیدی قرار می‌گیرد. این لایه محافظ سلول‌ها را در برابر شرایط جوی، گرد و غبار، و نفوذ آب محافظت می‌کند.

photo 2024 01 27 21 58 47 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

Source: https://swarajyamag.com

تهیه فریم (Frame) و مونتاژ

   یک فریم (قاب) از مواد مقاوم به هوا و محیط زیست، معمولاً آلومینیوم یا فلزهای دیگر، ساخته می‌شود و ماژول‌های سلولی درون آن مونتاژ می‌شوند و در نهایت پس از نصب جانکشن باکس و فریم و گلس روی سطح سل های باسبار شده، ماژول وکیوم شده به مرحله تست میرود.

قبل از اینکه در مورد تست ها و استانداردهای سل و ماژول خورشیدی صحبت کنم، اجازه بدید خیلی خلاصه از انواع ماژول های کریستاله شرحی ارائه دهم. ماژول های کریستاله به انواع مونو، پلی، و لایه نازک تقسیم بندی می شوند.

ماژول های مونو کریستال که از یک کریستال سیلیکون واحد ساخته می شوند. این ماژول ها دارای راندمان بالا و عمر طولانی هستند.  با این حال، آنها گران تر از سایر انواع ماژول های کریستاله هستند.

ماژول های پلی کریستال از چندین کریستال سیلیکون کوچکتر ساخته می شوند. این ماژول ها ارزان تر از ماژول های تک کریستالی هستند، اما راندمان کمتری دارند.

ماژول های کریستاله فیلم نازک از یک فیلم نازک از ماده نیمه هادی مانند سیلیکون، کادمیوم تلوراید یا دی سلنید ایندیوم مس ساخته می شوند. این ماژول ها سبک تر و ارزان تر از ماژول های کریستالی هستند، اما راندمان کمتری نیز دارند.

و اما در مورد پنل های مونوکریستال که امروزه سهم بیشتری از بازار را در نیروگاه های خورشیدی متصل به شبکه به خود اختصاص داده میتوان بیشتر صحبت کرد. تکنولوژی های مختلفی در ساخت پنل های مونو کریستال خورشیدی مورد استفاده قرار می گیرند. این تکنولوژی ها باعث افزایش راندمان، کاهش هزینه و بهبود عملکرد ماژول های مونو کریستال فتوولتاییک می شوند.

photo 2024 01 27 21 58 28 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

Source: https://www.linkedin.com/Engineerincvia

برخی از مهم ترین تکنولوژی های به کار رفته در ماژول های مونو کریستال عبارتند از:

  • تکنولوژی PERC (Passivated Emitter Rear Cell)

تکنولوژی PERC یک تکنولوژی پیشرفته است که باعث افزایش راندمان سلول های خورشیدی می شود. در این تکنولوژی، یک لایه اکسید روی (ZnO) در پشت سلول خورشیدی قرار می گیرد. این لایه باعث جذب نور بیشتری و کاهش تلفات انرژی می شود. راندمان سلول های خورشیدی PERC معمولاً بین 18 تا 22 درصد است. این تکنولوژی همچنین باعث بهبود مقاومت سلول های خورشیدی در برابر شرایط آب و هوایی می شود.

  • تکنولوژی Half-cell

تکنولوژی Half-cell یک ایده مثبت جهت افزایش راندمان سلول های خورشیدی بود. در این تکنولوژی، هر سلول خورشیدی به دو سلول کوچکتر تقسیم می شود. این کار باعث کاهش تلفات مقاومت در سلول های خورشیدی می شود. راندمان سلول های خورشیدی Half-cell معمولاً بین 1 تا 2 درصد بیشتر از سلول های خورشیدی معمولی است. این تکنولوژی همچنین باعث کاهش هزینه تولید سلول های خورشیدی می شود.

 

  • تکنولوژی Bifacial

تکنولوژی Bifacial تکنولوژی پنل های دو رو است که باعث افزایش تولید انرژی سلول های خورشیدی می شود. در این تکنولوژی، پشت سلول خورشیدی نیز قادر به جذب نور خورشید می باشد. راندمان سلول های خورشیدی Bifacial معمولاً بین 10 تا 20 درصد بیشتر از سلولهای خورشیدی معمولی است که البته وابسته به میزان بازتاب نور از سطح زمین دارد. تکنولوژی Bifacial همچنین باعث بهبود عملکرد سلول های خورشیدی در شرایط کم نور می شود. با این رویکرد استفاده از پنل های بایفشیال یا دورو در نیروگاه های خورشیدی بزرگ مقیاس می تواند نظر به اصلاح زمین نیروگاه و افزایش بازتاب نوری از کف، درآمد قابل توجهی را با سرمایه کم تر برای مالک نیروگاه ایجاد نماید، کمااینکه تاثیر این تکنولوژی بر افزایش نرخ تولید و درآمد در نیروگاه خورشیدی پشت بامی با وجود ایزوگام تثبیت شده است . 

 

  • تکنولوژی HIT (Heterojunction with Intrinsic Thin-layer)

تکنولوژی HIT یک تکنولوژی پیشرفته است که باعث افزایش راندمان سلول های خورشیدی می شود. در این تکنولوژی، از یک لایه نازک از ماده نیمه هادی آلی (ITO) برای بهبود عملکرد سلول خورشیدی استفاده می شود. راندمان پنل های خورشیدی با تکنولوژی HIT معمولاً بین 22 تا 24 درصد است و مقاومت سلول های خورشیدی در برابر شرایط آب و هوایی با وجود این تکنولوژی بهبودیافته تر است.

 

  • تکنولوژی TOPCon (Tunnel Oxide Passivated Contact)

در این تکنولوژی، یک لایه اکسید روی (ZnO) با ضخامت کم در پشت سلول خورشیدی قرار می گیرد. این لایه باعث جذب نور بیشتری و کاهش تلفات انرژی می شود و البته راندمان سلول های خورشیدی با وجود TOPCon معمولاً بین 22 تا 24 درصد است.

انتخاب تکنولوژی مناسب

انتخاب تکنولوژی مناسب برای ساخت ماژول های مونو کریستال به عوامل مختلفی بستگی دارد، از جمله:

  • میزان راندمان مورد نیاز
  • هزینه تولید
  • شرایط آب و هوایی محل نصب

اگر به دنبال ماژول هایی با راندمان بالا هستید، تکنولوژی PERC، Half-cell، HIT یا TOPCon گزینه های خوبی هستند. اگر به دنبال ماژول هایی با هزینه تولید پایین هستید، تکنولوژی Half-cell گزینه خوبی است. اگر به دنبال ماژول هایی هستید که در شرایط کم نور عملکرد خوبی دارند، تکنولوژی Bifacial گزینه خوبی است.

  1. تست و کنترل کیفیت

   پس از مونتاژ، ماژول‌های خورشیدی تحت تست‌های دقیق و کنترل کیفیت قرار می‌گیرند. این تست‌ها شامل بررسی عملکرد الکتریکی، تحت شرایط نوری و حرارتی مختلف است.

در ادامه به برخی از تست‌ها و استانداردهای مهم برای سل ها و ماژول های خورشیدی اشاره می‌شود:

تست‌ها برای سلول‌های خورشیدی:

  1. تست I-V (تست جریان-ولتاژ):

هدف آن اندازه‌گیری خطوط جریان-ولتاژ سلول‌های خورشیدی است تا عملکرد این سلول‌ها در شرایط نوری مختلف مشخص گردد. سلول خورشیدی تحت نور مصنوعی قرار گرفته و جریان و ولتاژ آن در شرایط مختلف نوری ثبت می‌شود.

 

  1. تست زمانی (Temporal Stability Test):

هدف این تست ارزیابی پایداری عملکرد سلول در طول زمان است. سلول به مدت زمان مشخصی تحت شرایط نوری و حرارتی نگهداری می‌شود و تغییرات عملکرد آن طی زمان بررسی می‌شود.

 

  1. تست حرارتی (Thermal Cycling Test)

در این تست به بررسی تحمل سلول در برابر تغییرات دما می پردازیم.

سلول از چرخه‌های مشخصی از تغییرات دما عبور می‌کند، و سپس عملکرد و کیفیت آن ارزیابی می‌شود.

 

استانداردها برای سلول‌های خورشیدی:

  1. استاندارد IEC 61215:

موضوع: مشخصات عملکردی برای ماژول‌های فتوولتائیک.

اهمیت: این استاندارد به ویژه برای ارزیابی کیفیت و عملکرد ماژول‌های خورشیدی در شرایط مختلف نوری و حرارتی طراحی شده است.

 

  1. استاندارد IEC 61646:

موضوع: مشخصات ماژول‌های فتوولتائیک سلفون.

اهمیت: این استاندارد برای سلفون‌ها، که نوع خاصی از ماژول‌های فتوولتائیک هستند، ارائه شده است.

 

photo 2024 01 27 21 58 52 - زنجیره تولید پنل خورشیدی:  از فراوری سیلیس تا تولید ماژول فتوولتائیک

Source: https://www.solarreviews.com

تست‌ها برای ماژول‌های خورشیدی:

  1. تست (PID) Potential-Induced Degradation

هدف این تست بررسی توانایی ماژول در مقاومت در برابر فرآیند آلودگی ناشی از تغییرات ولتاژ است. ماژول تحت شرایط مشخصی از تغییرات ولتاژ و دما قرار گرفته و عملکرد آن بررسی می‌شود.

 

  1. تست فرآیند نما (Damp Heat Test)

جهت ارزیابی عملکرد ماژول تحت تأثیر رطوبت و گرما از این تست استفاده میشود. ماژول به شرایط حرارت و رطوبت بالا قرار گرفته و عملکرد آن در طول زمان بررسی می‌شود.

 

  1. تست (UV) Ultraviolet Light Test

هدف این تست بررسی تأثیر تابش ماوراء بنفش نور بر مواد سازنده ماژول خورشیدی است. ماژول به تابش نور UV تحت شرایط خاصی قرار گرفته و تغییرات جزئیات ساختاری آن بررسی می‌شود.

