نوشته‌ها

راهکارهای شبکه هوشمند Smart Grid برای رفع ناترازی برق
شبکه‌های هوشمند (Smart Grids) مجموعه‌ای از فناوری‌ها و راه‌حل‌ها هستند که می‌توانند برای بهبود پایداری، انعطاف‌پذیری و راندمان شبکه‌های برق

مورد استفاده قرار گیرند. این شبکه‌ها می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند.

برخی از راهکارهای شبکه هوشمند برای رفع ناترازی برق عبارتند از:

1. مدیریت تقاضا که شامل موارد زیر می‌باشد؛

قیمت‌گذاری پویا: با تغییر قیمت برق در زمان‌های مختلف روز، می‌توان مصرف‌کنندگان را به مصرف در زمان‌های کم‌بار ترغیب کرد.

کنترل بار: با استفاده از فناوری‌های هوشمند، می‌توان مصرف برق را در زمان‌های اوج مصرف به طور خودکار کاهش داد.

پاسخگویی به تقاضا: با ارائه مشوق به مصرف‌کنندگان، می‌توان آنها را به کاهش مصرف برق در زمان‌های بحرانی تشویق کرد.

2. افزایش تولید برق؛

استفاده از منابع انرژی تجدیدپذیر: با استفاده از منابع انرژی تجدیدپذیر مانند نیروگاه خورشیدی و بادی می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد.
ذخیره‌سازی انرژی: با ذخیره‌سازی انرژی در زمان‌های تولید مازاد، می‌توان از آن در زمان‌های کمبود برق استفاده کرد.

3. ارتقای شبکه؛

استفاده از فناوری‌های دیجیتال: با استفاده از فناوری‌های دیجیتال مانند هوش مصنوعی و یادگیری ماشین می‌توان شبکه را به طور بهینه‌تر مدیریت کرد.

ایجاد شبکه‌های توزیع هوشمند: با ایجاد شبکه‌های توزیع هوشمند، می‌توان به طور موثرتری برق را به مصرف‌کنندگان رساند.

4. افزایش تعامل با مصرف‌کنندگان؛

ارائه اطلاعات به مصرف‌کنندگان: با ارائه اطلاعات به مصرف‌کنندگان در مورد مصرف برقشان، می‌توان آنها را به مصرف بهینه‌تر برق تشویق کرد.

توانمندسازی مصرف‌کنندگان: با ارائه ابزارهای لازم به مصرف‌کنندگان، می‌توان آنها را در مدیریت مصرف برق خود مشارکت داد.

مزایای استفاده از شبکه‌های هوشمند برای رفع ناترازی برق:

کاهش وابستگی به منابع انرژی فسیلی: با استفاده از شبکه‌های هوشمند می‌توان وابستگی به منابع انرژی فسیلی را کاهش داد و انتشار گازهای گلخانه‌ای را کاهش داد.

افزایش پایداری شبکه: شبکه‌های هوشمند می‌توانند پایداری شبکه را در برابر اختلالات و حوادث افزایش دهند.

کاهش هزینه‌ها: با استفاده از شبکه‌های هوشمند می‌توان هزینه‌های تولید و توزیع برق را کاهش داد.

چالش‌های استفاده از شبکه‌های هوشمند:

هزینه اولیه بالا: پیاده‌سازی شبکه‌های هوشمند نیازمند سرمایه‌گذاری اولیه بالا است.

امنیت سایبری: شبکه‌های هوشمند به دلیل استفاده از فناوری‌های دیجیتال، در معرض تهدیدات سایبری هستند.

نیاز به آموزش: برای استفاده از شبکه‌های هوشمند، نیاز به آموزش و ظرفیت‌سازی در بین مصرف‌کنندگان و اپراتورها وجود دارد.

نتیجه‌گیری:

شبکه‌های هوشمند می‌توانند نقش مهمی در رفع ناترازی برق ایفا کنند. با استفاده از این شبکه‌ها می‌توان پایداری، انعطاف‌پذیری و راندمان شبکه‌های

برق را افزایش داد و هزینه‌ها را کاهش داد. با وجود برخی چالش‌ها، مزایای استفاده از شبکه‌های هوشمند بسیار بیشتر از هزینه‌های آن است.

در مقالات آتی به جزئیات بیشتری از شبکه‌های هوشمند می‌پردازیم.

 

نویسنده: دپارتمان خبری آرا نیرو

منابع:
وب‌سایت‌ها:
• U.S. Department of Energy – Office of Electricity
• National Institute of Standards and Technology (NIST): (https://www.nist.gov/smartgrid)
• Smart Grid International
• Electric Power Research Institute (EPRI)
مجله‌ها:
• IEEE Transactions on Smart Grid: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
• IET Smart Grid
• Elsevier – Renewable and Sustainable Energy Reviews: https://www.sciencedirect.com/journal/renewable-and-sustainable-energy-reviews
کتاب‌ها:
• Smart Grid: Modernization of Electric Power Delivery, by James Momoh
• The Smart Grid: An Introduction, by Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, and Akihiko Yokoyama
• Power Systems: Modeling, Computation, and Applications, by Abhijit Chakrabarti and Sunita Misra
گزارش‌ها:
• The Smart Grid: An Overview of Opportunities and Challenges, by the U.S. Department of Energy
• Modernizing the Electric Grid: A Primer on Smart Grid Technologies and Their Benefits, by the Electric Power Research Institute
سازمان‌ها:
• International Smart Grid Action Network (ISGAN)
• Smart Grid European Technology Platform (SG-ETP)
•  Google Scholar

 

1 - بزرگ ترین پارک های خورشیدی دنیا

Source: DEWA

در صحرای خارج از دبی، یک پارک خورشیدی غول پیکر در حال افزایش است. طرح‌هایی برای احداث پانل‌های خورشیدی و آرایه‌های انرژی خورشیدی متمرکز با ظرفیت تجمعی 5000 مگاوات وجود دارد – بزرگترین پارک خورشیدی تک مکان در جهان.

2 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

پارک خورشیدی محمد بن راشد آل مکتوم، از طریق Google Earth مشاهده شده است. این پارک با یک آرایه فتوولتائیک 13 مگاواتی در سال 2013 شروع به کار کرد و به 200 مگاوات در فاز دو و 800 مگاوات در فاز سه (زمان تکمیل در سال 2020) اضافه کرد. اداره برق و آب دبی می گوید کل سرمایه گذاری برای پارک خورشیدی می تواند به 13.6 میلیارد دلار برسد.

3 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

بزرگترین پارک فتوولتائیک جهان در زمان نگارش این مقاله، Tengger در Zhongwei در شمال منطقه خودمختار Ningxia چین دارای ظرفیت گزارش شده 1547 مگاوات است. بر اساس گزارش موسسه اقتصاد انرژی و تحلیل مالی (IEEFA)، توسعه در سال 2012 آغاز شد و شامل 45 پروژه به هم پیوسته است.

4 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

کورنول با بیش از 4.5 میلیون پنل فتوولتائیک و ظرفیت 1000 مگاوات، برای مدتی بزرگترین نیروگاه خورشیدی عملیاتی در سال 2017 بود. هند با مأموریت ملی خورشیدی خود سرمایه گذاری زیادی در انرژی خورشیدی انجام می دهد. تا پایان سال 2018، بر اساس آمار وزارت انرژی های نو و تجدیدپذیر ظرفیت ملی روی شبکه به بیش از 26000 مگاوات رسیده است.

5 - بزرگ ترین پارک های خورشیدی دنیا

Source: Xiaolu Chu/Getty Images

مزرعه خورشیدی پاندا گرین انرژی که در ژوئن 2017 به شبکه متصل شد، با تصویرسازی پاندا که پس از آن روی نقشه به همین نام نامگذاری شده است. آرایه‌های خورشیدی شکل دو پاندا غول‌پیکر را تشکیل می‌دهند و این شرکت طی 25 سال می‌گوید این پارک 100 مگاواتی می‌تواند 3.2 میلیارد کیلووات ساعت انرژی تولید کند. البته سایت داتونگ تنها بخش کوچکی از سایت عظیم این شرکت است

6 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

نمای وسیع تری از کارخانه پاندا با امکانات دیگر، در جنوب شرقی داتونگ. پای دونده برق خورشیدی Datong دارای ظرفیت خروجی 1070 مگاوات گزارش شده است.

7 - بزرگ ترین پارک های خورشیدی دنیا

Source: Ethan Miller/Getty Images North America/Getty Images

ایوانپا که در صحرای موهاو واقع شده است، بزرگترین تاسیسات متمرکز انرژی خورشیدی در جهان بود که در سال 2014 افتتاح شد. سه برج 450 فوتی آن با مخازن آب پوشانده شده اند که توسط نور شدید خورشید منعکس شده می جوشند و می‌توانند بر اساس وزارت انرژی ایالات متحده، بخار کافی برای تولید 392 مگاوات برق را تولید کنند.

8 - بزرگ ترین پارک های خورشیدی دنیا

Source: Huawei FusionSolar

بنا به اعلام IEEFA، پارک خورشیدی Yanchi Ningxia که با دانش خورشیدی و فن‌آوری‌ هواوی ساخته شده است، ظرفیت 1000 مگاواتی دارد و بر اساس اعلام IEEFA، بزرگترین نیروگاه تک سایت فتوولتائیک در جهان بود.

9 - بزرگ ترین پارک های خورشیدی دنیا

Source: Oliver Weiken/picture alliance/Getty Images

پارک خورشیدی Infinity 50 در جنوب مصر که در مارس 2018 افتتاح شد، اولین ایستگاه از 32 ایستگاه گزارش شده است که پارک خورشیدی Benban را در بر می گیرد. مجموع ظرفیت بنبان پس از تکمیل دارای پیش بینی های متعدد است، از 1465 تا 1650 تا 1800 مگاوات.

10 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

نمای هوایی بنبان در دوره ساخت و ساز از طریق Google Earth. پیش از این در سال 2019 سایر مزارع خورشیدی در سایت 14 مایل مربعی تکمیل شدند، از جمله نیروگاه 186 مگاواتی توسط ACCIONA Energía و Enara Bahrain Spv Wll. شانزده نیروگاه با بودجه بانک بازسازی و توسعه اروپا با هدف کمک به احداث 750 مگاوات نیروگاه خورشیدی به بهره‌برداری رسیده است.

11 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

به گفته توسعه دهندگان آن Karnataka Solar Power Development Corporation Limited، پارک خورشیدی پاواگادا پس از تکمیل، 2000 مگاوات تولید خواهد کرد. این پارک به 40 بلوک تقسیم شده است که هر بلوک 50 مگاوات انرژی دارد و توسعه دهندگان ادعا می کنند که کل 2000 مگاوات تا ژوئن 2019 به شبکه متصل شده است.

12 - بزرگ ترین پارک های خورشیدی دنیا

Source: NASA Earth Observatory

پارک خورشیدی سد Longyangxia در استان چینگهای که توسط ماهواره Landsat 8 ناسا در ژانویه 2017 ضبط شد، ظرفیت 850 مگاوات دارد. در آن زمان این سایت دارای 4 میلیون پنل خورشیدی بود که بخشی از تلاش گسترده‌ چین برای تولید 110 گیگاوات انرژی خورشیدی تا سال 2020 بود.