 

  1. تست عدم ایزولاسیون (Insulation Test)

بررسی عدم ایزولاسیون بخش‌های مختلف ماژول به یکدیگر طی این آزمایش مورد ارزیابی قرار می گیرد. این تست با اعمال ولتاژ بر روی ماژول انجام می‌شود و عملکرد عدم ایزولاسیون بررسی می‌شود.

 

استانداردها برای ماژول‌های خورشیدی:

 

  1. استاندارد IEC 61215:

موضوع: مشخصات عملکردی برای ماژول‌های فتوولتائیک.

اهمیت: این استاندارد به ویژه برای ارزیابی کیفیت و عملکرد ماژول‌های خورشیدی در شرایط مختلف نوری و حرارتی طراحی شده است.

 

  1. استاندارد IEC 61730:

موضوع: الزامات ایمنی برای ماژول‌های فتوولتائیک.

اهمیت: این استاندارد به ایمنی الکتریکی ماژول‌های خورشیدی توجه دارد و نیازمندی‌ها برای اطمینان از عدم وقوع حوادث الکتریکی را مشخص می‌کند.

 

  1. استاندارد IEC 62716:

موضوع: تست نمایشگرهای تقویت‌شده تحت تأثیر اشعه مستقیم خورشید.

اهمیت: این استاندارد به ارزیابی نمایشگرهای تقویت‌شده در شرایط نوری خورشید مستقیم می‌پردازد.

 

تست‌ها و استانداردها اهمیت زیادی در صنعت خورشیدی دارند و اطمینان از تطابق تجهیزات با این استانداردها بهبود کیفیت و عملکرد سلول‌ها و ماژول‌ها را فراهم می‌کند.

با اجتماع این مراحل، ماژول فتوولتائیک (پنل خورشیدی) آماده به تولید انرژی خورشیدی می‌شود و می‌تواند به تأمین انرژی الکتریکی در سیستم‌های مختلف مورد استفاده قرار گیرد.

  1. بسته‌بندی و حمل و نقل:

   پس از گذر از تمام مراحل تولید و تست، پنل‌های خورشیدی بسته‌بندی می‌شوند و برای حمل و نقل به مقصد نهایی ارسال می‌شوند.

 

نتیجه:

داشتن یک زنجیره تولید کامل برای پنل‌های خورشیدی میتواند ما را در تحقق اهداف وتوسعه نیروگاه های خورشیدی یاری رساند در حالیکه با وجود در اختیار داشتن صفرتا صد خط تولید پنل های خورشیدی میتوانیم به برد استراتژیک در راستای پدافند غیرعامل دست یابیم. در پایان به تعدادی از این مزیت های حیاتی وجود خط کامل تولید پنل خورشیدی اشاره میکنم:

  1. کنترل کیفیت بیشتر:

   امکان کنترل کامل بر تمام مراحل تولید، از فرآوری سیلیس تا تولید ماژول، به بهبود کیفیت و دقت در هر مرحله از زنجیره تولید کمک می‌کند. این امر باعث افزایش کیفیت نهایی پنل‌های خورشیدی و افزایش عملکرد آنها می‌شود.

 

  1. کاهش هزینه‌ها:

   داشتن زنجیره تولید کامل از مراحل مختلف، از جمله فرآوری سیلیس، تولید سلول‌های خورشیدی و تجمیع، می‌تواند به کاهش هزینه‌ها کمک کند. کاهش وابستگی به تامین‌کنندگان خارجی و افزایش کارایی در تمام فرآیند تولید می‌تواند به بهینه‌سازی هزینه‌ها منجر شود.

 

  1. تضمین تأمین مواد اولیه:

   داشتن زنجیره تولید کامل به شرکت تضمین می‌دهد که مواد اولیه مورد نیاز برای تولید پنل‌های خورشیدی، مانند سیلیس، به صورت پایدار و در مقدار کافی در دسترس باشند.

 

  1. تعامل یکپارچه بین مراحل:

   هماهنگی بیشتر و تعامل یکپارچه بین مراحل مختلف زنجیره تولید، از جمله فرآوری سیلیس، تولید سلول‌های خورشیدی، و تجمیع، می‌تواند به بهبود کارایی و کاهش زمان تولید منجر شود.

 

  1. استقلال از تحریم‌ها و مشکلات تامین:

   اگر دارای زنجیره تولید کامل باشیم، از تحریم‌ها و مشکلات ممکن در تأمین مواد اولیه تحت تأثیر کمتری قرار می‌گیریم. این امر می‌تواند برای استقلال از عوامل خارجی و حفظ پایداری تولید مفید باشد.

 

  1. فلزات گرانبها و استراتژیک:

   اگر زنجیره تولید شامل استخراج فلزات گرانبها (مانند سیلیس) باشد، کشور می‌تواند از استراتژی‌های متنوعی برای بهره‌وری از این فلزات استراتژیک بهره‌مند شود.

داشتن زنجیره تولید کامل برای پنل‌های خورشیدی به یک شرکت این امکان را می‌دهد که به طور کلی به عنوان یک واحد یکپارچه عمل کند و مزایای مختلفی را در زمینه کیفیت، هزینه، و کنترل تأمین به دست آورد. شرکت ره آورد آرا نیرو آمادگی خود جهت مشاوره، تجهیز و تامین زنجیره کامل تولید پنل های خورشیدی برای شرکت های سرمایه گذار را اعلام میدارد.

نویسنده: مهدی پارساوند

 

 

جزایر غول پیکر انرژی هیدروژنی سبز برای میزبانی 100 گیگاوات باد فراساحلی

 

به گزارش آرا نیرو انتظار می رود صنعت بادی فراساحلی یا نیروگاه بادی با احداث توربین ها در آب‌های اقیانوسی در طی 25 سال آینده و تا سال 2050 به 500 گیگاوات برسد. در مورد اینکه این همه گیگاوات به کجا خواهند رفت، این یک سوال باز است. تاسیسات و خطوط انتقال جدید خشکی باید تمام آن نیرو را جذب کنند و آن را در جایی به کسی بسپارند، و این به معنای یک نبرد کاملا جدید بر سر استفاده از زمین است. یا نه، بر حسب مورد یک سرمایه گذاری جدید با یک پیشنهاد بلندپروازانه برای باز کردن مسیر رو به جلو با شبکه ای از 10 کارخانه هیدروژن سبز فراساحلی پدیدار شده است.

 

نامه عاشقانه هیدروژن سبز از CIP به صنعت جهانی باد فراساحلی

سرمایه گذاری مورد بحث، یک تجارت جدید به نام جزایر انرژی کپنهاگ است. سرمایه‌گذار اصلی Copenhagen Infrastructure Partners است. آنها سابقه حضور در جایی را دارند که هیچ توسعه‌دهنده انرژی‌های تجدیدپذیر قبلاً آنجا نرفته است، یکی از نمونه‌های اخیر اولین مزرعه بادی فراساحلی استونی است که در دریای بالتیک واقع شده است.

و اما CIP پیش بینی می کند که پروژه استونیایی 1 تا 1.5 گیگاوات وزن داشته باشد. این برای اولین مزرعه بادی فراساحلی بسیار چشمگیر است، به ویژه با توجه به اینکه بسیاری از پروژه های بادی فراساحلی هنوز خود را بر حسب مگاوات اندازه گیری می کنند. با این حال، این هنوز یک سیب زمینی کوچک در مقایسه با موجودی یک فروشگاه است.

سرمایه‌گذاری جدید جزایر انرژی کپنهاگ، CIP را با سرمایه‌گذارانی از اروپا و آمریکای شمالی با هدف ساخت 10 قطب انرژی تجدیدپذیر فراساحلی، هر یک با ظرفیت حدود 10 گیگاوات برای مجموع 100 گیگاوات، پیوند می‌دهد.

 

این مکان‌ها هنوز مشخص نشده‌اند، اما شرکا در حال حاضر به مکان‌هایی در دریای شمال و دریای بالتیک که به سرعت در حال توسعه برای انرژی بادی هستند، چشم دوخته‌اند. سایت های جنوب شرق آسیا نیز در این بازی هستند.

چرا یک جزیره؟

همانطور که جزایر انرژی کپنهاگ توضیح می دهد، نیروی محرکه این سرمایه گذاری توسعه و رفتن به سمت مقیاس بزرگتر است.

آنها انتظار دارند که مزارع بادی چند گیگاواتی فراساحلی در ده سال آینده اجرایی باشند و صنعت بادی به سیستم های کارآمدتری برای انتقال این انرژی از اقیانوس به ساحل نیاز خواهد داشت.

 

همچنين CEI توضیح می دهد: “اقتصادهای بزرگ برنامه هایی برای استقرار بیش از 500 گیگاوات ظرفیت تولید انرژی بادی دریایی تا سال 2050 دارند.” دستیابی به این هدف مستلزم استقرار بیش از 10 برابری توربین های باد فراساحلی نصب شده در 35 سال گذشته است.

 

صنعت بادی فراساحلی مطمئناً نشان داده است که می‌تواند افزایش یابد، اما کاری که نمی‌تواند انجام دهد این است که گلوگاه انتقال برق را برطرف کند. اینجاست که مفهوم جزایر انرژی مطرح می شود.

 

به گزارش آرا نیرو CEI توضیح می دهد: «امروزه، دغدغه کمتری در مورد ساخت مزرعه بادی فراساحلی وجود دارد، بیشترین دغدغه چگونگی ادغام و اتصال انرژی بادی دریایی تولید شده در مقیاس بزرگ به سیستم‌های برق جهانی است.»

و، اینجاست که هیدروژن سبز وارد می شود. هیدروژن سبز که به عنوان انرژی به گاز (Power-to-gas ) نیز شناخته می‌شود، گاز فسیلی را از زنجیره تأمين هیدروژن خارج می کند. هیدروژن سبز از آب توسط الکترولیز تولید می شود. ایده این است که از نیروی باد (یا هر منبع تجدید پذیر دیگری مثل نیروگاه خورشیدی) برای راه اندازی تجهیزات الکترولیز استفاده شود، در نتیجه گازی پرکاربرد و بدون آلودگی فسیلی برای سوخت، سیستم های غذایی، داروسازی، متالورژی، پالایش و سایر فرآیندهای صنعتی در اقتصاد جهانی فراهم می شود.

برق به گاز یک حوزه نسبتا جدید است اما به سرعت در حال رشد است. در سال 2020، اتصال بادی فراساحلی شروع به شکل‌گیری کرد و سهامداران انرژی نیز شروع به کشف ایده مکان‌یابی تأسیسات هیدروژن سبز در مزارع بادی فراساحلی کردند.

در مورد چرایی، از یک نظر نسبتاً ساده است. مزارع بادی معمولاً در شب زمانی که تقاضا کم است بیش از حد تولید می‌کنند و اپراتورهای شبکه را زحمت می‌دهد. اگر یک کاربر صنعتی، شب‌ها برای به کار گرفتن آن کیلووات‌های تمیز کار کند، مشکل کاهش تقاضا را حل می‌کند و هیدروژن سبز برای این کار مناسب است. تولیدکننده هیدروژن سبز نیز از نرخ پایین برق در خارج از پیک بهره می برد.

بیشتر از جزایر انرژی، هیدروژن سبز می تواند به عنوان یک حامل انرژی عمل کند که انرژی باد فراساحلی را با طیف وسیع تری از فرصت ها برای ارتباط با بازارهای انرژی محلی و جهانی فراهم می‌کند. برخلاف برق شبکه که برای انتقال نیاز به کابل دارد، هیدروژن را می توان از مزارع بادی دور از ساحل با خط لوله یا کشتی به ساحل منتقل کرد.

هیدروژن سبز همچنین می‌تواند به عنوان یک ذخیره‌ساز برای تولید برق از منابع تجدیدپذیر در صورت نیاز، در توربین گاز یا پیل سوختی، در صورت لزوم عمل کند.

نه، واقعاً چرا یک جزیره؟

البته، تأسیسات هیدروژن سبز را می توان در خشکی قرار داد، اما CEI دلیل خوبی برای ساخت آنها در فراساحل است. یافتن مکان‌های مناسب در خشکی به طور فزاینده‌ای دشوار می‌شود و پس از آن دوباره آن مسئله آزاردهنده انتقال انرژی وجود دارد.

همانطور که این شرکت آنها را توصیف می کند، مزایای پارک کردن تاسیسات هیدروژن سبز در مزارع بادی فراساحلی سبب “کاهش قابل توجه هزینه های انتقال نیرو” می‌شود، تولید هیدروژن سبز دریایی در مقیاس بزرگ و هم افزایی مرتبط بین تولید نیرو و هیدروژن است.

 

به گزارش آرا نیرو CEI تخمین می زند که استفاده از خط لوله هیدروژن برای انتقال انرژی از مزارع بادی به ساحل 80 درصد کمتر از هزینه کابل جریان مستقیم ولتاژ بالا است. چقدر ارزون!

آنها همچنین پیش‌بینی می‌کنند که استقرار فناوری‌های اثبات‌شده در مقیاس بزرگ به کاهش هزینه‌ها برای جزایر انرژی آنها کمک می‌کند، همراه با تکیه بر زنجیره‌های تأمین محلی که از قبل برای پروژه‌های زیرساختی فراساحلی راه‌اندازی شده‌اند.

 

البته CEI توضیح می‌دهد: «جزایر انرژی، فناوری‌های موجود و اثبات‌شده را به روشی جدید و نوآورانه و در مقیاس بسیار بزرگ‌تر ترکیب می‌کنند، که امکان ساخت مقرون‌به‌صرفه و یکپارچه‌سازی باد فراساحلی را فراهم می‌کند.

 

به هر حال، برق به گاز فقط یک شروع است. آخرین مورد Power-to-X است که به سوخت های الکتریکی، آمونیاک و سایر محصولاتی که می توانند با هیدروژن سبز ساخته شوند اشاره دارد.

در مورد آب چطور؟

در مورد اینکه چگونه یک سیستم الکترولیز می تواند روی آب دریا کار کند، این یک سوال خوب است. الکترولیزهای معمولی غشاهای ظریفی را مستقر می‌کنند که می توانند به سرعت توسط ناخالصی های موجود در آب آلوده شوند.

 

از آنجایی که CEI قصد دارد از فناوری های اثبات شده استفاده کند، محتمل ترین راه حل تجهیز جزایر انرژی به سیستم های نمک زدایی است. اگر گران به نظر میرسد، البته که گران است، اما کار برای کاهش هزینه سیستم‌های پیش تصفیه آب در حال انجام است.

 

راه دیگر بهبود خود الکترولیزها است. این بیشتر یک راه حل بلند مدت است، اما در حال وقوع است.

 

به گزارش آرا نیرو بازار جهانی هیدروژن سبز، هنوز پیچیده است. در اوایل این ماه، یک تیم تحقیقاتی از گروه اقتصاد صنعتی و مدیریت فناوری در دانشگاه علم و صنعت نروژ، مطالعه‌ای را درباره فعالیت هیدروژن سبز و بادهای فراساحلی در دریای شمال طی 35 سال آینده منتشر کرد.

 

تمرکز ویژه آنها بر توسعه هاب های انتقال فراساحلی بود، با تولید هیدروژن سبز در ساحل، نه در فراساحل که استفاده اولیه برای تولید برق در خشکی خواهد بود.

 

 این می تواند به دلیل هزینه نسبتاً بالای هیدروژن سبز در مقایسه با گاز فسیلی، مشکلاتی را ایجاد کند.  با این وجود، محققان پیش بینی می کنند که استقرار انعطاف‌پذیر هیدروژن می تواند به کاهش تأثیر کلی بر هزینه ها کمک کند.

اگر محاسبات کاهش هزینه CEI محقق شود، مفهوم جزایر انرژی برای تولید هیدروژن در دریا نیز می تواند به اثر کاهش دهنده کمک کند.

 

کمک دیگر می تواند از روند چند منظوره مزرعه بادی فراساحلی باشد، که موضوع داغ گفتگو در کنفرانس انرژی اقیانوس 2023 در لاهه بود، با آرایه های خورشیدی شناور و دستگاه های انرژی موجی که به طور بالقوه در بازی هستند.

 

منبع: CleanTech

 

آبیاری با آب های زیرزمینی از طریق پمپ های خورشیدی:

خطرات و فرصت ها

 

انرژی خورشیدی این امکان را فراهم کرده است که در مناطق خشک و خارج از شبکه برق سراسری، با حفر چاه های عمیق بتوان آب برداشت کرد.

آبیاری با آب های زیرزمینی از طریق پمپ های خورشیدی به طور تصاعدی در کشورهای با درآمد کم و متوسط ​​(LMIC) در حال گسترش است و فرصت ها و خطراتی را ایجاد می کند. در جنوب آسیا، بیش از 500,000 پمپ کوچک مستقل از شبکه قبلاً نصب شده است.

 

photo 2024 01 23 07 39 49 - خطرات و فرصت های پمپ های آب خورشیدی

A canal in India with diesel-powered pumps. © Hamish John Appleby / IWMI via Flickr

 

در جنوب صحرای آفریقا، پمپ های آبی خورشیدی برای گسترش تولید مواد غذایی و کاهش فقر در حال افزایش هستند. خوش‌بینی در مورد آبیاری با انرژی خورشیدی وجود دارد که به LMICها کمک می‌کند تا به تعهدات خود در کاهش تغییرات آب و هوایی عمل کنند، اما بینش‌های علوم رفتاری و شواهد اولیه نشان می‌دهند که محاسبه چنین کاهش‌هایی پیچیده است و احتمالاً کمتر از حد تصور است. پمپاژ آب زیرزمینی احتمالا افزایش می یابد. حرکت حساب شده استفاده از زمین، آب و انرژی در چارچوب های ارزیابی یکپارچه، می تواند به خطرات ناخواسته برای منابع زمین و آب را مدیریت کرده و از قفل شدن منابع جلوگیری کند. با ارزیابی هزینه‌ها و مزایای اجتماعی پمپاژ آب‌های زیرزمینی با انرژی خورشیدی، سیاست‌گذاران می‌توانند در مواردی پیش‌روی کنند که آبیاری، تولید مواد غذایی را گسترش می‌دهد و فقر را کاهش می‌دهد، اما پیامدهای ناخواسته یا نامشخصی برای کاهش آب‌های زیرزمینی و انتشار کربن دارد.

 

این گزارش یک نمای کلی از سیاست ها، مقررات و مشوق‌هایی برای استفاده پایدار از فناوری‌های آبیاری با انرژی خورشیدی است.

تکنولوژی (SPIS) یک راه حل انرژی با تکنولوژی ارزان و بادوام برای کشاورزی آبی است که منبع قابل اعتماد انرژی را در مناطق دوردست فراهم می کند، کمک به برق رسانی روستایی، کاهش هزینه های انرژی برای آبیاری و امکان کشاورزی کم انتشار

 

ترویج استفاده ناپایدار از آب با هزینه کمتر انرژی ممکن است منجر به برداشت بیش از حد از آب های زیرزمینی شود.