13 - بزرگ ترین پارک های خورشیدی دنیا

Source: ALFREDO ESTRELLA/AFP/AFP/Getty Images

با 2.5 میلیون پنل خورشیدی، پارک Enel Green Power در نزدیکی شهر Villanueva دارای ظرفیت 754 مگاوات است. این نیروگاه در مارس 2018 افتتاح شد، زمانی که اولین بخش از سایت به بهره برداری رسید، توسعه دهنده ادعا کرد که بیش از 1 میلیون تن دی اکسید کربن در سال را جبران می کند.

14 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

این پروژه 7180 هکتاری که با نام پارک خورشیدی NP Kunta Ultra Mega نیز شناخته می شود، پس از تکمیل ظرفیت 1500 مگاوات خواهد داشت. اخبار محلی از آغاز تولید برق در ماه می 2016 خبر دادند.

15 - بزرگ ترین پارک های خورشیدی دنیا

Source: Masen

نیروگاه خورشیدی Noor-Ouarzazate در مراکش بزرگترین سایت متمرکز انرژی خورشیدی در جهان است که برق کافی برای تامین برق شهری به اندازه پراگ تولید می کند. با وسعت 3000 هکتار — معادل 3500 زمین فوتبال — خروجی 580 مگاواتی آن سیاره را از بیش از 760,000 تن انتشار کربن در سال نجات می دهد.

16 - بزرگ ترین پارک های خورشیدی دنیا

Source: FADEL SENNA/AFP/AFP/Getty Images

تصویر نور-اورزازات در سال 2016 قبل از برپایی برج متمرکز انرژی خورشیدی. هدف بلندپروازانه انرژی سبز مراکش این است که تا سال 2020
به میزان 42 درصد از انرژی خود را از منابع تجدیدپذیر تولید کند – تا فوریه 2019، این کشور قبلاً 35 درصد از انرژی های تجدیدپذیر را تولید می‌کرد.

17 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

نیروگاه 750 مگاواتی Rewa که توسط دولت ایالت مادیا پرادش در سال 2016 طراحی شد، با کمک وام بانک جهانی ساخته شد. در جولای 2018 شروع به تامین برق کرد.

18 - بزرگ ترین پارک های خورشیدی دنیا

Source: Woody Welch/Sunpower

پروژه های ستاره خورشیدی در شهرستان کرن در سال 2015 تکمیل شد و شامل 1.7 میلیون ماژول فتوولتائیک با ظرفیت 586 مگاوات – انرژی کافی برای تامین انرژی 255,000 خانوار با اندازه متوسط در کالیفرنیا، بر اساس گزارش BHE Renewables است.

19 - بزرگ ترین پارک های خورشیدی دنیا

Source: Google Earth

مزرعه ماهی خورشیدی Hangzhou Fengling که در بالای یک ماهیگیری در Cixi، چین ساخته شده است، در سال 2017 با هزینه گزارش شده 262 میلیون دلار تکمیل شد. این مزرعه با وسعت 300 هکتار ظرفیت 200 مگاوات دارد.

20 - بزرگ ترین پارک های خورشیدی دنیا

Source: James MacDonald/Bloomberg/Getty Images

این پارک فتوولتائیک 400 میلیون دلاری که در سال 2017 به تصویر کشیده شده است، دارای 1.3 میلیون پنل خورشیدی و ظرفیت 80 مگاوات است — که در زمان تکمیل آن در سال 2010 یکی از بزرگترین پارک‌های جهان است. با 5 کلنی و تعداد حدود 400,000 زنبور عسل که در سال 2018 معرفی شدند.

21 - بزرگ ترین پارک های خورشیدی دنیا

Source: Ethan Miller/Getty Images North America/Getty Images

ابتکار خورشیدی پایگاه نیروی هوایی نلیس ترکیبی از ستاره خورشیدی 13.2 مگاواتی Nellis و ایستگاه تولید آرایه دوم خورشیدی 15 مگاواتی است که به پایگاه اجازه می‌دهد در روزهای آفتابی مستقل از انرژی شبکه سراسری باشد. هشت ربات (تصویر) با استفاده از 75 درصد آب کمتر نسبت به روش‌های دستی پنل‌های خورشیدی را تمیز می‌کنند – و می‌توانند تمام 43000 را پنل را در دو روز تمیز کنند.

22 - بزرگ ترین پارک های خورشیدی دنیا

Source: DEWA

رندر دیجیتالی از برج خورشیدی متمرکز که برای پارک خورشیدی محمد بن راشد آل مکتوم در دبی برنامه ریزی شده است.

پارک خورشیدی با رکوردشکنی 13.6 میلیارد دلاری از صحرای دبی برخاست
در زیر آفتاب صحرای عربستان، یک تلاش ساختمانی عظیم در حال پیشرفت است. پارک خورشیدی محمد بن راشد آل مکتوم که در اعماق صحرای دبی واقع شده است – که به نام حاکم امارات و معاون رئیس جمهور و نخست وزیر امارات متحده عربی نامگذاری شده است – همچنان در حال رشد است و به تازگی یک نقطه عطف دیگر را پشت سر گذاشته است.
در دوازدهمین سال توسعه، تصاویر ماهواره‌ای حس مقیاس را به ما می‌دهند: مایل‌ها فتوولتائیک که در امتداد خطوط منظم شرقی-غربی چیده شده‌اند، یکنواختی آنها در تضاد با چین‌ و چروک‌های شن‌های اطراف نیروگاه انرژی بخش است. پس از اتمام، اداره انرژی و آب دبی (DEWA) به سی ان ان گفت که سرمایه گذاری 50 میلیارد درهم (13.6 میلیارد دلار) می تواند انرژی 1.3 میلیون خانه را تامین کند و انتشار کربن را تا 6.5 میلیون تن در سال کاهش دهد.
ساخت این پارک خورشیدی اولین بار در سال 2012 اعلام شد و با تاریخ اتمام برنامه ریزی شده 2030، ساخت پارک خورشیدی 5000 مگاواتی سه برابر برج خلیفه زمان می برد. فازهای یک و دو که در حال حاضر تکمیل شده اند، شامل 2.3 میلیون پنل فتوولتائیک با ظرفیت 213 مگاوات است. به گفته DEWA، فاز سه، بیش از 3 میلیون فتوولتائیک و 800 مگاوات دیگر اضافه کرده است و در سال 2020 تکمیل شده است.
اما پس از سال‌ها گسترش در کف صحرا، پروژه خورشیدی اکنون با فاز شش در حال افزایش است. در سپتامبر 2023 فاز پنجم 900 مگاوات پارک اعلام شد. این شرکت از ترکیبی از فن‌آوری‌های PV و CSP، از جمله بزرگترین نیروگاه CSP تک برجی جهان، استفاده خواهد کرد.
از آینه هایی به نام هلیواستات برای تمرکز نور خورشید در بالای برج استفاده می کند تا جریان نمک های مذاب را گرم کند. گرما برای نیرو دادن به توربین های بخار و تولید برق استفاده می شود.
کریستوس مارکیدس، استاد فناوری‌های انرژی پاک در امپریال کالج لندن، به سی‌ان‌ان گفت: «به طور معمول، CSP بازدهی کمی بالاتر از فتوولتائیک‌ها (PVs) دارد.  CSP انرژی را به عنوان گرما به جای باتری ذخیره می‌کند.  او توضیح داد: ذخیره انرژی حرارتی چیزی حدود 10 برابر ارزان تر از ذخیره انرژی الکتریکی است که به این فناوری مزیتی خاص می بخشد.
عملاً به این معنی است که CSP می تواند حتی بدون خورشید و تا شب نیز به تولید برق ادامه دهد. DEWA گفت: برج دبی می تواند 15 ساعت گرما را ذخیره کند و می تواند 24 ساعت شبانه روز برق را تامین کند. DEWA اضافه کرد که برج CSP پس از تکمیل در ارتفاع 260 متری (853 فوت) قرار خواهد گرفت و توسط 70,000 هلیواستات_ دستگاهی حاوی یک آینه متحرک که برای انعکاس نور خورشید در جهت ثابت استفاده می شود_ احاطه خواهد شد.
علاوه بر برج 100 مگاواتی CSP، فاز چهار نیز 850 مگاوات برق دیگر را از طریق صفحه‌های سهموی (شکل دیگری از CSP) و فتوولتائیک تامین خواهد کرد. از روز، 3 فوریه 2024، این پارک دارای ظرفیت عملیاتی چشمگیر 3100 مگاوات است که آن را به بزرگترین پارک خورشیدی تک سایتی در جهان بر اساس مدل تولید کننده مستقل برق (IPP) تبدیل می‌کند.
مرکز نوآوری پارک همچنان مرکز تحقیقات و توسعه در فناوری های انرژی خورشیدی است.  پروژه های اخیر شامل آزمایش سیستم های خنک کننده پیشرفته برای پنل های خورشیدی و کاوش در تولید هیدروژن با استفاده از انرژی خورشیدی است.
استراتژی انرژی پاک دبی 2050 در تلاش است تا 25 درصد از انرژی خروجی خود را از منابع پاک تا سال 2030 و 75 درصد تا سال 2050 تولید کند که معادل ظرفیت 42000 مگاوات است.
منابع:
CNN Max Burnell, CNN
وب سایت پارک خورشیدی محمد بن راشد آل مکتوم:
http://www.mbrsic.ae/en/about/mohammed-bin-rashid-al-maktoum-solar-park/
وب سایت اداره برق و آب دبی (DEWA):
http://www.dewa.gov.ae/en/
مطالعه موردی
C40 Cities: www.mbrsic.ae/en/about/mohammed-bin-rashid-al-maktoum-solar-park/

پنل های خورشیدی مونو(تک) کریستال در مقابل پلی(چند) کریستال: تفاوت چیست؟

به گزارش آرا نیرو اکثر پنل های خورشیدی مسکونی این روزها از نوع مونو کریستال مشکی هستند.

در یک نگاه، همه صفحات خورشیدی ممکن است شبیه به هم یا حداقل بسیار مشابه به نظر برسند. با دقت نگاه کنید و متوجه تفاوت های ظریف، یعنی رنگ سلول های خورشیدی خواهید شد. این تفاوت ها هم از نظر هزینه و هم از نظر میزان برق تولیدی می تواند معنی زیادی داشته باشد.

انواع مختلفی از پنل‌های خورشیدی در بازار موجود است، از جمله پنل‌های مونو کریستال، پلی کریستال و لایه نازک، که هر کدام ویژگی‌های عملکردی و قیمت‌های متفاوتی دارند.

انواع مختلف پنل ها می توانند تعیین کنند که چقدر باید پرداخت کنید و به چه تعداد پنل نیاز دارید.

آیا پنل های خورشیدی می توانند در هزینه شما صرفه جویی کنند؟

به تاثیر انرژی خورشیدی که می تواند بر خانه شما بگذارد علاقه دارید؟ برخی از اطلاعات اولیه را به کارشناس های آرا نیرو ارائه دهید، و ما فوراً یک تخمین رایگان از صرفه جویی در انرژی شما ارائه خواهیم کرد.
در اینجا آنچه باید در مورد انواع اصلی پنل های خورشیدی بدانید، آورده شده است.