 

 تیم Soumya Balasubramanya و همکارانش در یک انجمن سیاسی استدلال می کنند که کاهش انتشار کربن حاصل از انتقال سریع به آبیاری با آب های زیرزمینی از طریق انرژی خورشیدی توسط کشورهای با درآمد کم و متوسط ​​(LMIC) ممکن است انتظارات را برآورده نکند. علاوه بر این، این انتقال می تواند منجر به افزایش استخراج آب های زیرزمینی شود. کاهش هزینه‌های فناوری‌های خورشیدی و تعهدات فزاینده دولت به انرژی پاک باعث رونق استفاده از آبیاری آب‌های زیرزمینی با انرژی خورشیدی در LMIC می‌شود. این منجر به نصب بیش از 500,000 پمپ خورشیدی در سراسر آسیای جنوبی و تعداد تخمینی مشابهی در سراسر جنوب صحرای آفریقا در دهه گذشته شده است. با توجه به این گسترش سریع، اراده‌ای برای گنجاندن کاهش انتشار ناشی از استفاده از پمپ خورشیدی در برنامه های اعتبار کربن وجود دارد. با این حال، طبق گفته Balasubramanya و همکاران، مزایای انتقال به آبیاری با انرژی خورشیدی، از جمله کاهش انتشار گازهای گلخانه‌ای مرتبط، برای ارزیابی پیچیده است و می‌تواند با خطراتی همراه باشد. اگرچه جایگزینی کامل پمپ های برقی یا دیزلی با پمپ های خورشیدی باعث کاهش انتشار گازهای گلخانه ای می شود، اما تضمینی نیست. کشاورزان ممکن است به استفاده از پمپ های قبلی خود ادامه دهند، به ویژه اگر نیازهای آبیاری برآورده نشده داشته باشند، و تغییر کاربری زمین کشاورزی می تواند مصرف انرژی خالص را به طرق مختلف تحت تاثیر قرار دهد. علاوه بر این، حتی اگر آبیاری با انرژی خورشیدی منجر به انتشار خالص صفر شود، افزایش پذیرش می‌تواند برداشت آب‌های زیرزمینی در LMICها را تسریع کند و کاهش آب زیرزمینی را تشدید کند و حیات بسیاری از سفره‌های زیرزمینی را که در حال حاضر در معرض خطر خشک شدن هستند، تهدید کند. بالاسوبرامانیا و همکاران استدلال می کنند که درک بین رشته ای از تغییرات آب، انرژی و کاربری زمین برای توسعه یک چارچوب سیاستی که قادر به مدیریت خطرات و فرصت های بالقوه آبیاری خورشیدی باشد، مورد نیاز است.

کشاورزی آبی در حال تبدیل شدن به دغدغه فزاینده برای امنیت غذایی و البته گرمایش جهانی به دلیل تغییرات آب و هوایی است. آبیاری در حال حاضر حدود 40 درصد از تولید جهانی غذا را در 20 درصد از کل زمین های قابل کشت پشتیبانی می کند. این به حفظ تولیدات کشاورزی علیرغم افزایش تغییرات آب و هوایی از جمله خشکسالی کمک می کند.

در دهه‌های اخیر تغییرات چشمگیری در بخش آبیاری رخ داده است: از دهه 1960 تا 1990، سیستم‌های سطحی در مقیاس بزرگ که توسط سدها و کانال‌ها پشتیبانی می‌شدند غالب بودند. متعاقباً، یک چرخش رادیکال رخ داد. امروزه رشد در بخش آبیاری اساساً مبتنی بر سیستم‌های کوچک‌تر تغذیه‌شده از آب‌های زیرزمینی است که مستقیماً توسط کشاورزان تأمین مالی می‌شود. این سیستم ها توسط پمپ های دستی، دیزلی یا الکتریکی کار می کنند.

 

در حال حاضر حدود 35 تا 40 درصد از کل کشاورزی آبی جهان از آب های زیرزمینی تغذیه می شود. به دلیل انرژی مورد استفاده، این امر به میزان قابل توجهی در انتشار گازهای گلخانه ای (GHG) کمک می کند. به عنوان مثال، در هند، آبیاری آب های زیرزمینی مسئول حدود 8 تا 11 درصد از کل انتشار است.

 

photo 2024 01 23 07 39 55 - خطرات و فرصت های پمپ های آب خورشیدی

Indian farmer Gurinder Singh invested in solar power for his 32 acres of land in 2014. © Prashanth Vishwanathan / IWMI

 

پمپ‌های برقی که عموماً کارآمدتر و هزینه کمتری دارند، در کشورهای با درآمد کم و متوسط ​​که دسترسی به برق در مناطق روستایی غیرقابل اعتماد است، نادر هستند. به عنوان مثال، حدود 600 میلیون نفر در جنوب صحرای آفریقا همچنان بدون برق زندگی می‌کنند. در حالی که برق رسانی در مناطق روستایی جنوب آسیا که اغلب هنوز برق وجود ندارد به طور رسمی 98 درصد است. بسیاری از خانواده های فقیر قادر به پرداخت هزینه اتصال به شبکه نیستند.

 

 

 

عدم دسترسی به برق یا سایر منابع انرژی تجدیدپذیر تأثیر منفی بر توسعه زیرساخت های آبیاری، مراکز فرآوری کشاورزی و تأسیسات خنک کننده دارد. در نتیجه، محصولات غنی از مواد مغذی مانند میوه و سبزیجات، و همچنین مواد غذایی با منشاء حیوانی مانند شیر و تخم مرغ، کمتر در بازارها و خانوارها در دسترس هستند. در عین حال، هزینه بالای و نوسان سوخت دیزل به دلیل بحران های مکرر قیمت، استفاده از پمپ های دیزل توسط کشاورزان فقیرتر را محدود می کند.

 

پمپ های خورشیدی به عنوان یک راه حل؟

یکی از راه حل های ممکن برای این معضل پمپ های آبیاری با انرژی خورشیدی هستند. در دهه گذشته، هزینه پنل های خورشیدی به طور چشمگیری کاهش یافته است و به کشاورزان ثروتمند اجازه می دهد تا پمپ های آبیاری خورشیدی خود را خریداری کنند. سیستم‌های آبیاری خورشیدی از استفاده از سوخت کثیف اجتناب می‌کنند و دسترسی به مناطق دورافتاده روستایی را که نه برق و نه گازوئیل در دسترس هستند، بهبود می‌بخشند.

 

با توجه به اینکه هزینه های سرمایه گذاری برای پمپ های آبیاری با انرژی خورشیدی بسیار بیشتر از پمپ های گازوئیلی یا برقی است، این هزینه ها هنوز گسترده نیافته است. پنل های خورشیدی برای پمپاژ آب برای یک هکتار از عمق 15 تا 20 متری به راحتی می توانند 15,000 دلار آمریکا هزینه داشته باشند. حتی در هند که چندین برنامه یارانه ای برای پمپ های خورشیدی دارد – که تا 90 درصد هزینه پمپ ها را پوشش می دهد – تنها 0.5 میلیون از مجموع حدود 30 میلیون پمپ مورد استفاده در آبیاری با پمپ های خورشیدی جایگزین شده است. علاوه بر این، به دلیل یارانه‌های بالاتر برای پمپ‌های بزرگ‌تر، کشاورزان اغلب فقط می‌توانند سیستم‌های بزرگی را خریداری کنند که آب بیشتری نسبت به مقدار مورد نیاز برای حداکثر آبیاری پمپاژ می‌کنند.

 

از سوی دیگر، کشاورزان در جنوب آفریقا اغلب سیستم‌های سایز کوچک را خریداری می‌کنند، زیرا آنها به سادگی قادر به خرید پنل‌های خورشیدی بزرگ‌تر نیستند.

 

استفاده از آب های زیرزمینی در حال افزایش است – و میزان آب در حال کاهش است. با این حال، افزایش وابستگی به آب های زیرزمینی برای کشاورزی آبی منجر به کاهش سطح آب های زیرزمینی شده است.  در بیشتر کشورها، منابع آب زیرزمینی با برداشت بیش از حد آب از لایه‌های آبدار فرصت اینکه سفره های زیرزمینی دوباره تامین شوند، را از بین برده اند.

 

 علاوه بر این، با توجه به هزینه های بالای سرمایه گذاری در مقایسه با دسترسی به آبیاری سطحی، افزایش آبیاری آب های زیرزمینی نابرابری های اجتماعی را تقویت می کند.

 

 کشاورزان ثروتمندتر به احتمال زیاد قادر به خرید پمپ های موتوری هستند و هنگامی که سطح آب های زیرزمینی کاهش می یابد، چاه های عمیق تری حفر می‌کنند، که در برخی مواقع حتی می تواند مانع دسترسی به آب آشامیدنی شود. چالش‌های کاهش و تخریب آب‌های زیرزمینی توسط پمپ‌های خورشیدی تشدید می‌شود: بدون هزینه‌های مکرر (دیزل)، کشاورزان می‌توانند به اندازه‌ای که نیاز دارند، آب زیرزمینی را پمپاژ کنند و این امر کاهش آب زیرزمینی را تسریع می‌کند.

 

 در عین حال، برای کاهش خطر سقوط سطح آب، کشاورزان باید علاوه بر پمپ خورشیدی، یک سیستم آبیاری قطره ای نیز نصب کنند.

از بحث و گفتگو با کشاورزان در ماه مه 2023 در طی کارگاه آموزشی در مورد آبیاری خورشیدی در دانشگاه خواجه فرید پاکستان، که توسط NEXUS Gains Initiative ثبت شد، به سرعت مشخص شد که سیستم یارانه ای، که با هزینه ها و مالیات های اضافی مختلف همراه است، برای کشاورزان گران تر از  یک پمپ خورشیدی در بازار آزاد میباشد. سه چهارم شرکت کنندگان احساس کردند که فقط کشاورزان در مقیاس بزرگ از برنامه یارانه دولتی بهره می برند. علاوه بر این، آبیاری قطره ای فقط برای مدت کوتاهی مناسب است و هزینه های نگهداری آن بالاست.

 با این حال، این برنامه از طرف پرورش دهندگان میوه و سبزیجات که قبلاً به آبیاری دسترسی نداشتند، و همچنین کشاورزانی با خاک های شنی حمایت شد. اما حتی بدون یارانه، کشاورزان در پنجاب پاکستان به طور فزاینده ای در سیستم های پمپاژ خورشیدی سرمایه گذاری می کنند. بر اساس نظرسنجی موسسه بین المللی مدیریت آب از 300 کشاورز که چنین سیستم هایی را خریداری کرده اند، دلیل اصلی را افزایش هزینه انرژی و سایر هزینه های تولید کشاورزی مطرح نموده‌اند. این بررسی در ارتباط با پروژه آبیاری خورشیدی برای مقاومت کشاورزی با حمایت آژانس توسعه و همکاری سوئیس انجام شد.

 

 

 

شرکت کنندگان در کارگاه به تعدادی از عوامل اشاره کردند که تاثیر منفی بر خرید پمپ های خورشیدی دارند. اینها شامل پنل های خورشیدی ضعیف و تجهیزات مرتبط، استاندارد نبودن پمپ ها و هزینه اولیه بالای پمپ های خورشیدی است. علاوه بر این، بانک‌ها و سایر مؤسسات مالی برای خرید پمپ‌های خورشیدی تسهیلات مالی ارائه نمی‌دهند، درحالیکه عمدتاً برای کودها و بذرهای ارزان‌قیمت وام می‌دهند.

 

شرکت کنندگان همچنین از خطری که سطح آب را تهدید می کرد آگاه بودند. بیش از 80 درصد گفتند که سطح آب های زیرزمینی در دهه گذشته کاهش یافته است و 72 درصد معتقد بودند که پمپ های خورشیدی (در مقایسه با پمپ های دیزل) سطح آب های زیرزمینی را بیشتر کاهش می دهد.

 

چگونه می توان انرژی خورشیدی را بهتر در آبیاری جای داد؟

برای پیشرفت انرژی های تجدیدپذیر، باید راه حل‌هایی یافت که به طور همزمان اهداف اجتماعی، اقتصادی و زیست محیطی را برآورده کنند. برنامه CGIAR NEXUS Gains بر روی دسترسی به فناوری های انرژی تجدیدپذیر برای کشاورزان فقیرتر در جنوب آسیا و جنوب صحرای آفریقا تمرکز دارد.

 

برای این منظور، به چندین موضوع می پردازیم:

 

در مرحله اول، ارائه اطلاعات بهتر در مورد منابع برداشت آب با انرژی تجدیدپذیر (پمپ های آب خورشیدی) و همچنین جمع آوری داده ها در مورد بهینه سازی اندازه سیستم های انرژی تجدیدپذیر روستایی مهم است. سیستم های با اندازه نامناسب یا هزینه زیادی دارند یا انرژی بسیار کمی تولید می کنند. ابعاد می تواند با استانداردسازی تجهیزات انرژی های تجدیدپذیر همراه باشد.

 

گام دوم تقویت محیط سیاسی و مالی برای سیستم‌های انرژی های تجدیدپذیر است. مدل های تجاری و مالی باید ایجاد شود که برای کشاورزان فقیر جذاب باشد. این شامل ارائه اطلاعات جامع به کشاورزان و به ویژه کشاورزان زن در مورد گزینه های تامین مالی موجود و دسترسی به منابع مالی برای سیستم های انرژی تجدیدپذیر می شود.

 

سوم، افزایش سرمایه گذاری در سیستم های انرژی تجدیدپذیر روستایی که از استفاده مولد حمایت می‌کنند، ضروری خواهد بود. این اجازه می دهد تا هزینه سیستم ها حتی بدون برنامه های یارانه ای که فقط به کشاورزان ثروتمند می رسد بازیابی شود.

 

علاوه بر این، نهادهای محلی برای مدیریت بهتر آب‌های زیرزمینی نیاز به حمایت دارند تا جوامع روستایی بتوانند خودشان آب های زیرزمینی خود را مدیریت کنند.

 

مؤسسه IFPRI و NEXUS Gains نیز با پروژه ای در هند که توسط دولت آلمان و دیگران حمایت می شود، روی این موضوع دشوار کار می کنند. هدف آن بهبود دانش محلی و درک سیستم های آب زیرزمینی و حمایت از مدیریت جمعی منابع آب زیرزمینی است.

 

به عنوان یک گام نهایی و فراگیر، دولت ها و سایر سرمایه گذاران باید بر اقدام در انزوا غلبه کنند. مداخلات در بخش های انرژی، آب و غذا نباید به صورت مجزا و جدا از یکدیگر دیده شوند. باید اطمینان حاصل شود که سرمایه گذاری در انرژی های تجدیدپذیر هم تامین آب و انرژی و هم امنیت غذایی را (به طور همزمان) بدون آسیب رساندن به محیط زیست بهبود می بخشد. تنها در این صورت است که می توان به مزایای آبیاری با انرژی های تجدیدپذیر به طور کامل و پایدار پی برد.

 

نویسنده: مهدی پارساوند

 

منابع:

https://doi.org/10.1126/science.adi9497?utm_source=miragenews&utm_medium=miragenews&utm_campaign=news

 

Xie, H., C. Ringler and A. Mondal. 2021. Solar or Diesel: A Comparison of Costs for Groundwater-Fed Irrigation in Sub-Saharan Africa Under Two Energy Solutions. Earth’s Future 9(4): e2020EF001611

 

چشم انداز سیستم های نیروگاه خورشیدی خانگی همراه با باتری در سال 2024

 

اگر تصمیم سال نوی شما این است سیستم خورشیدی همراه با بکاپ باتری که رویای آن را داشتید به دست آورید، به شما تبریک می گویم.

به گزارش آرا نیرو سیستم‌های نیروگاه خورشیدی خانگی همراه با بکاپ باتری این قدرت را دارند که شما را از قبض آب و برق، قطع برق، و هر گونه گناهی که در اطراف تلویزیون 92 اینچی دارید، آزاد کنند. بازار خورشیدی همیشه بالا و پایین است ( بیهوده آن را ترن هوایی خورشیدی نمی نامند)، بنابراین دانستن اینکه چه چیزی در دسترس است و تا چه زمانی وجود خواهدداشت، هنگام تصمیم گیری برای انجام سرمایه‌گذاری در انرژی خورشیدی مفید است. در اینجا برخی از روندها و فرصت های کلیدی در این فضا آورده شده است.

اولاً، تنها از هر 20 خانه در ایالات متحده، 1 خانه دارای انرژی خورشیدی است، در مقایسه با 1 در 3 در استرالیا، و 1 در 5 در آلمان ابری و سرد. _ طبق آمار وزارت نیرو، تا پایان سال 1400، تعداد 200 هزار واحد مسکونی در ایران مجهز به نیروگاه خورشیدی شده بودند. با این حال، این تعداد هنوز نسبتاً کم است و نسبت خانه هایی که نیروگاه خورشیدی دارند به خانه هایی که ندارند، حدود 2 درصد است._ بنابراین، تعداد زیادی فرصت همچنان وجود دارد. انرژی خورشیدی، به طور کلی، آماده است تا از انرژی آبی به عنوان بزرگترین منبع برق بدون کربن در سال جاری سبقت بگیرد!

photo 2024 01 22 09 40 40 - چشم انداز سیستم های نیروگاه خورشیدی خانگی همراه با باتری در سال 2024

Homes with rooftop solar. Photo by Werner Slocum, NREL.

در امریکا مشوق های خوبی در سطوح فدرال، ایالتی و خدماتی وجود دارد. پنل‌های جدید و کارآمدتر، پنل‌های زیباتر، تنوع بیشتر و باتری‌های باکیفیت‌تر، و حتی برخی از فناوری‌های V2G وجود دارند که به خودروهای برقی اجازه می‌دهند تا یک خانه را تامین کنند و به عنوان باتری اضافی خانه عمل کنند.

بنابراین، من به مارکوس جو، یکی از بنیانگذاران و مدیر ارشد آموزش در EnergyPal، که تقریباً 20 سال است در زمینه انرژی خورشیدی خانگی کار می کند (شامل “گروهی برای خورشیدی” که ما در مورد آن صحبت می کنیم) مراجعه کردم تا به تمام آنچه که در نیروگاه خورشیدی خانگی در حال انجام است، بپردازم. برای آن، و جایی که او بهترین فرصت ها را برای صاحبان خانه در سال جاری می بیند.

 

برای علاقه مندان به حوزه خورشیدی، EnergyPal با ارائه اطلاعات رایگان در مورد قیمت گذاری، و سایر جنبه های نصب خورشیدی، و همچنین برقراری ارتباط مالکان خانه با پیمانکاران نیروگاه خورشیدی بستری را فراهم کرده است تا در صورت تمایل به پیشرفت، کار را به بهترین شکل انجام دهند.

 

این مصاحبه با مارکوس را در پست اول امروز در اینستاگرام آرا نیرو ببینید تا هر آنچه را که لازم است، در مورد نیروگاه خورشیدی خانگی بدانید.

 

نویسنده: Scott Cooney

 January 17, 2024

طراحی جدید برای پمپ های حرارتی ترموالکتریک به خروجی بالاتر و ضریب عملکرد بهتر انجامید

 

به گزارش آرا نیرو دانشمندان در بریتانیا ترکیب پمپ های حرارتی ترموالکتریک مسکونی را با مخازن ذخیره گرما پیشنهاد کرده اند و دریافته اند که این راه حل، خروجی حرارت بالاتر، ضریب کارایی بالاتر و زمان گرمایش کوتاه‌تر را ارائه می دهد. آنها تاکید کردند که پمپ های حرارتی ترموالکتریک به راحتی با نیروگاه خورشیدی فتوولتائیک DC قابل ترکیب هستند.

 

محققان دانشگاه دورهام در بریتانیا طرح جدیدی را برای پمپ‌های حرارتی ترموالکتریک (TeHPs) پیشنهاد کرده‌اند که دارای تمامی مزایایی است که فناوری پمپ حرارتی ارائه می‌دهد، به‌ویژه زمانی که در ساختمان‌های مسکونی، بهره‌برداری می‌شود.

 

 آنها توضیح دادند که TeHP ها می توانند به طور مستقیم توسط پنل های خورشیدی فتوولتائیک تغذیه شوند، در حالی که عملکرد بی صدا و قابلیت اطمینان بالا را به دلیل عدم وجود قطعات متحرک ارائه می‌دهند.  با این حال، آنها همچنین اذعان کردند که ضریب عملکرد آنها در حال حاضر کمتر از پمپ های تراکم حرارتی بخار معمولی است.

 

 نوآوری رویکرد پیشنهادی شامل ادغام TeHP با ذخیره‌سازی انرژی خورشیدی فصلی (SSES) است که به گفته دانشمندان، عدم تطابق فصلی مربوط به توان حرارتی تولید شده، توسط هر دو سیستم فتوولتائیک و سیستم حرارتی خورشیدی (PVT) را جبران می‌کند.

 

 آنها توضیح دادند: “تا جایی که ما می دانیم، مطالعات کمی چنین راه حلی را در نظر گرفته اند.”  آنها با اشاره به امکان سنجی فنی-اقتصادی این سامانه و کمیت‌سازی، مزایایی که می تواند به همراه داشته باشد، گفتند: هدف گروه ما پر کردن این خلاء است و برای این کار باید دو موضوع مهم حل شود.