تعریف پنل های خورشیدی مونو کریستال و پلی کریستال
تفاوت بین دو نوع اصلی پنل های خورشیدی که امروزه نصب می شوند، مونو کریستال و پلی کریستال، با نحوه ساخت آنها شروع می شود، تفاوتی که بر عملکرد آنها، مدت زمان ماندگاری و ظاهر آنها در سقف شما تأثیر می گذارد. Optivolt، یک شرکت فناوری خورشیدی مستقر در سیلیکون ولی گفت که پنل های مونو کریستال معمولا عملکرد بهتری دارند اما کمی هزینه بیشتری دارند.
اگر بازار خورشیدی یک مسابقه بود، پنل های مونوکریستال برنده می شدند. طبق گزارشی که در سپتامبر 2022 توسط آزمایشگاه ملی لارنس برکلی منتشر شد، حدود 90 درصد از صفحات خورشیدی نصب شده در سال 2021 مونو کریستال بودند.

اگر مجبور به انتخاب بین پنل های خورشیدی هستید، احتمالاً بین گزینه های مونوکریستال انتخاب خواهید کرد. صرف نظر از اینکه از بین پنل‌های مونو کریستال انتخاب می‌کنید یا گزینه‌های چند بلوری، باید اندازه پنل‌ها را نسبت به فضای موجود، ضمانت‌های آن‌ها، بودجه و ظاهر آن‌ها در نظر بگیرید.
پنل های خورشیدی مونوکریستال
پنل های مونوکریستال از یک شمش سیلیکونی ساخته می شوند. برای ایجاد شمش، میله ای از سیلیکون کریستالی خالص به نام کریستال دانه در سیلیکون مذاب قرار می گیرد. سپس به آرامی کشیده می شود و به سمت بالا می چرخد ​​و به یک شمش سیلیکونی تبدیل می شود. شمش به صورت ویفرهای نازک بریده می شود که سطح آن زبر شده است تا بتواند نور خورشید بیشتری را شکست دهد. سپس یک لایه فسفر به هر ویفر اضافه می شود. برای ساخت هر پنل خورشیدی بین 32 تا 96 ویفر سیلیکونی خالص نیاز است. هر چه تعداد سلول های سیلیکونی در هر پنل بیشتر باشد، انرژی خروجی بالاتری خواهد داشت.
مدل‌های مونوکریستال کارآمدترین پنل‌های خورشیدی برای تأسیسات مسکونی هستند (به‌طور متوسط ​​بازده 17 تا 22 درصد) اما کمی گران‌تر از نمونه‌های پلی‌کریستالی خود هستند (حدود 1 تا 1.5 سنت دلار به ازای هر وات قبل از نصب). آنها می توانند ظاهری کاملا مشکی داشته باشند که برخی افراد آن را ترجیح می دهند و معمولاً 25 سال ضمانت دارند، اگرچه عمر مفید آنها می تواند بسیار طولانی تر باشد.

photo 2024 01 31 11 09 43 - پنل های خورشیدی مونو(تک) کریستال در مقابل پلی(چند) کریستال: تفاوت چیست؟

پنل های خورشیدی پلی کریستالی
پنل های خورشیدی پلی کریستالی گاهی اوقات پنل‌های خورشیدی چند کریستالی یا چند بلوری نامیده می شوند. آنها همچنین از سیلیکون ساخته شده اند، اما به جای اینکه از یک ویفر ایجاد شوند، از چند قطعه سیلیکون ساخته شده اند. سیلیکون ذوب می شود و سپس به صورت قطعاتی خنک می شود که قبل از برش برای پنل با هم قالب گیری می شوند. فرآیند تکمیل همانند پنل های مونوکریستالی است.
آنها کمی ارزان تر هستند ( 1 تا 1.5 سنت دلار در هر وات قبل از نصب) و کارایی کمتری دارند (به طور متوسط ​​15٪ تا 17٪). آنها همچنین در گرما کمی ضعیف تر عمل می کنند اما هنوز عمر مفیدی دارند که بیش از 20 سال است.

پنل های خورشیدی مونوکریستال در مقابل پلی کریستال
در اینجا به مقایسه دو نوع پنل خورشیدی رایج می‌پردازیم:

ظاهر
زیبایی در چشم بیننده است، اما پنل های مونوکریستال ظاهر تیره تری دارند که با اکثر سقف ها بهتر ترکیب می شود. پنل های پلی کریستالی آبی به نظر می رسند و کمی بیشتر خودنمایی می کنند. در شکل سلول‌های واقعی تفاوت‌هایی وجود دارد، اما احتمالاً آن‌ها به اندازه رنگ چشم را جلب نمی‌کنند.
برنده: مونو کریستال

بهره وری
کارایی پنل، میزان نور خورشید را که یک پنل خورشیدی به برق تبدیل می‌کند اندازه‌گیری می‌کند. هر چه این عدد بیشتر باشد، سیستم کارآمدتر است. پنل‌های مونوکریستال دارای محدوده بازدهی بین 17% تا 22% می باشند در حالی که محدوده کارایی پنل های خورشیدی پلی کریستال از 15% تا 17% می‌باشد.
برنده: پنل های خورشیدی مونو کریستال

ضریب دما
ضریب دما معیاری است که نشان می دهد یک پنل خورشیدی برای هر درجه سانتیگراد بالای 25 (77 درجه فارنهایت) چقدر کارایی کمتری دارد. محبوب‌ترین مدل های مونو کریستال دارای ضرایب دمایی هستند که از -.26٪ تا -.35٪ متغیر است. برای پنل های خورشیدی پلی کریستال، نرخ کمی بدتر است.
برنده: پنل های خورشیدی مونو کریستال

طول عمر
میزان الکتریسیته تولید شده توسط پنل های خورشیدی هر سال کاهش می یابد. این بر طول عمر پنل ها تأثیر می گذارد. برای پنل های خورشیدی مونوکریستال، احتمالاً پس از 25 سال، حدود 85 درصد از خروجی اولیه را خواهید داشت، یعنی مدت زمان یک گارانتی معمولی. بسیاری از سیستم ها می‌توانند حتی بیشتر عمر کنند. تخریب پنل های خورشیدی پلی کریستال اندکی بدتر است که منجر به کاهش شدیدتر و طول عمر کوتاه تر می شود.
برنده: پنل های خورشیدی مونو کریستال

هزینه
هزینه خرید و نصب پنل‌های خورشیدی به تعداد پنل‌هایی که نیاز دارید، میانگین مصرف انرژی، خروجی پنل‌های خورشیدی و میزان نور خورشید در محل خانه‌تان بستگی دارد.

هزینه متوسط ​​نصب خورشیدی بین دو تا سه میلیون تومان در هر کیلووات بسته به محل شما است. برای اولین بار پس از مدت ها، هزینه پنل های خورشیدی در نیمه اول سال 2023 به دلیل تورم و مشکلات زنجیره تامین طولانی افزایش یافت. و البته در نیمه سال دوم کاهش قابل توجهی داشت. علیرغم نوسانات، پنل های خورشیدی پلی کریستالی همچنان ارزان تر به فروش می‌رود، اگرچه احتمالاً در طول عمر پنل های خورشیدی پلی کریستال خود صرفه جویی کمتری خواهید کرد.
برنده: پنل های خورشیدی پلی کریستال

بهترین کاربردها برای پنل های خورشیدی مونوکریستال در مقابل پلی کریستال
پنل های مونوکریستال به دلیل کارایی بالاتر و ظاهر مشکی براق و یکنواخت شناخته شده اند. به این ترتیب، صاحبان خانه ها تمایل دارند از آنها حمایت کنند زیرا کمی زیباتر هستند. با توجه به راندمان برتر آنها، آنها می توانند برق بیشتری را از یک منطقه کوچکتر تولید کنند، و زمانی که اندازه سقف شما کوچکتر است، آنها را به یک انتخاب عالی تبدیل میکند.

علاوه بر این، بازده برق بالاتر پنل‌های مونو کریستال به این معنی است که پول قابل توجهی در قبوض برق خود صرفه‌جویی می‌کنید و در طول زمان بازدهی بیشتری از سرمایه‌گذاری خود دریافت می‌کنید، که احتمالاً بخشی از این دلیل است که آنها معمولاً در برنامه‌های مسکونی نصب می‌شوند.

از سوی دیگر، پنل های خورشیدی پلی کریستال گزینه مقرون به صرفه تری برای مشتریان با بودجه کمتر هستند. آنها به بهترین وجه در ساختمان های تجاری با اندازه سقف بزرگ استفاده می شوند.

photo 2024 01 31 11 09 49 - پنل های خورشیدی مونو(تک) کریستال در مقابل پلی(چند) کریستال: تفاوت چیست؟

چگونه در پنل های خورشیدی صرفه جویی کنیم؟
به گزارش آرا نیرو چندین روش خلاقانه برای صرفه جویی در هزینه سرمایه گذاری در پنل خورشیدی شما وجود دارد. صاحبان خانه می توانند از اعتبارات مالیاتی، کمک های بلاعوض یا سایر مشوق های محلی استفاده کنند که می تواند هزینه خالص سیستم خورشیدی را بدون توجه به نوع پنل خورشیدی انتخاب شده به میزان قابل توجهی کاهش دهد.
هر سرمایه گذاری در یک سیستم پنل خورشیدی مستلزم تعادل ظریف بین هزینه های اولیه، پس انداز طولانی مدت و موقعیت منحصر به فرد مشتری است. پنل های پلی کریستال مقرون به صرفه تر از پنل های مونو کریستال هستند، اما شما باید با خروجی برق کمتر آنها مبارزه کنید.
انواع دیگر پنل های خورشیدی
پنل های خورشیدی لایه نازک سومین نوع از پنل های خورشیدی محبوب هستند. آنها عمدتاً در مزارع خورشیدی استفاده می شوند و به ندرت برای مقاصد مسکونی به دلیل نسبت راندمان پایین آنها از 10٪ تا 13٪ استفاده می شود. آنها برای تولید همان مقدار الکتریسیته که پنل های خورشیدی مونوکریستال و پلی کریستال دارند، به سطح بزرگتری نیاز دارند. طول عمر آنها معمولاً بین 10 تا 20 سال است.

پنل های لایه نازک علیرغم راندمان نسبتا کم و نیاز به فضای بیشتر، بهترین ضریب دمایی را دارند که آنها را برای استفاده در مکان های با دمای بالا با آب و هوای گرم تر عالی می کند، مثل مناطق گرمسیری ایران همچون اهواز. قیمت صفحات خورشیدی لایه نازک بین 12 تا 15 سنت دلار به ازای هر وات متغیر است.

نتیجه
هنگام انتخاب بین پنل های خورشیدی مونوکریستال و پلی کریستال، درک تفاوت های کلیدی هر دو نوع پنل خورشیدی و اینکه چگونه این تفاوت ها ممکن است بر عملکرد کلی سیستم تأثیر بگذارد، ضروری است. پنل‌های خورشیدی مونوکریستالی برای مصارف مسکونی مناسب‌تر هستند و به دلیل بهره‌وری بالاتر، صرفه‌جویی بیشتری را در یک دوره طولانی ارائه می‌کنند. نکته منفی این است که هزینه بیشتری دارند.

از طرف دیگر، پنل های پلی کریستال کمی ارزان تر از پنل های مونو کریستال هستند اما کارایی کمتری دارند. اگر با یک شرکت خورشیدی کار می کنید، احتمالاً پنل‌های خورشیدی مونوکریستال دریافت خواهید کرد، زیرا آنها بسیار رایج تر هستند. در چند مورد، پنل های پلی کریستالی ممکن است منطقی باشد، اگرچه آنها در حال حاضر سهم بسیار کوچکتری از پنل های بازار را در اختیار دارند.

 

جزایر غول پیکر انرژی هیدروژنی سبز برای میزبانی 100 گیگاوات باد فراساحلی

 

به گزارش آرا نیرو انتظار می رود صنعت بادی فراساحلی یا نیروگاه بادی با احداث توربین ها در آب‌های اقیانوسی در طی 25 سال آینده و تا سال 2050 به 500 گیگاوات برسد. در مورد اینکه این همه گیگاوات به کجا خواهند رفت، این یک سوال باز است. تاسیسات و خطوط انتقال جدید خشکی باید تمام آن نیرو را جذب کنند و آن را در جایی به کسی بسپارند، و این به معنای یک نبرد کاملا جدید بر سر استفاده از زمین است. یا نه، بر حسب مورد یک سرمایه گذاری جدید با یک پیشنهاد بلندپروازانه برای باز کردن مسیر رو به جلو با شبکه ای از 10 کارخانه هیدروژن سبز فراساحلی پدیدار شده است.

 

نامه عاشقانه هیدروژن سبز از CIP به صنعت جهانی باد فراساحلی

سرمایه گذاری مورد بحث، یک تجارت جدید به نام جزایر انرژی کپنهاگ است. سرمایه‌گذار اصلی Copenhagen Infrastructure Partners است. آنها سابقه حضور در جایی را دارند که هیچ توسعه‌دهنده انرژی‌های تجدیدپذیر قبلاً آنجا نرفته است، یکی از نمونه‌های اخیر اولین مزرعه بادی فراساحلی استونی است که در دریای بالتیک واقع شده است.

و اما CIP پیش بینی می کند که پروژه استونیایی 1 تا 1.5 گیگاوات وزن داشته باشد. این برای اولین مزرعه بادی فراساحلی بسیار چشمگیر است، به ویژه با توجه به اینکه بسیاری از پروژه های بادی فراساحلی هنوز خود را بر حسب مگاوات اندازه گیری می کنند. با این حال، این هنوز یک سیب زمینی کوچک در مقایسه با موجودی یک فروشگاه است.

سرمایه‌گذاری جدید جزایر انرژی کپنهاگ، CIP را با سرمایه‌گذارانی از اروپا و آمریکای شمالی با هدف ساخت 10 قطب انرژی تجدیدپذیر فراساحلی، هر یک با ظرفیت حدود 10 گیگاوات برای مجموع 100 گیگاوات، پیوند می‌دهد.

 

این مکان‌ها هنوز مشخص نشده‌اند، اما شرکا در حال حاضر به مکان‌هایی در دریای شمال و دریای بالتیک که به سرعت در حال توسعه برای انرژی بادی هستند، چشم دوخته‌اند. سایت های جنوب شرق آسیا نیز در این بازی هستند.

چرا یک جزیره؟

همانطور که جزایر انرژی کپنهاگ توضیح می دهد، نیروی محرکه این سرمایه گذاری توسعه و رفتن به سمت مقیاس بزرگتر است.

آنها انتظار دارند که مزارع بادی چند گیگاواتی فراساحلی در ده سال آینده اجرایی باشند و صنعت بادی به سیستم های کارآمدتری برای انتقال این انرژی از اقیانوس به ساحل نیاز خواهد داشت.

 

همچنين CEI توضیح می دهد: “اقتصادهای بزرگ برنامه هایی برای استقرار بیش از 500 گیگاوات ظرفیت تولید انرژی بادی دریایی تا سال 2050 دارند.” دستیابی به این هدف مستلزم استقرار بیش از 10 برابری توربین های باد فراساحلی نصب شده در 35 سال گذشته است.

 

صنعت بادی فراساحلی مطمئناً نشان داده است که می‌تواند افزایش یابد، اما کاری که نمی‌تواند انجام دهد این است که گلوگاه انتقال برق را برطرف کند. اینجاست که مفهوم جزایر انرژی مطرح می شود.

 

به گزارش آرا نیرو CEI توضیح می دهد: «امروزه، دغدغه کمتری در مورد ساخت مزرعه بادی فراساحلی وجود دارد، بیشترین دغدغه چگونگی ادغام و اتصال انرژی بادی دریایی تولید شده در مقیاس بزرگ به سیستم‌های برق جهانی است.»

و، اینجاست که هیدروژن سبز وارد می شود. هیدروژن سبز که به عنوان انرژی به گاز (Power-to-gas ) نیز شناخته می‌شود، گاز فسیلی را از زنجیره تأمين هیدروژن خارج می کند. هیدروژن سبز از آب توسط الکترولیز تولید می شود. ایده این است که از نیروی باد (یا هر منبع تجدید پذیر دیگری مثل نیروگاه خورشیدی) برای راه اندازی تجهیزات الکترولیز استفاده شود، در نتیجه گازی پرکاربرد و بدون آلودگی فسیلی برای سوخت، سیستم های غذایی، داروسازی، متالورژی، پالایش و سایر فرآیندهای صنعتی در اقتصاد جهانی فراهم می شود.

برق به گاز یک حوزه نسبتا جدید است اما به سرعت در حال رشد است. در سال 2020، اتصال بادی فراساحلی شروع به شکل‌گیری کرد و سهامداران انرژی نیز شروع به کشف ایده مکان‌یابی تأسیسات هیدروژن سبز در مزارع بادی فراساحلی کردند.

در مورد چرایی، از یک نظر نسبتاً ساده است. مزارع بادی معمولاً در شب زمانی که تقاضا کم است بیش از حد تولید می‌کنند و اپراتورهای شبکه را زحمت می‌دهد. اگر یک کاربر صنعتی، شب‌ها برای به کار گرفتن آن کیلووات‌های تمیز کار کند، مشکل کاهش تقاضا را حل می‌کند و هیدروژن سبز برای این کار مناسب است. تولیدکننده هیدروژن سبز نیز از نرخ پایین برق در خارج از پیک بهره می برد.

بیشتر از جزایر انرژی، هیدروژن سبز می تواند به عنوان یک حامل انرژی عمل کند که انرژی باد فراساحلی را با طیف وسیع تری از فرصت ها برای ارتباط با بازارهای انرژی محلی و جهانی فراهم می‌کند. برخلاف برق شبکه که برای انتقال نیاز به کابل دارد، هیدروژن را می توان از مزارع بادی دور از ساحل با خط لوله یا کشتی به ساحل منتقل کرد.

هیدروژن سبز همچنین می‌تواند به عنوان یک ذخیره‌ساز برای تولید برق از منابع تجدیدپذیر در صورت نیاز، در توربین گاز یا پیل سوختی، در صورت لزوم عمل کند.

نه، واقعاً چرا یک جزیره؟

البته، تأسیسات هیدروژن سبز را می توان در خشکی قرار داد، اما CEI دلیل خوبی برای ساخت آنها در فراساحل است. یافتن مکان‌های مناسب در خشکی به طور فزاینده‌ای دشوار می‌شود و پس از آن دوباره آن مسئله آزاردهنده انتقال انرژی وجود دارد.

همانطور که این شرکت آنها را توصیف می کند، مزایای پارک کردن تاسیسات هیدروژن سبز در مزارع بادی فراساحلی سبب “کاهش قابل توجه هزینه های انتقال نیرو” می‌شود، تولید هیدروژن سبز دریایی در مقیاس بزرگ و هم افزایی مرتبط بین تولید نیرو و هیدروژن است.

 

به گزارش آرا نیرو CEI تخمین می زند که استفاده از خط لوله هیدروژن برای انتقال انرژی از مزارع بادی به ساحل 80 درصد کمتر از هزینه کابل جریان مستقیم ولتاژ بالا است. چقدر ارزون!

آنها همچنین پیش‌بینی می‌کنند که استقرار فناوری‌های اثبات‌شده در مقیاس بزرگ به کاهش هزینه‌ها برای جزایر انرژی آنها کمک می‌کند، همراه با تکیه بر زنجیره‌های تأمین محلی که از قبل برای پروژه‌های زیرساختی فراساحلی راه‌اندازی شده‌اند.

 

البته CEI توضیح می‌دهد: «جزایر انرژی، فناوری‌های موجود و اثبات‌شده را به روشی جدید و نوآورانه و در مقیاس بسیار بزرگ‌تر ترکیب می‌کنند، که امکان ساخت مقرون‌به‌صرفه و یکپارچه‌سازی باد فراساحلی را فراهم می‌کند.

 

به هر حال، برق به گاز فقط یک شروع است. آخرین مورد Power-to-X است که به سوخت های الکتریکی، آمونیاک و سایر محصولاتی که می توانند با هیدروژن سبز ساخته شوند اشاره دارد.

در مورد آب چطور؟

در مورد اینکه چگونه یک سیستم الکترولیز می تواند روی آب دریا کار کند، این یک سوال خوب است. الکترولیزهای معمولی غشاهای ظریفی را مستقر می‌کنند که می توانند به سرعت توسط ناخالصی های موجود در آب آلوده شوند.

 

از آنجایی که CEI قصد دارد از فناوری های اثبات شده استفاده کند، محتمل ترین راه حل تجهیز جزایر انرژی به سیستم های نمک زدایی است. اگر گران به نظر میرسد، البته که گران است، اما کار برای کاهش هزینه سیستم‌های پیش تصفیه آب در حال انجام است.

 

راه دیگر بهبود خود الکترولیزها است. این بیشتر یک راه حل بلند مدت است، اما در حال وقوع است.

 

به گزارش آرا نیرو بازار جهانی هیدروژن سبز، هنوز پیچیده است. در اوایل این ماه، یک تیم تحقیقاتی از گروه اقتصاد صنعتی و مدیریت فناوری در دانشگاه علم و صنعت نروژ، مطالعه‌ای را درباره فعالیت هیدروژن سبز و بادهای فراساحلی در دریای شمال طی 35 سال آینده منتشر کرد.

 

تمرکز ویژه آنها بر توسعه هاب های انتقال فراساحلی بود، با تولید هیدروژن سبز در ساحل، نه در فراساحل که استفاده اولیه برای تولید برق در خشکی خواهد بود.

 

 این می تواند به دلیل هزینه نسبتاً بالای هیدروژن سبز در مقایسه با گاز فسیلی، مشکلاتی را ایجاد کند.  با این وجود، محققان پیش بینی می کنند که استقرار انعطاف‌پذیر هیدروژن می تواند به کاهش تأثیر کلی بر هزینه ها کمک کند.