 

 به گزارش آرا نیرو در مقاله “مدل سازی و خصوصیات تجربی پمپ حرارتی ترموالکتریک آب به هوا با ذخیره انرژی حرارتی” که در مجله انرژی منتشر شده است، گروه تحقیقاتی بیان کرده که سیستم آزمایشی یک واحد TeHP با برق DC، یک مخزن ذخیره گرما و یک آزمایش را ادغام می کند، همراه با یک سیستم ثبت اطلاعات. واحد TeHP بر اساس یک ماژول ترموالکتریک (TeM)، یک هیت سینک با پره آلومینیومی در سمت گرم TeM و یک صفحه خنک کننده با آب در سمت سرد TeM است.

 

photo 2024 01 22 09 12 43 - طراحی جدید برای پمپ های حرارتی ترموالکتریک به خروجی بالاتر و ضریب عملکرد بهتر انجامید

The experimental setting
Image: Durham University, energies, Creative Commons License CC BY 4.0

 

دانشگاهیان توضیح دادند: “ظرفیت گرمایش کل واحد TeHP را می توان با افزایش تعداد کل TeMها افزایش داد.” برای افزایش انتقال حرارت بین TeM و هیت سینک و همچنین انتقال حرارت بین TeM و صفحه خنک‌شده با آب، یک خمیر با رسانایی حرارتی بالا در دو طرف TeM قرار داده شد تا مقاومت‌های حرارتی تماس را کاهش دهد. ”

 

آنها همچنین یک فن با جریان متقاطع را در سمت هیت سینک قرار دادند تا تبادل حرارت بین جریان هوا و هیت سینک افزایش یابد. آنها با اشاره به اینکه از آب به عنوان سیال انتقال حرارت و ذخیره گرما استفاده می شود، افزودند: مخزن ذخیره حرارت ساخته شده از فولاد ضد زنگ دارای قطر داخلی 25 میلی متر، ارتفاع 250 میلی متر و ضخامت 2 میلی متر است. علاوه بر این، یک حلقه گردش آب پمپ شده، مخزن ذخیره گرما را به صفحه خنک‌شده با آب متصل می‌کند.

 

در یک سری شبیه‌سازی که از طریق ابزار شبیه‌سازی TRNSYS اجرا شد، تیم تحقیقاتی گرمای بالقوه تولید شده از سیستم‌های PVT یا کلکتورهای حرارتی خورشیدی و عملکرد خروجی واحد TeHP را در مقایسه با یک سیستم مرجع بدون ذخیره‌سازی گرما محاسبه کردند. این نشان داد که ادغام TeHP ها با مخازن ذخیره گرما سه مزیت اصلی دارد.

ابتدا، دانشگاهیان متوجه شدند که مخزن ذخیره سازی خروجی حرارت TeHP را در مقایسه با TeHP بدون مخزن 3 درجه سانتیگراد افزایش می دهد.  سپس، آنها دریافتند که COP TeHP با ذخیره گرما 1.97 و TeHP بدون مخزن 1.5 بود. علاوه بر این، شبیه سازی نشان داد که زمان مورد نیاز برای گرم کردن جعبه آزمایش به میزان 18 متر کاهش یافته است، که طبق گزارش ها دستیابی سریع به دمای مورد نظر را تضمین می کند.

 

 دانشمندان گفتند، اگرچه این نتایج امیدوارکننده است، اما امکان‌سنجی فنی-اقتصادی این سیستم هنوز نامشخص است. آنها با اشاره به دوره بازپرداخت فعلی سیستم تاکید کردند: “این به این دلیل است که اگرچه استفاده از ذخیره سازی حرارتی عملکرد خروجی TeHP را افزایش می دهد، اما برای تاسیسات ذخیره سازی گرما در مقایسه با TeHP مستقل هزینه‌های اضافی ایجاد می کند.” فلذا 8.5 سال تخمین زده می‌شود.

 

 با نگاه به آینده، گروه تحقیقاتی قصد دارد پیکربندی سیستم را بر روی یک ساختمان واقعی در بریتانیا آزمایش کند.

 

نویسنده: Emiliano Bellini

نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

 

به گزارش آرا نیرو همه می خواهند کاری در مورد انتشار کربن انجام دهند اما تعداد کمی از آنها می دانند چگونه؟ ما می‌خواهیم بهتر عمل کنیم، اما ادامه دادن به انجام کاری که همیشه انجام داده‌ایم آسان‌تر از صرف زمان، تلاش و پول برای ایجاد تغییرات است. شرکت‌های تاسیساتی که گاز فسیلی عرضه می‌کنند _که به اشتباه به عنوان “گاز طبیعی” شناخته می‌شود_ تحت فشار گروه‌های زیست‌محیطی هستند، زیرا محصول آنها _که عمدتا متان است_ هنگام سوزاندن دی اکسید کربن در اتمسفر آزاد می‌شود.

 

حتی بدتر از آن، مقدار زیادی از مواد به اتمسفر نشت می کند، جایی که برای 20 سال یا بیشتر باقی می‌ماند. متان 80 برابر قویتر از دی اکسید کربن، عامل گرمایش سیاره است، به این معنی که لغزش به سمت دمای گرمتر جهانی را تسریع داده است. اما شرکت‌های گاز فسیلی علاقه خاصی به ادامه مدل کسب و کار خود دارند که سود قابل توجهی را برای آنها به ارمغان می‌آورد. حتی با فرض اینکه مدیرانی که این شرکت ها را اداره می کنند متعهد به رسیدگی به تغییرات آب و هوایی به روشی معنادار باشند، نمی توانند به خوبی در جلسه هیئت مدیره شرکت کنند و پیشنهاد تعطیلی کسب و کار را بدهند.

 

حرکت از گاز فسیلی

ایالت نیویورک فکر می کند راه حلی برای این معضل دارد. تمام تجربیاتی که شرکت‌های گاز فسیلی در ساخت خطوط لوله و شبکه‌های توزیع ساختمان دارند را در نظر بگیرید و در عوض آن را برای انتقال گرما برای پمپ‌های حرارتی منبع زمینی به کار ببرید. در سال 2022، قانونگذار نیویورک، قانونی را تصویب کرد که تعدادی از سیاست های طراحی شده برای کاهش انتشار گازهای گلخانه ای را ترویج می کند. از جمله آنها طرحی برای کاهش انتشار کربن و متان از تاسیسات گاز فسیلی است و در عین حال نقشی را برای این شرکت ها در دهه های آینده ایجاد می کند.

 

آنها به حفر سنگرها، احداث خطوط لوله و نصب تجهیزات ادامه می دهند _همان نوع سرمایه گذاری که امروزه سود طولانی و پایداری را برای شرکت های گاز به ارمغان می آورد._ اما به جای گاز قابل اشتعال و گرم کننده سیاره، این لوله ها آب یا مایعات دیگری را حمل می کنند که گرما را از زیر زمین یا از ساختمان ها و منابع دیگر در شبکه منتقل می کنند که می توانند توسط پمپ های حرارتی برای گرم نگه داشتن ساختمان ها استفاده شوند.

 

چرا این مهم است؟ ما می دانیم که پمپ های حرارتی با منبع هوا – نوعی که روی دیوارهای بیرونی آویزان می شوند – نسبت به دیگهای بخار و کوره های معمولی که از سوخت های فسیلی استفاده می کنند کارآمدتر هستند. _اگر در اطراف بوستون امریکا زندگی می‌کنید، تصدیق میکنید که آن‌ها کارآمد هستند_ اما چیزی که بسیاری نمی‌دانند این است که وقتی می‌توانند گرما و سرما را با سیال در دمای پایدار مبادله کنند و نه از طریق هوای سرد بیرون، این امر حتی میتواند کارآمدتر باشد. در واقع، وزارت انرژی امریکا تخمین می زند که چنین پمپ های حرارتی منبع زمینی مصرف انرژی و انتشار گازهای گلخانه ای را تا 44 درصد در مقایسه با پمپ های حرارتی منبع هوا و 72 درصد در مقایسه با تجهیزات استاندارد تهویه مطبوع کاهش می دهند. حالا با این تفاسیر آیا ما توجه شما را جلب کردیم؟

در حالی که این خبر هیجان‌انگیزی است، اکثر مالکان ساختمان‌ها برای پرداخت هزینه حفاری گمانه‌ها و نصب لوله‌ها برای سیستم‌های پمپ حرارتی زمین گرمایی خود یا بستن قراردادهایی با همسایگان خود برای ساخت و اشتراک شبکه‌های زیرزمینی با مشکل مواجه هستند.  به همین دلیل است که رویکرد نیویورک برای انطباق زیرساخت های خدمات گازی بسیار نویدبخش است.  لیزا دیکس، مدیر ائتلاف غیر انتفاعی کربن زدایی ساختمان در نیویورک به Canary Media می گوید که انجام این کار به صاحبان خانه و مشاغل کمک می کند تا در هزینه ها سهیم شوند و از مزایای آن بهره ببرند.

 

توانمندسازی قانونگذاری

 گروه او از قانون شبکه انرژی حرارتی شهری و مشاغل حمایت کرد که توسط قانونگذار نیویورک در سال 2022 تصویب شد. در پاسخ به این قانون، شرکت های آب و برق در ایالت نیویورک، ماه گذشته برنامه هایی را برای 13 پروژه آزمایشی ارائه کردند که برای تبدیل خطوط لوله گاز فسیلی به زیرساخت طراحی شده بودند که می تواند پمپ های حرارتی تمیز و بدون کربن را تامین کند.

به گزارش آرا نیرو این شبکه‌های حرارتی زیرزمینی از مراکز تجاری متراکم منهتن تا مسکن‌های کم درآمد، و از محله‌های دره هادسون تا شهر شمالی ایتاکا، محل دانشگاه کرنل، را دربرمی‌گیرد.  نتایج این پروژه‌های آزمایشی می‌تواند به جوامع دیگر از جمله ایران کمک کند تا درک کنند که چگونه این فناوری را برای خود به کار ببرند.

شرکت Con Edison، شرکتی که به شهر نیویورک و شهرستان وستچستر خدمات می‌دهد، سه پروژه را پیشنهاد کرده است که برخی از چالش‌برانگیزترین تنظیمات شهری از جمله مرکز برجسته راکفلر را در بر می‌گیرد. Con Ed قصد دارد سه ساختمان تجاری بزرگ را از شبکه گرمایش بخار منطقه ای به پمپ های حرارتی تبدیل کند. این پمپ های حرارتی از آبی استفاده می کنند که توسط گرمای هدر رفته از منابعی مانند فاضلاب، مراکز داده و سیستم های خنک کننده ساختمان های مجاور گرم می شود.

 

«برخی تصورات غلط وجود دارد. مردم فکر می کنند که برای گرفتن گرمای زیرزمینی باید یک میلیون چاه حفر کنید. ​اما شما می توانید گرمای خود را از منابع مختلف دریافت کنید. می توانید آن را از مترو دریافت کنید، می توانید آن را از فاضلاب تهیه کنید و اگر این کار را درست انجام دهیم، به کربن زدایی سیستم بخار Con Ed کمک خواهد کرد.

 

photo 2024 01 21 10 05 28 - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

Source: cleantechnica.com

شرکت املاک و مستغلات Tishman Speyer، مالک 30 Rockefeller Center، شریک اصلی این پروژه است. این شرکت انگیزه قوی برای مشارکت دارد زیرا این پروژه می تواند هزینه های مربوط به رعایت قانون محلی شهر نیویورک 97 را کاهش دهد که تمام ساختمان های بزرگ را ملزم می کند تا انتشار کربن خود را تا سال 2030 تا 40 درصد نسبت به سال 2019 کاهش دهند. رسیدن به این اهداف مستلزم 18.2 میلیارد دلار سرمایه گذاری در جایگزینی برای دیگهای بخار و کوره های گاز فسیلی تخمین زده شده است.

 

دیکس گفت: شبکه های مشترک می توانند به طور قابل توجهی هزینه ساختمان های فردی را کاهش دهند، اما صاحبان املاک ​”نمی خواهند به طور خصوصی با تمام این مجوزها برخورد کنند – آنها می خواهند که شرکت ابزار با همه این موارد مقابله کند.” هنگامی که به دنبال تبدیل کل محله‌ها در مقیاس بزرگ به جایگزین‌های کم کربن هستید، ​”توسعه‌های آب و برق بیشترین منطق را برای انجام این کار دارند. آنها دارای حق راه هستند، دارای مجوز هستند، به سرمایه دسترسی دارند، و نیروی کار دارند که قبلاً اتحادیه شده است.»

 

به گزارش آرا نیرو یکی دیگر از پروژه های Con Ed در محله چلسی منهتن قصد دارد 100 درصد نیازهای گرمایشی، سرمایشی و آب گرم یک ساختمان مسکونی چند خانواری کم درآمد را از یک مرکز داده در نزدیکی آن، تامین کند. دیکس گفت: «ما می‌توانیم یک مرکز داده داشته باشیم که به معنای واقعی کلمه یک ساختمان چند خانواری یا یک آسمان‌خراش بزرگ را گرم می‌کند.

 

سه ایالت دیگر – کلرادو، ماساچوست و مینه‌سوتا – قوانینی را تصویب کرده‌اند که به شرکت‌های گاز اجازه می‌دهد تا پروژه‌های آزمایشی شبکه انرژی حرارتی را انجام دهند. ایلینوی، مین، ورمونت و واشنگتن در حال بررسی قوانین مشابه هستند و 13 شرکت گاز یک شرکت مشترک زمین گرمایی شبکه‌ای Utility را برای بررسی گزینه‌های بیشتر ایجاد کرده‌اند.

1690297311708 - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

https://www.sciencefocus.com/

تاسیسات گاز فسیلی ایده آل هستند

آدری شولمن، مدیر اجرایی تیم بهره وری انرژی خانگی در کمبریج ماساچوست، گفت که شرکت های گاز فسیلی برای نصب شبکه های انرژی حرارتی در مقیاس بزرگ، ایده آل هستند. آنها نیروی کار، تخصص و دسترسی به سرمایه مورد نیاز برای ساخت شبکه های زیرزمینی متصل به هم را دارند. او می گوید که آنها در حال حاضر میلیاردها دلار در سال برای توسعه و تعمیرات خط لوله گاز فسیلی خرج می کنند که به ناچار مدت ها قبل از اینکه هزینه های آنها توسط مشتریان بازپرداخت شود به “دارایی های سرگردان” تبدیل می شوند. “کل کار در مورد ایجاد ساختار نظارتی است که به وسیله آن از گاز خارج می شویم و به چیز دیگری می رویم.”

در پست آینده پیج اینستاگرام آرا نیرو ویدئوی مختصری وجود دارد که توسط HEET گردآوری شده است که به خوبی توضیح می دهد که چگونه این فرآیند کار می کند. با ما همراه باشید.

 

علی‌رغم قانون نیویورک، شرکت‌های گاز فسیلی در این ایالت 5 میلیارد دلار برای سرمایه‌گذاری زیرساختی هزینه کرده‌اند و از زمان تصویب این قانون، 28 میلیارد دلار در طرح‌های جایگزینی خط لوله، شناسایی کرده‌اند. این قطع ارتباط بین الزامات آب و هوایی به نیویورک محدود نمی شود. گروه براتل در گزارشی در سال 2021 دریافت که شرکت های گاز فسیلی در ایالات متحده ممکن است در دهه آینده با سرمایه گذاری 180 میلیارد دلاری در خط لوله مواجه شوند که ممکن است قابل بازیابی نباشد.

تعهد خدمت

مانند بسیاری از ایالت‌های دیگر با دستور کربن‌زدایی، نیویورک صدها میلیون دلار مشوق برای پمپ‌های حرارتی و برق‌رسانی ساختمان‌ها ارائه کرده است و مقرراتی را وضع کرده است که گسترش گاز فسیلی را به ساختمان‌های جدید محدود می‌کند.

اما بر اساس گزارش سال 2023 از ائتلاف کربن زدایی ساختمان، این رویکرد “خانه به خانه” می تواند منجر به ایجاد محدودیت در تاسیسات گاز و تنظیم کننده ها شود که جهت حفظ شبکه های توزیع مجبور به فروش گاز گران قیمت برای تامین سوخت به تعداد روبه کاهش مشتریان شوند.

در همین حال، مشتریانی که باقی می‌مانند، بخش بیشتری از هزینه پرداخت این سرمایه‌گذاری‌های گاز را متحمل خواهند شد، که منجر به ایجاد یک چرخه معیوب از افزایش هزینه‌ها بر افرادی می‌شود که خود توانایی تغییر پمپ‌های حرارتی را ندارند. آن دسته از مشتریان عقب مانده به احتمال زیاد افرادی با درآمد کمتر هستند که در حال حاضر برای پرداخت قبوض گران قیمت آب و برق تلاش می کنند.

 

یکی از موانع، قوانینی است که در بسیاری از ایالت‌ها وجود دارد. در ازای انحصار شرکت های خدمات شهری، آنها ملزم به ارائه خدمات به هر کسی در قلمرو خود هستند که آن را درخواست می کند. این تعهد بخش اصلی ماموریت یک شرکت است، اما کاربرد دقیق آن می‌تواند به یک مشتری در محله‌ای که برای شبکه انرژی حرارتی در نظر گرفته شده است اجازه دهد کل پروژه را متوقف کند. تغییر قوانین در حال حاضر در نیویورک، ماساچوست و سایر ایالت ها برای اینکه به شرکت های آب و برق اجازه دهد مشتریان را از خدمات شبکه گاز به انرژی حرارتی تغییر دهند، بدون اینکه اعتراضات ​”اجبار به خدمت” را ایجاد کنند، بخش مهمی از روند انتقال خواهد بود.

 

دیکس گفت، در نیویورک، قانون شبکه انرژی حرارتی برق شهری و مشاغل، این قانون را برای پروژه های آزمایشی که اکنون در حال بررسی هستند، به حالت تعلیق در می آورد، اما برای گسترش این تغییر به کل ایالت، قوانین بیشتری لازم است. در ماساچوست، تیم بهره وری انرژی خانه و سایر گروه های محیطی و اجتماعی لایحه “آینده گرمای پاک” را تأیید می کنند که تغییرات مشابهی را ایجاد می کند.

 

به گزارش آرا نیرو مزایای کارآیی این شبکه‌ها همچنین می‌تواند کمک قابل توجهی به شبکه‌های برق بدهد که رشد گسترده‌ای در تقاضای ساختمان‌های گرمایشی و وسایل نقلیه الکتریکی را تجربه خواهند کرد. تحقیقات وزارت انرژی نشان داده است که نصب پمپ های حرارتی زمین گرمایی در تقریبا 80 درصد خانه های ایالات متحده می تواند هزینه های کربن زدایی شبکه را تا 30 درصد کاهش دهد و تا سال 2050 از نیاز به 24,500 مایل خطوط انتقال جدید جلوگیری کند.

EGS.Infographic - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

This diagram shows how electricity is produced using enhanced geothermal systems.

غذای آماده

تبدیل سیستم های توزیع گاز فسیلی برای پشتیبانی از سیستم های پمپ حرارتی منبع زمینی، یک ایده جسورانه است. برای شرکت های آب و برق، این راهی است که آنها به خدمت به جامعه ادامه دهند و با انجام این کار سود ببرند و در عین حال فعالیت های خود را کربن زدایی کنند. این روشی را برای به حداکثر رساندن بهره وری ارائه می دهد که از طریق پمپ های حرارتی ممکن می‌شوند، در حالی که انتشار گازهای گلخانه ای را مختل می کند.

 

چنین تفکر جسورانه ای قابل تحسین است. آیا منطقی‌تر نیست که راه‌حل‌های خلاقانه‌ای مانند این را دنبال کنیم تا اینکه امید به طرح‌های ژئومهندسی خطرناک برای زمین پاک ببندیم؟ صنعت آب و برق میتواند این را به عنوان یک موقعیت برد/برد ببیند، اما بسیاری از این شرکت ها به شدت با این تغییر مخالف هستند. آنها به دلایل خودخواهانه خود از آینده می‌ترسند و به جای ساختن یک جامعه انسانی پایدار نگران سود خود هستند.