اگر محاسبات کاهش هزینه CEI محقق شود، مفهوم جزایر انرژی برای تولید هیدروژن در دریا نیز می تواند به اثر کاهش دهنده کمک کند.

 

کمک دیگر می تواند از روند چند منظوره مزرعه بادی فراساحلی باشد، که موضوع داغ گفتگو در کنفرانس انرژی اقیانوس 2023 در لاهه بود، با آرایه های خورشیدی شناور و دستگاه های انرژی موجی که به طور بالقوه در بازی هستند.

 

منبع: CleanTech

 

آبیاری با آب های زیرزمینی از طریق پمپ های خورشیدی:

خطرات و فرصت ها

 

انرژی خورشیدی این امکان را فراهم کرده است که در مناطق خشک و خارج از شبکه برق سراسری، با حفر چاه های عمیق بتوان آب برداشت کرد.

آبیاری با آب های زیرزمینی از طریق پمپ های خورشیدی به طور تصاعدی در کشورهای با درآمد کم و متوسط ​​(LMIC) در حال گسترش است و فرصت ها و خطراتی را ایجاد می کند. در جنوب آسیا، بیش از 500,000 پمپ کوچک مستقل از شبکه قبلاً نصب شده است.

 

photo 2024 01 23 07 39 49 - خطرات و فرصت های پمپ های آب خورشیدی

A canal in India with diesel-powered pumps. © Hamish John Appleby / IWMI via Flickr

 

در جنوب صحرای آفریقا، پمپ های آبی خورشیدی برای گسترش تولید مواد غذایی و کاهش فقر در حال افزایش هستند. خوش‌بینی در مورد آبیاری با انرژی خورشیدی وجود دارد که به LMICها کمک می‌کند تا به تعهدات خود در کاهش تغییرات آب و هوایی عمل کنند، اما بینش‌های علوم رفتاری و شواهد اولیه نشان می‌دهند که محاسبه چنین کاهش‌هایی پیچیده است و احتمالاً کمتر از حد تصور است. پمپاژ آب زیرزمینی احتمالا افزایش می یابد. حرکت حساب شده استفاده از زمین، آب و انرژی در چارچوب های ارزیابی یکپارچه، می تواند به خطرات ناخواسته برای منابع زمین و آب را مدیریت کرده و از قفل شدن منابع جلوگیری کند. با ارزیابی هزینه‌ها و مزایای اجتماعی پمپاژ آب‌های زیرزمینی با انرژی خورشیدی، سیاست‌گذاران می‌توانند در مواردی پیش‌روی کنند که آبیاری، تولید مواد غذایی را گسترش می‌دهد و فقر را کاهش می‌دهد، اما پیامدهای ناخواسته یا نامشخصی برای کاهش آب‌های زیرزمینی و انتشار کربن دارد.

 

این گزارش یک نمای کلی از سیاست ها، مقررات و مشوق‌هایی برای استفاده پایدار از فناوری‌های آبیاری با انرژی خورشیدی است.

تکنولوژی (SPIS) یک راه حل انرژی با تکنولوژی ارزان و بادوام برای کشاورزی آبی است که منبع قابل اعتماد انرژی را در مناطق دوردست فراهم می کند، کمک به برق رسانی روستایی، کاهش هزینه های انرژی برای آبیاری و امکان کشاورزی کم انتشار

 

ترویج استفاده ناپایدار از آب با هزینه کمتر انرژی ممکن است منجر به برداشت بیش از حد از آب های زیرزمینی شود.

 

 تیم Soumya Balasubramanya و همکارانش در یک انجمن سیاسی استدلال می کنند که کاهش انتشار کربن حاصل از انتقال سریع به آبیاری با آب های زیرزمینی از طریق انرژی خورشیدی توسط کشورهای با درآمد کم و متوسط ​​(LMIC) ممکن است انتظارات را برآورده نکند. علاوه بر این، این انتقال می تواند منجر به افزایش استخراج آب های زیرزمینی شود. کاهش هزینه‌های فناوری‌های خورشیدی و تعهدات فزاینده دولت به انرژی پاک باعث رونق استفاده از آبیاری آب‌های زیرزمینی با انرژی خورشیدی در LMIC می‌شود. این منجر به نصب بیش از 500,000 پمپ خورشیدی در سراسر آسیای جنوبی و تعداد تخمینی مشابهی در سراسر جنوب صحرای آفریقا در دهه گذشته شده است. با توجه به این گسترش سریع، اراده‌ای برای گنجاندن کاهش انتشار ناشی از استفاده از پمپ خورشیدی در برنامه های اعتبار کربن وجود دارد. با این حال، طبق گفته Balasubramanya و همکاران، مزایای انتقال به آبیاری با انرژی خورشیدی، از جمله کاهش انتشار گازهای گلخانه‌ای مرتبط، برای ارزیابی پیچیده است و می‌تواند با خطراتی همراه باشد. اگرچه جایگزینی کامل پمپ های برقی یا دیزلی با پمپ های خورشیدی باعث کاهش انتشار گازهای گلخانه ای می شود، اما تضمینی نیست. کشاورزان ممکن است به استفاده از پمپ های قبلی خود ادامه دهند، به ویژه اگر نیازهای آبیاری برآورده نشده داشته باشند، و تغییر کاربری زمین کشاورزی می تواند مصرف انرژی خالص را به طرق مختلف تحت تاثیر قرار دهد. علاوه بر این، حتی اگر آبیاری با انرژی خورشیدی منجر به انتشار خالص صفر شود، افزایش پذیرش می‌تواند برداشت آب‌های زیرزمینی در LMICها را تسریع کند و کاهش آب زیرزمینی را تشدید کند و حیات بسیاری از سفره‌های زیرزمینی را که در حال حاضر در معرض خطر خشک شدن هستند، تهدید کند. بالاسوبرامانیا و همکاران استدلال می کنند که درک بین رشته ای از تغییرات آب، انرژی و کاربری زمین برای توسعه یک چارچوب سیاستی که قادر به مدیریت خطرات و فرصت های بالقوه آبیاری خورشیدی باشد، مورد نیاز است.

کشاورزی آبی در حال تبدیل شدن به دغدغه فزاینده برای امنیت غذایی و البته گرمایش جهانی به دلیل تغییرات آب و هوایی است. آبیاری در حال حاضر حدود 40 درصد از تولید جهانی غذا را در 20 درصد از کل زمین های قابل کشت پشتیبانی می کند. این به حفظ تولیدات کشاورزی علیرغم افزایش تغییرات آب و هوایی از جمله خشکسالی کمک می کند.

در دهه‌های اخیر تغییرات چشمگیری در بخش آبیاری رخ داده است: از دهه 1960 تا 1990، سیستم‌های سطحی در مقیاس بزرگ که توسط سدها و کانال‌ها پشتیبانی می‌شدند غالب بودند. متعاقباً، یک چرخش رادیکال رخ داد. امروزه رشد در بخش آبیاری اساساً مبتنی بر سیستم‌های کوچک‌تر تغذیه‌شده از آب‌های زیرزمینی است که مستقیماً توسط کشاورزان تأمین مالی می‌شود. این سیستم ها توسط پمپ های دستی، دیزلی یا الکتریکی کار می کنند.

 

در حال حاضر حدود 35 تا 40 درصد از کل کشاورزی آبی جهان از آب های زیرزمینی تغذیه می شود. به دلیل انرژی مورد استفاده، این امر به میزان قابل توجهی در انتشار گازهای گلخانه ای (GHG) کمک می کند. به عنوان مثال، در هند، آبیاری آب های زیرزمینی مسئول حدود 8 تا 11 درصد از کل انتشار است.

 

photo 2024 01 23 07 39 55 - خطرات و فرصت های پمپ های آب خورشیدی

Indian farmer Gurinder Singh invested in solar power for his 32 acres of land in 2014. © Prashanth Vishwanathan / IWMI

 

پمپ‌های برقی که عموماً کارآمدتر و هزینه کمتری دارند، در کشورهای با درآمد کم و متوسط ​​که دسترسی به برق در مناطق روستایی غیرقابل اعتماد است، نادر هستند. به عنوان مثال، حدود 600 میلیون نفر در جنوب صحرای آفریقا همچنان بدون برق زندگی می‌کنند. در حالی که برق رسانی در مناطق روستایی جنوب آسیا که اغلب هنوز برق وجود ندارد به طور رسمی 98 درصد است. بسیاری از خانواده های فقیر قادر به پرداخت هزینه اتصال به شبکه نیستند.

 

 

 

عدم دسترسی به برق یا سایر منابع انرژی تجدیدپذیر تأثیر منفی بر توسعه زیرساخت های آبیاری، مراکز فرآوری کشاورزی و تأسیسات خنک کننده دارد. در نتیجه، محصولات غنی از مواد مغذی مانند میوه و سبزیجات، و همچنین مواد غذایی با منشاء حیوانی مانند شیر و تخم مرغ، کمتر در بازارها و خانوارها در دسترس هستند. در عین حال، هزینه بالای و نوسان سوخت دیزل به دلیل بحران های مکرر قیمت، استفاده از پمپ های دیزل توسط کشاورزان فقیرتر را محدود می کند.

 

پمپ های خورشیدی به عنوان یک راه حل؟

یکی از راه حل های ممکن برای این معضل پمپ های آبیاری با انرژی خورشیدی هستند. در دهه گذشته، هزینه پنل های خورشیدی به طور چشمگیری کاهش یافته است و به کشاورزان ثروتمند اجازه می دهد تا پمپ های آبیاری خورشیدی خود را خریداری کنند. سیستم‌های آبیاری خورشیدی از استفاده از سوخت کثیف اجتناب می‌کنند و دسترسی به مناطق دورافتاده روستایی را که نه برق و نه گازوئیل در دسترس هستند، بهبود می‌بخشند.

 

با توجه به اینکه هزینه های سرمایه گذاری برای پمپ های آبیاری با انرژی خورشیدی بسیار بیشتر از پمپ های گازوئیلی یا برقی است، این هزینه ها هنوز گسترده نیافته است. پنل های خورشیدی برای پمپاژ آب برای یک هکتار از عمق 15 تا 20 متری به راحتی می توانند 15,000 دلار آمریکا هزینه داشته باشند. حتی در هند که چندین برنامه یارانه ای برای پمپ های خورشیدی دارد – که تا 90 درصد هزینه پمپ ها را پوشش می دهد – تنها 0.5 میلیون از مجموع حدود 30 میلیون پمپ مورد استفاده در آبیاری با پمپ های خورشیدی جایگزین شده است. علاوه بر این، به دلیل یارانه‌های بالاتر برای پمپ‌های بزرگ‌تر، کشاورزان اغلب فقط می‌توانند سیستم‌های بزرگی را خریداری کنند که آب بیشتری نسبت به مقدار مورد نیاز برای حداکثر آبیاری پمپاژ می‌کنند.

 

از سوی دیگر، کشاورزان در جنوب آفریقا اغلب سیستم‌های سایز کوچک را خریداری می‌کنند، زیرا آنها به سادگی قادر به خرید پنل‌های خورشیدی بزرگ‌تر نیستند.