 

شاید وقتی یاد بگیرند که انتقال از گازهای فسیلی بدون تخریب مدل کسب و کارشان قابل انجام باشد، بر ترس های خود غلبه کنند و مانع چنین برنامه هایی نشوند. اگر همه برنده شوند، _شرکت ها، جوامع و زمین_ بهترین جهان، ممکن خواهد بود.

 

منبع: CleanTechnica

 

به گفته EY، اکنون LCOE خورشیدی 29 درصد کمتر از هر گزینه سوخت فسیلی است.
به گزارش آرا نیرو هزینه همسطح الکتریسیته (LCOE) یک معیار اقتصادی است که برای مقایسه هزینه‌های طول عمر تولید برق در فناوری‌های مختلف تولید استفاده می‌شود.
گزارش ارنست اند یانگ (EY) نشان می‌دهد که با وجود فشارهای تورمی، انرژی خورشیدی ارزان‌ترین منبع برق جدید است. میانگین موزون جهانی هزینه یکسان شده برق (LCOE) برای PV اکنون 29 درصد کمتر از ارزان ترین جایگزین سوخت فسیلی است.
موسسه EY در آخرین گزارش انرژی و منابع خود  اعلام کرد که 86 درصد یا 187 گیگاوات از منابع انرژی تجدیدپذیر تازه راه‌اندازی شده، برق را با هزینه کمتر از میانگین هزینه تولید سوخت فسیلی در سال 2022 تولید می‌کند.

موسسه EY گفت که نیروگاه خورشیدی ارزان‌ترین برق تولیدی جدید در بسیاری از بازارها است، حتی با وجود تورم و افزایش قیمت، و اشاره کرد که میانگین وزنی جهانی LCOE برای انرژی خورشیدی اکنون 29 درصد کمتر از ارزان‌ترین جایگزین سوخت فسیلی است. ذخیره انرژی در مقیاس بزرگ نیز به سرعت مقرون به صرفه تر و پیچیده تر می شود.
میانگین LCOE انرژی خورشیدی به سرعت در سطح جهانی کاهش یافته است، از بیش از 400 دلار در مگاوات ساعت در اوایل دهه 2010 به حدود 49 دلار در مگاوات ساعت در سال 2022، که 88 درصد کاهش یافته است. LCOE انرژی باد تقریباً 60 درصد در مدت مشابه کاهش یافته است.

photo 2024 01 21 09 23 16 - به گفته EY، اکنون LCOE خورشیدی 29 درصد کمتر از هر گزینه سوخت فسیلی است.
موسسه EY پیش‌بینی می‌کند که انرژی خورشیدی و بادی به منبع برق پایه جهانی تبدیل خواهند شد. انتظار می‌رود تا سال 2030 دو انرژی تجدیدپذیر سنتی یعنی همان نیروگاه خورشیدی و نیروگاه بادی 38 درصد از ترکیب انرژی را تشکیل دهند و تا سال 2050 نیروگاه خورشیدی و نیروگاه بادی ممکن است 62 درصد از ترکیب انرژی را تامین کنند. به گفته EY، چین، اروپا و ایالات متحده باعث افزایش 53 درصدی تولید انرژی خورشیدی و بادی خواهند شد و بیش از 57 درصد از تولیدات خورشیدی و بادی جهان تا سال 2050 را تولید خواهند کرد
به گزارش آرا نیرو رونق جهانی در حوزه نیروگاه خورشیدی بیش از نیمی از این انرژی را تامین خواهد کرد، اما پذیرش در بازارها متفاوت خواهد بود. انرژی تولید شده توسط خورشید به بزرگترین منبع انرژی در کشورهایی مانند ایالات متحده و کشورهای اقیانوسیه و آسیای جنوبی تبدیل خواهد شد که توسط فناوری‌های پیرامون ماژول‌های فتوولتائیک (PV) خورشیدی که با سرعتی سریع پیشرفت می‌کنند، هدایت می‌شود.
موسسه EY گفت، با این حال، بدون رفع موانع اصلی پیشرفت، این نقاط عطف، دست یافتنی نخواهد شد. به ویژه در ایالات متحده، انبوهی از برنامه های کاربردی اتصال به شبکه باعث تاخیر، لغو و تحمیل هزینه های زیاد می شود. EY گفت که ایالات متحده حداقل 1350 گیگاوات ظرفیت بادی و خورشیدی دارد و 680 گیگاوات ذخیره سازی در انتظار اتصال است که برای دو برابر کردن برق کشور کافی است.
در یک نظرسنجی از بیش از 70,000 مصرف کننده جهانی، EY دریافت که تمایل به پذیرش نیروگاه خورشیدی خانگی، قوی است. حدود 62 درصد از پاسخ دهندگان در نظرسنجی گفتند که خریده اند یا در مورد خرید پنل های خورشیدی فکر می کنند، در حالی که 50 درصد در حال بررسی خرید هستند یا قبلاً سیستم ذخیره سازی باتری را خریداری کرده اند.
نویسنده: Ryan Kennedy

وستاس از توربین بادی جدید ساخته شده از فولاد کم انتشار رونمایی کرد

این شرکت با سازنده فولاد ArcelorMittal برای بالا بردن چرخه فولاد و کاهش انتشار آلاینده های مادام‌العمر برای محصولات آینده خود شریک شده است.
در تلاش برای کاهش انتشار کربن در طول عمر تولید توربین‌های بادی، سازنده توربین دانمارکی Vestas از جدیدترین پیشنهاد خود، توربین‌های ساخته شده از فولاد کم انتشار، رونمایی کرده است. این توربین فولادی کم انتشار در سال 2025 در پروژه باد فراساحلی بالتیک در سواحل لهستان به نمایش درخواهد آمد.

با توجه به کاهش انتشار کربن تا اواسط قرن، کشورها ابتکار عمل ساخت پروژه های انرژی بادی در مقیاس بزرگ را به عهده گرفته اند که می توانند شبانه روزی کار کنند. مناطق نزدیک به ساحل در حال بررسی گزینه‌هایی برای ساخت توربین های بادی بزرگتر در دریا برای بهره برداری از بادهای سریعتر هستند.
در حالی که این ابتکارات قابل ستایش است، کارشناسان همچنین خاطرنشان کرده اند که افزایش انرژی های تجدیدپذیر در سال های اخیر بدون تأثیرات زیست محیطی نیست. برای مثال، توربین‌های بادی با استفاده از فولاد، آهن، فایبرگلاس و پلاستیک ساخته می‌شوند که هر کدام فرآیندهای تولید انرژی بر و اثرات زیست محیطی قابل توجهی دارند.

برای کاهش تأثیر پذیرش در مقیاس بزرگ از این فناوری، سازندگان تجهیزات اصلی مانند Vestas به دنبال کاهش انتشار گازهای گلخانه ای در تولید خود هستند. توربین فولادی کم آلاینده نتیجه این تلاش‌هاست.

فولاد کم آلاینده چگونه ساخته می شود؟
وستاس با سازنده فولاد چندملیتی ArcelorMittal مستقر در لوکزامبورگ سیتی برای تهیه فولاد کم آلاینده همکاری کرد. فولاد کم انتشار با استفاده از ضایعات فولادی 100 درصد تولید می شود. در Industeel Charleroi در بلژیک، این سازنده فولاد می تواند ضایعات را در یک کوره الکتریکی که تنها با انرژی باد کار می کند ذوب کند.

سپس به فولاد مذاب اجازه داده می شود تا به صفحات فولادی خنک و سپس به صفحات سنگین برای ساخت برج های توربین تبدیل شوند. طبق بیانیه مطبوعاتی این شرکت، فولاد کم آلاینده در حال حاضر برای ساخت یک توربین بادی کامل در خشکی و البته تنها برای بخش بالایی برج های توربین بادی دریایی مناسب است.

photo 2024 01 20 16 45 14 - وستاس از توربین بادی جدید ساخته شده از فولاد کم انتشار رونمایی کرد

Source: Vestas

کاهش انتشار کربن حاصل شده است
فولاد و آهن تا 90 درصد از جرم مواد توربین را تشکیل می‌دهند که در حدود 50 درصد از کل انتشار چرخه حیات توربین را شامل می‌شوند. وستاس با استفاده از فولاد کم آلاینده قصد دارد این عدد را به میزان قابل توجهی کاهش دهد. طبق بیانیه مطبوعاتی، وستاس در نظر دارد با فولاد کم آلاینده در مقایسه با فولاد معمولی، به کاهش 66 درصدی شدت انتشار در هر کیلوگرم دست یابد.

به طور خاص، در برج‌های توربین دریایی، که تنها دو بخش بالای آن با فولاد کم آلاینده ساخته می‌شود، انتظار می‌رود کاهش انتشار 25 درصد باشد. برای توربین های خشکی، که در آن کل برج از فولاد upcycled ساخته شده است، کاهش CO2 به میزان 52 درصد خواهد بود.

دیتر دهورن، رئیس تدارکات جهانی در Vestas گفت: «پیدا کردن راه‌هایی برای کربن‌زدایی انتشار گازهای گلخانه‌ای تولید شده در طول استخراج مواد خام و پالایش فولاد برای ما و صنعت به طور کلی حیاتی است. وستاس مشارکت با ArcelorMittal و پذیرش فولاد کم آلاینده را به عنوان یک اهرم مهم در کاهش انتشار CO2 در صنعت بادی می بیند.

این محصول پس از مدتی در دسترس مشتریان وستاس قرار خواهد گرفت. در عوض، انتظار می‌رود این شرکت اولین دسته از توربین‌های فولادی کم انتشار خود را در سال آینده و زمانی که وستاس شروع به ساخت پروژه بادی فراساحلی بالتیک 1.2 گیگاواتی در سواحل لهستان می‌کند، راه‌اندازی کند.

سازنده تجهیزات، 76 توربین بادی V236 با ظرفیت 15 مگاواتی را برای این پروژه تامین و نصب خواهد کرد. از این برج های بالا، 52 توربین با استفاده از فولاد کم آلاینده ساخته خواهند شد.
منبع: interestingengineering