 

استفاده از آب های زیرزمینی در حال افزایش است – و میزان آب در حال کاهش است. با این حال، افزایش وابستگی به آب های زیرزمینی برای کشاورزی آبی منجر به کاهش سطح آب های زیرزمینی شده است.  در بیشتر کشورها، منابع آب زیرزمینی با برداشت بیش از حد آب از لایه‌های آبدار فرصت اینکه سفره های زیرزمینی دوباره تامین شوند، را از بین برده اند.

 

 علاوه بر این، با توجه به هزینه های بالای سرمایه گذاری در مقایسه با دسترسی به آبیاری سطحی، افزایش آبیاری آب های زیرزمینی نابرابری های اجتماعی را تقویت می کند.

 

 کشاورزان ثروتمندتر به احتمال زیاد قادر به خرید پمپ های موتوری هستند و هنگامی که سطح آب های زیرزمینی کاهش می یابد، چاه های عمیق تری حفر می‌کنند، که در برخی مواقع حتی می تواند مانع دسترسی به آب آشامیدنی شود. چالش‌های کاهش و تخریب آب‌های زیرزمینی توسط پمپ‌های خورشیدی تشدید می‌شود: بدون هزینه‌های مکرر (دیزل)، کشاورزان می‌توانند به اندازه‌ای که نیاز دارند، آب زیرزمینی را پمپاژ کنند و این امر کاهش آب زیرزمینی را تسریع می‌کند.

 

 در عین حال، برای کاهش خطر سقوط سطح آب، کشاورزان باید علاوه بر پمپ خورشیدی، یک سیستم آبیاری قطره ای نیز نصب کنند.

از بحث و گفتگو با کشاورزان در ماه مه 2023 در طی کارگاه آموزشی در مورد آبیاری خورشیدی در دانشگاه خواجه فرید پاکستان، که توسط NEXUS Gains Initiative ثبت شد، به سرعت مشخص شد که سیستم یارانه ای، که با هزینه ها و مالیات های اضافی مختلف همراه است، برای کشاورزان گران تر از  یک پمپ خورشیدی در بازار آزاد میباشد. سه چهارم شرکت کنندگان احساس کردند که فقط کشاورزان در مقیاس بزرگ از برنامه یارانه دولتی بهره می برند. علاوه بر این، آبیاری قطره ای فقط برای مدت کوتاهی مناسب است و هزینه های نگهداری آن بالاست.

 با این حال، این برنامه از طرف پرورش دهندگان میوه و سبزیجات که قبلاً به آبیاری دسترسی نداشتند، و همچنین کشاورزانی با خاک های شنی حمایت شد. اما حتی بدون یارانه، کشاورزان در پنجاب پاکستان به طور فزاینده ای در سیستم های پمپاژ خورشیدی سرمایه گذاری می کنند. بر اساس نظرسنجی موسسه بین المللی مدیریت آب از 300 کشاورز که چنین سیستم هایی را خریداری کرده اند، دلیل اصلی را افزایش هزینه انرژی و سایر هزینه های تولید کشاورزی مطرح نموده‌اند. این بررسی در ارتباط با پروژه آبیاری خورشیدی برای مقاومت کشاورزی با حمایت آژانس توسعه و همکاری سوئیس انجام شد.

 

 

 

شرکت کنندگان در کارگاه به تعدادی از عوامل اشاره کردند که تاثیر منفی بر خرید پمپ های خورشیدی دارند. اینها شامل پنل های خورشیدی ضعیف و تجهیزات مرتبط، استاندارد نبودن پمپ ها و هزینه اولیه بالای پمپ های خورشیدی است. علاوه بر این، بانک‌ها و سایر مؤسسات مالی برای خرید پمپ‌های خورشیدی تسهیلات مالی ارائه نمی‌دهند، درحالیکه عمدتاً برای کودها و بذرهای ارزان‌قیمت وام می‌دهند.

 

شرکت کنندگان همچنین از خطری که سطح آب را تهدید می کرد آگاه بودند. بیش از 80 درصد گفتند که سطح آب های زیرزمینی در دهه گذشته کاهش یافته است و 72 درصد معتقد بودند که پمپ های خورشیدی (در مقایسه با پمپ های دیزل) سطح آب های زیرزمینی را بیشتر کاهش می دهد.

 

چگونه می توان انرژی خورشیدی را بهتر در آبیاری جای داد؟

برای پیشرفت انرژی های تجدیدپذیر، باید راه حل‌هایی یافت که به طور همزمان اهداف اجتماعی، اقتصادی و زیست محیطی را برآورده کنند. برنامه CGIAR NEXUS Gains بر روی دسترسی به فناوری های انرژی تجدیدپذیر برای کشاورزان فقیرتر در جنوب آسیا و جنوب صحرای آفریقا تمرکز دارد.

 

برای این منظور، به چندین موضوع می پردازیم:

 

در مرحله اول، ارائه اطلاعات بهتر در مورد منابع برداشت آب با انرژی تجدیدپذیر (پمپ های آب خورشیدی) و همچنین جمع آوری داده ها در مورد بهینه سازی اندازه سیستم های انرژی تجدیدپذیر روستایی مهم است. سیستم های با اندازه نامناسب یا هزینه زیادی دارند یا انرژی بسیار کمی تولید می کنند. ابعاد می تواند با استانداردسازی تجهیزات انرژی های تجدیدپذیر همراه باشد.

 

گام دوم تقویت محیط سیاسی و مالی برای سیستم‌های انرژی های تجدیدپذیر است. مدل های تجاری و مالی باید ایجاد شود که برای کشاورزان فقیر جذاب باشد. این شامل ارائه اطلاعات جامع به کشاورزان و به ویژه کشاورزان زن در مورد گزینه های تامین مالی موجود و دسترسی به منابع مالی برای سیستم های انرژی تجدیدپذیر می شود.

 

سوم، افزایش سرمایه گذاری در سیستم های انرژی تجدیدپذیر روستایی که از استفاده مولد حمایت می‌کنند، ضروری خواهد بود. این اجازه می دهد تا هزینه سیستم ها حتی بدون برنامه های یارانه ای که فقط به کشاورزان ثروتمند می رسد بازیابی شود.

 

علاوه بر این، نهادهای محلی برای مدیریت بهتر آب‌های زیرزمینی نیاز به حمایت دارند تا جوامع روستایی بتوانند خودشان آب های زیرزمینی خود را مدیریت کنند.

 

مؤسسه IFPRI و NEXUS Gains نیز با پروژه ای در هند که توسط دولت آلمان و دیگران حمایت می شود، روی این موضوع دشوار کار می کنند. هدف آن بهبود دانش محلی و درک سیستم های آب زیرزمینی و حمایت از مدیریت جمعی منابع آب زیرزمینی است.

 

به عنوان یک گام نهایی و فراگیر، دولت ها و سایر سرمایه گذاران باید بر اقدام در انزوا غلبه کنند. مداخلات در بخش های انرژی، آب و غذا نباید به صورت مجزا و جدا از یکدیگر دیده شوند. باید اطمینان حاصل شود که سرمایه گذاری در انرژی های تجدیدپذیر هم تامین آب و انرژی و هم امنیت غذایی را (به طور همزمان) بدون آسیب رساندن به محیط زیست بهبود می بخشد. تنها در این صورت است که می توان به مزایای آبیاری با انرژی های تجدیدپذیر به طور کامل و پایدار پی برد.

 

نویسنده: مهدی پارساوند

 

منابع:

https://doi.org/10.1126/science.adi9497?utm_source=miragenews&utm_medium=miragenews&utm_campaign=news

 

Xie, H., C. Ringler and A. Mondal. 2021. Solar or Diesel: A Comparison of Costs for Groundwater-Fed Irrigation in Sub-Saharan Africa Under Two Energy Solutions. Earth’s Future 9(4): e2020EF001611

 

نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

 

به گزارش آرا نیرو همه می خواهند کاری در مورد انتشار کربن انجام دهند اما تعداد کمی از آنها می دانند چگونه؟ ما می‌خواهیم بهتر عمل کنیم، اما ادامه دادن به انجام کاری که همیشه انجام داده‌ایم آسان‌تر از صرف زمان، تلاش و پول برای ایجاد تغییرات است. شرکت‌های تاسیساتی که گاز فسیلی عرضه می‌کنند _که به اشتباه به عنوان “گاز طبیعی” شناخته می‌شود_ تحت فشار گروه‌های زیست‌محیطی هستند، زیرا محصول آنها _که عمدتا متان است_ هنگام سوزاندن دی اکسید کربن در اتمسفر آزاد می‌شود.

 

حتی بدتر از آن، مقدار زیادی از مواد به اتمسفر نشت می کند، جایی که برای 20 سال یا بیشتر باقی می‌ماند. متان 80 برابر قویتر از دی اکسید کربن، عامل گرمایش سیاره است، به این معنی که لغزش به سمت دمای گرمتر جهانی را تسریع داده است. اما شرکت‌های گاز فسیلی علاقه خاصی به ادامه مدل کسب و کار خود دارند که سود قابل توجهی را برای آنها به ارمغان می‌آورد. حتی با فرض اینکه مدیرانی که این شرکت ها را اداره می کنند متعهد به رسیدگی به تغییرات آب و هوایی به روشی معنادار باشند، نمی توانند به خوبی در جلسه هیئت مدیره شرکت کنند و پیشنهاد تعطیلی کسب و کار را بدهند.

 

حرکت از گاز فسیلی

ایالت نیویورک فکر می کند راه حلی برای این معضل دارد. تمام تجربیاتی که شرکت‌های گاز فسیلی در ساخت خطوط لوله و شبکه‌های توزیع ساختمان دارند را در نظر بگیرید و در عوض آن را برای انتقال گرما برای پمپ‌های حرارتی منبع زمینی به کار ببرید. در سال 2022، قانونگذار نیویورک، قانونی را تصویب کرد که تعدادی از سیاست های طراحی شده برای کاهش انتشار گازهای گلخانه ای را ترویج می کند. از جمله آنها طرحی برای کاهش انتشار کربن و متان از تاسیسات گاز فسیلی است و در عین حال نقشی را برای این شرکت ها در دهه های آینده ایجاد می کند.

 

آنها به حفر سنگرها، احداث خطوط لوله و نصب تجهیزات ادامه می دهند _همان نوع سرمایه گذاری که امروزه سود طولانی و پایداری را برای شرکت های گاز به ارمغان می آورد._ اما به جای گاز قابل اشتعال و گرم کننده سیاره، این لوله ها آب یا مایعات دیگری را حمل می کنند که گرما را از زیر زمین یا از ساختمان ها و منابع دیگر در شبکه منتقل می کنند که می توانند توسط پمپ های حرارتی برای گرم نگه داشتن ساختمان ها استفاده شوند.

 

چرا این مهم است؟ ما می دانیم که پمپ های حرارتی با منبع هوا – نوعی که روی دیوارهای بیرونی آویزان می شوند – نسبت به دیگهای بخار و کوره های معمولی که از سوخت های فسیلی استفاده می کنند کارآمدتر هستند. _اگر در اطراف بوستون امریکا زندگی می‌کنید، تصدیق میکنید که آن‌ها کارآمد هستند_ اما چیزی که بسیاری نمی‌دانند این است که وقتی می‌توانند گرما و سرما را با سیال در دمای پایدار مبادله کنند و نه از طریق هوای سرد بیرون، این امر حتی میتواند کارآمدتر باشد. در واقع، وزارت انرژی امریکا تخمین می زند که چنین پمپ های حرارتی منبع زمینی مصرف انرژی و انتشار گازهای گلخانه ای را تا 44 درصد در مقایسه با پمپ های حرارتی منبع هوا و 72 درصد در مقایسه با تجهیزات استاندارد تهویه مطبوع کاهش می دهند. حالا با این تفاسیر آیا ما توجه شما را جلب کردیم؟

در حالی که این خبر هیجان‌انگیزی است، اکثر مالکان ساختمان‌ها برای پرداخت هزینه حفاری گمانه‌ها و نصب لوله‌ها برای سیستم‌های پمپ حرارتی زمین گرمایی خود یا بستن قراردادهایی با همسایگان خود برای ساخت و اشتراک شبکه‌های زیرزمینی با مشکل مواجه هستند.  به همین دلیل است که رویکرد نیویورک برای انطباق زیرساخت های خدمات گازی بسیار نویدبخش است.  لیزا دیکس، مدیر ائتلاف غیر انتفاعی کربن زدایی ساختمان در نیویورک به Canary Media می گوید که انجام این کار به صاحبان خانه و مشاغل کمک می کند تا در هزینه ها سهیم شوند و از مزایای آن بهره ببرند.

 

توانمندسازی قانونگذاری

 گروه او از قانون شبکه انرژی حرارتی شهری و مشاغل حمایت کرد که توسط قانونگذار نیویورک در سال 2022 تصویب شد. در پاسخ به این قانون، شرکت های آب و برق در ایالت نیویورک، ماه گذشته برنامه هایی را برای 13 پروژه آزمایشی ارائه کردند که برای تبدیل خطوط لوله گاز فسیلی به زیرساخت طراحی شده بودند که می تواند پمپ های حرارتی تمیز و بدون کربن را تامین کند.

به گزارش آرا نیرو این شبکه‌های حرارتی زیرزمینی از مراکز تجاری متراکم منهتن تا مسکن‌های کم درآمد، و از محله‌های دره هادسون تا شهر شمالی ایتاکا، محل دانشگاه کرنل، را دربرمی‌گیرد.  نتایج این پروژه‌های آزمایشی می‌تواند به جوامع دیگر از جمله ایران کمک کند تا درک کنند که چگونه این فناوری را برای خود به کار ببرند.

شرکت Con Edison، شرکتی که به شهر نیویورک و شهرستان وستچستر خدمات می‌دهد، سه پروژه را پیشنهاد کرده است که برخی از چالش‌برانگیزترین تنظیمات شهری از جمله مرکز برجسته راکفلر را در بر می‌گیرد. Con Ed قصد دارد سه ساختمان تجاری بزرگ را از شبکه گرمایش بخار منطقه ای به پمپ های حرارتی تبدیل کند. این پمپ های حرارتی از آبی استفاده می کنند که توسط گرمای هدر رفته از منابعی مانند فاضلاب، مراکز داده و سیستم های خنک کننده ساختمان های مجاور گرم می شود.

 

«برخی تصورات غلط وجود دارد. مردم فکر می کنند که برای گرفتن گرمای زیرزمینی باید یک میلیون چاه حفر کنید. ​اما شما می توانید گرمای خود را از منابع مختلف دریافت کنید. می توانید آن را از مترو دریافت کنید، می توانید آن را از فاضلاب تهیه کنید و اگر این کار را درست انجام دهیم، به کربن زدایی سیستم بخار Con Ed کمک خواهد کرد.

 

photo 2024 01 21 10 05 28 - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

Source: cleantechnica.com

شرکت املاک و مستغلات Tishman Speyer، مالک 30 Rockefeller Center، شریک اصلی این پروژه است. این شرکت انگیزه قوی برای مشارکت دارد زیرا این پروژه می تواند هزینه های مربوط به رعایت قانون محلی شهر نیویورک 97 را کاهش دهد که تمام ساختمان های بزرگ را ملزم می کند تا انتشار کربن خود را تا سال 2030 تا 40 درصد نسبت به سال 2019 کاهش دهند. رسیدن به این اهداف مستلزم 18.2 میلیارد دلار سرمایه گذاری در جایگزینی برای دیگهای بخار و کوره های گاز فسیلی تخمین زده شده است.

 

دیکس گفت: شبکه های مشترک می توانند به طور قابل توجهی هزینه ساختمان های فردی را کاهش دهند، اما صاحبان املاک ​”نمی خواهند به طور خصوصی با تمام این مجوزها برخورد کنند – آنها می خواهند که شرکت ابزار با همه این موارد مقابله کند.” هنگامی که به دنبال تبدیل کل محله‌ها در مقیاس بزرگ به جایگزین‌های کم کربن هستید، ​”توسعه‌های آب و برق بیشترین منطق را برای انجام این کار دارند. آنها دارای حق راه هستند، دارای مجوز هستند، به سرمایه دسترسی دارند، و نیروی کار دارند که قبلاً اتحادیه شده است.»

 

به گزارش آرا نیرو یکی دیگر از پروژه های Con Ed در محله چلسی منهتن قصد دارد 100 درصد نیازهای گرمایشی، سرمایشی و آب گرم یک ساختمان مسکونی چند خانواری کم درآمد را از یک مرکز داده در نزدیکی آن، تامین کند. دیکس گفت: «ما می‌توانیم یک مرکز داده داشته باشیم که به معنای واقعی کلمه یک ساختمان چند خانواری یا یک آسمان‌خراش بزرگ را گرم می‌کند.

 

سه ایالت دیگر – کلرادو، ماساچوست و مینه‌سوتا – قوانینی را تصویب کرده‌اند که به شرکت‌های گاز اجازه می‌دهد تا پروژه‌های آزمایشی شبکه انرژی حرارتی را انجام دهند. ایلینوی، مین، ورمونت و واشنگتن در حال بررسی قوانین مشابه هستند و 13 شرکت گاز یک شرکت مشترک زمین گرمایی شبکه‌ای Utility را برای بررسی گزینه‌های بیشتر ایجاد کرده‌اند.

1690297311708 - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

https://www.sciencefocus.com/

تاسیسات گاز فسیلی ایده آل هستند

آدری شولمن، مدیر اجرایی تیم بهره وری انرژی خانگی در کمبریج ماساچوست، گفت که شرکت های گاز فسیلی برای نصب شبکه های انرژی حرارتی در مقیاس بزرگ، ایده آل هستند. آنها نیروی کار، تخصص و دسترسی به سرمایه مورد نیاز برای ساخت شبکه های زیرزمینی متصل به هم را دارند. او می گوید که آنها در حال حاضر میلیاردها دلار در سال برای توسعه و تعمیرات خط لوله گاز فسیلی خرج می کنند که به ناچار مدت ها قبل از اینکه هزینه های آنها توسط مشتریان بازپرداخت شود به “دارایی های سرگردان” تبدیل می شوند. “کل کار در مورد ایجاد ساختار نظارتی است که به وسیله آن از گاز خارج می شویم و به چیز دیگری می رویم.”

در پست آینده پیج اینستاگرام آرا نیرو ویدئوی مختصری وجود دارد که توسط HEET گردآوری شده است که به خوبی توضیح می دهد که چگونه این فرآیند کار می کند. با ما همراه باشید.

 

علی‌رغم قانون نیویورک، شرکت‌های گاز فسیلی در این ایالت 5 میلیارد دلار برای سرمایه‌گذاری زیرساختی هزینه کرده‌اند و از زمان تصویب این قانون، 28 میلیارد دلار در طرح‌های جایگزینی خط لوله، شناسایی کرده‌اند. این قطع ارتباط بین الزامات آب و هوایی به نیویورک محدود نمی شود. گروه براتل در گزارشی در سال 2021 دریافت که شرکت های گاز فسیلی در ایالات متحده ممکن است در دهه آینده با سرمایه گذاری 180 میلیارد دلاری در خط لوله مواجه شوند که ممکن است قابل بازیابی نباشد.

تعهد خدمت

مانند بسیاری از ایالت‌های دیگر با دستور کربن‌زدایی، نیویورک صدها میلیون دلار مشوق برای پمپ‌های حرارتی و برق‌رسانی ساختمان‌ها ارائه کرده است و مقرراتی را وضع کرده است که گسترش گاز فسیلی را به ساختمان‌های جدید محدود می‌کند.

اما بر اساس گزارش سال 2023 از ائتلاف کربن زدایی ساختمان، این رویکرد “خانه به خانه” می تواند منجر به ایجاد محدودیت در تاسیسات گاز و تنظیم کننده ها شود که جهت حفظ شبکه های توزیع مجبور به فروش گاز گران قیمت برای تامین سوخت به تعداد روبه کاهش مشتریان شوند.

در همین حال، مشتریانی که باقی می‌مانند، بخش بیشتری از هزینه پرداخت این سرمایه‌گذاری‌های گاز را متحمل خواهند شد، که منجر به ایجاد یک چرخه معیوب از افزایش هزینه‌ها بر افرادی می‌شود که خود توانایی تغییر پمپ‌های حرارتی را ندارند. آن دسته از مشتریان عقب مانده به احتمال زیاد افرادی با درآمد کمتر هستند که در حال حاضر برای پرداخت قبوض گران قیمت آب و برق تلاش می کنند.

 

یکی از موانع، قوانینی است که در بسیاری از ایالت‌ها وجود دارد. در ازای انحصار شرکت های خدمات شهری، آنها ملزم به ارائه خدمات به هر کسی در قلمرو خود هستند که آن را درخواست می کند. این تعهد بخش اصلی ماموریت یک شرکت است، اما کاربرد دقیق آن می‌تواند به یک مشتری در محله‌ای که برای شبکه انرژی حرارتی در نظر گرفته شده است اجازه دهد کل پروژه را متوقف کند. تغییر قوانین در حال حاضر در نیویورک، ماساچوست و سایر ایالت ها برای اینکه به شرکت های آب و برق اجازه دهد مشتریان را از خدمات شبکه گاز به انرژی حرارتی تغییر دهند، بدون اینکه اعتراضات ​”اجبار به خدمت” را ایجاد کنند، بخش مهمی از روند انتقال خواهد بود.

 

دیکس گفت، در نیویورک، قانون شبکه انرژی حرارتی برق شهری و مشاغل، این قانون را برای پروژه های آزمایشی که اکنون در حال بررسی هستند، به حالت تعلیق در می آورد، اما برای گسترش این تغییر به کل ایالت، قوانین بیشتری لازم است. در ماساچوست، تیم بهره وری انرژی خانه و سایر گروه های محیطی و اجتماعی لایحه “آینده گرمای پاک” را تأیید می کنند که تغییرات مشابهی را ایجاد می کند.

 

به گزارش آرا نیرو مزایای کارآیی این شبکه‌ها همچنین می‌تواند کمک قابل توجهی به شبکه‌های برق بدهد که رشد گسترده‌ای در تقاضای ساختمان‌های گرمایشی و وسایل نقلیه الکتریکی را تجربه خواهند کرد. تحقیقات وزارت انرژی نشان داده است که نصب پمپ های حرارتی زمین گرمایی در تقریبا 80 درصد خانه های ایالات متحده می تواند هزینه های کربن زدایی شبکه را تا 30 درصد کاهش دهد و تا سال 2050 از نیاز به 24,500 مایل خطوط انتقال جدید جلوگیری کند.

EGS.Infographic - نقش شرکت های عرضه کننده گاز فسیلی در عصر انرژی پاک

This diagram shows how electricity is produced using enhanced geothermal systems.

غذای آماده

تبدیل سیستم های توزیع گاز فسیلی برای پشتیبانی از سیستم های پمپ حرارتی منبع زمینی، یک ایده جسورانه است. برای شرکت های آب و برق، این راهی است که آنها به خدمت به جامعه ادامه دهند و با انجام این کار سود ببرند و در عین حال فعالیت های خود را کربن زدایی کنند. این روشی را برای به حداکثر رساندن بهره وری ارائه می دهد که از طریق پمپ های حرارتی ممکن می‌شوند، در حالی که انتشار گازهای گلخانه ای را مختل می کند.

 

چنین تفکر جسورانه ای قابل تحسین است. آیا منطقی‌تر نیست که راه‌حل‌های خلاقانه‌ای مانند این را دنبال کنیم تا اینکه امید به طرح‌های ژئومهندسی خطرناک برای زمین پاک ببندیم؟ صنعت آب و برق میتواند این را به عنوان یک موقعیت برد/برد ببیند، اما بسیاری از این شرکت ها به شدت با این تغییر مخالف هستند. آنها به دلایل خودخواهانه خود از آینده می‌ترسند و به جای ساختن یک جامعه انسانی پایدار نگران سود خود هستند.

 

شاید وقتی یاد بگیرند که انتقال از گازهای فسیلی بدون تخریب مدل کسب و کارشان قابل انجام باشد، بر ترس های خود غلبه کنند و مانع چنین برنامه هایی نشوند. اگر همه برنده شوند، _شرکت ها، جوامع و زمین_ بهترین جهان، ممکن خواهد بود.

 

منبع: CleanTechnica

 

ورود ثروت استراتژیک به بازار انرژی ایران

معرفی
بررسی وضعیت فعلی بازار انرژی در ایران
عوامل اقتصادی موثر بر ورود ثروت
نقاط ورود استراتژیک ثروت
فرصت های سرمایه گذاری در انرژی های تجدید پذیر
استراتژی های کاهش ریسک
مطالعات موردی در مورد مدیریت ریسک موفق
ایجاد مشارکت های استراتژیک
پیش بینی روندهای آتی در بازار انرژی ایران
نتیجه

معرفی

ثروت استراتژیک مانند یک کوه یخ است. بخش قابل مشاهده آن، سودآوری و ارزش بازار شرکت است، اما بخش عمده آن زیر آب است و شامل عواملی مانند نوآوری، دانش، برند و … میباشد.
ثروت استراتژیک و پول هوشمند دو مفهوم مرتبط به هم بوده که در ارتباط با یکدیگر ساختاری را برای استفاده هوشمندانه و بهینه از منابع مالی شکل میدهند. در این ساختار فرد یا سازمان‌ از پول خود به نحوی استفاده می‌کند که نه تنها نیازهای فوری و روزمره‌اش تامین میشود، بلکه به‌عنوان یک ابزار استراتژیک برای دستیابی به اهداف بلندمدت نیز مورد بهره‌برداری قرار میگیرد.
حال به مفهوم ثروت استراتژیک وارد می‌شویم، مفهومی که دارایی‌ها و منابعی را در جهت تحقق اهداف بلندمدت و پایدار سازمان یا فرد به کار میگیرد، این همان تدبیر در مصرف پول، سرمایه‌گذاری‌های استراتژیک، و افزایش درآمد مالی است.
همزمان، ثروت استراتژیک اطمینان حاصل می‌کند که دارایی‌ها و منابع موجود به‌طور مداوم در خدمت اهداف و رؤیای سازمان یا فرد باشند و این محدود به دارایی‌های مالی، فیزیکی و انسانی نخواهد بود و اینچنین پول هوشمند و ثروت استراتژیک، همزمان عاملی برای موفقیت در حوزه‌های مالی را رقم میزنند، تا استفاده از منابع مالی با هدف تحقق اهداف استراتژیک بهبود یابد.
ثروت استراتژیک، یک مزیت رقابتی ماندگار است که به فرد یا سازمان کمک می‌کند تا در بازار خود پیشتاز بماند.
ماندگاری به این معنا که ثروت باید در برابر تغییرات بازار و فناوری مقاوم بوده و رقابتی به معنای پیشی گرفتن سود بازار از سایر حوزه های اقتصادی و فناوری است.

Irans economy - ورود ثروت استراتژیک به بازار انرژی ایران

بررسی وضعیت فعلی بازار انرژی در ایران

در چشم‌انداز پویای بازار انرژی ایران، ورود ثروت استراتژیک نقشی اساسی در شکل‌دهی داستان‌های موفقیت برای کسب‌وکارها ایفا می‌کند. همانطور که به پیچیدگی های این بخش می پردازیم، آشکار می شود که درک پویایی بازار اولین گام برای تصمیم گیری آگاهانه است.
بازار انرژی ایران با تکامل دائمی مشخص شده است که هم چالش ها و هم فرصت ها را ارائه می دهد. برای پیمایش موثر در این منطقه، کسب و کارها باید از روندها و چالش های فعلی مطلع باشند. نقاط ورود استراتژیک به بازار انرژی زمانی که به این دانش مسلح می شوند، واضح تر می شوند. انتخاب بخش مناسب برای ورود ثروت بسیار مهم است. خواه انرژی تجدیدپذیر، نفت یا گاز باشد، هر بخش با مجموعه ای از چالش ها و پاداش های منحصر به فرد خود همراه است.
برای ورود به ثروت استراتژیک، شناسایی فرصت های سرمایه گذاری خاص ضروری است. در حال حاضر، بازار انرژی در ایران با تحولات گسترده و پیچیدگی‌های زیادی مواجه است. این وضعیت به علت چالش‌های متعدد و تغییرات مستمر در سیاست‌ها و اقتصاد جاری است. تغییرات در نیازهای انرژی، افزایش جمعیت، و نوسانات در قیمت‌های نفت و گاز، باعث تحولات مهم در بازار انرژی ایران شده است. این تحولات نیازمندی به استفاده از منابع انرژی تجدیدپذیر و پایدار را افزایش داده است.
چالش‌هایی همچون نوسانات در تأمین انرژی، مشکلات مرتبط با زیرساخت‌ها، و تحریم‌های اقتصادی برخی از عوامل موثر در بازار انرژی ایران هستند. اما این چالش‌ها همزمان با فرصت‌های بسیاری نظیر توسعه فناوری‌های جدید و جلب سرمایه‌گذاری خارجی نیز همراه هستند.
ورود استراتژیک ثروت به بازار انرژی ایران نیازمند تحلیل دقیقی از شرایط فعلی است، که شامل انتخاب صحیح سکتورها و تعیین سکتورهای مناسب برای ورود است، چراکه هر سکتور انرژی دارای ویژگی‌ها و چالش‌های مخصوص به خود میباشد.
درک عوامل اقتصادی و قوانین مرتبط با بازار انرژی، اساس موفقیت در ورود به این بازار است. تأثیرات تغییرات قوانین و سیاست‌ها باید به دقت ارزیابی شوند. استفاده از فناوری‌های نوین در تولید و مدیریت انرژی می‌تواند نقش مهمی در جلب توجه سرمایه‌گذاران و بهبود رقابت‌پذیری داشته باشد. برنامه‌ریزی دقیق برای مدیریت ریسک‌ها و تطابق با شرایط اقتصادی و سیاسی ایران ، جزء اقدامات ضروری برای ورود استراتژیک به بازار انرژی است، در نتیجه نیازمند تعهد، تدبیر و تعامل مؤثر با محیط کسب و کار در ایران است.

196378 414 - ورود ثروت استراتژیک به بازار انرژی ایران

عوامل اقتصادی موثر بر ورود ثروت به بازار انرژی ایران

ورود به بازار انرژی ایران نیازمند درک عمیق از عوامل اقتصادی موثر است که در تدوین استراتژی‌های ثروت نقش اساسی دارد. از جمله این عوامل تقاضا برای انرژی، شرایط سرمایه‌گذاری، سیاست‌های دولتی، پیش‌بینی قیمت‌ها و تأمین منابع انرژی است.
تحلیل دقیق تقاضا برای انرژی در ایران اساسی است، چراکه شناخت نیازهای مصرفی و صنعتی، پیش‌بینی تغییرات در تقاضا، و ارائه راهکارهای مناسب بر اساس این تحلیل، اولین گام موفقیت در ورود به بازار است.
نرخ بازده، اقدامات حمایتی دولت، و امکانات مالی برای جلب سرمایه، از عواملی هستند که باید به دقت مورد بررسی قرار گیرند. سیاست‌های دولت در زمینه انرژی و سرمایه‌گذاری‌های مرتبط، تأثیر مستقیمی بر ورود ثروت به بازار داشته است. تسهیلات بانکی به عنوان ابزاری برای تشویق به استفاده از انرژی تجدیدپذیر و ایجاد بسترهای لازم برای سرمایه‌گذاری، از این دست اثرگذاری ها است.
پیش‌بینی دقیق در مورد قیمت‌های انرژی و تغییرات آتی در بازار، امکان بهینه‌سازی تصمیمات سرمایه‌گذاری را فراهم می‌کند، که نیازمند تحلیل بازار جهانی و محلی در این زمینه است. البته در حوزه انرژی های تجدیدپذیر با وجود قراردادهای تضمینی خرید برق از طرف دولت، بخشی از این ریسک مدیریت شده است که این مورد نیز جز سیاست های حمایتی دولت میباشد.
آنچه که مهمترین عامل در ورود ثروت استراتژیک به بازار انرژی ایران میدانم، دسترسی به منابع انرژی و تأمین پایدار این منابع است. آگاهی از منابع موجود، ارتقاء تکنولوژی‌ها و ایجاد زیرساخت‌های لازم، تدابیر مؤثر در جهت ورود به بازار انرژی ایران است.
در کل، توفیق در ورود به بازار انرژی ایران نیازمند درک عمیق از متغیرهای اقتصادی است و هر سازمان یا سرمایه‌گذاری که به دنبال ورود به این بازار است، باید به یک استراتژی گام‌به‌گام و کامل عمل کند.

Market - ورود ثروت استراتژیک به بازار انرژی ایران

نقاط ورود استراتژیک ثروت به بازار انرژی ایران
برای ورود به بازار انرژی ایران، لازم است برنامه‌ موثری را با نقاط ورود استراتژیک پیش بگیریم. در زیر به برخی از این نقاط کلیدی اشاره خواهم کرد:

1. توسعه در زمینه انرژی تجدیدپذیر
استفاده از منابع انرژی تجدیدپذیر مانند انرژی خورشیدی، انرژی بادی، و آب، علاوه بر بهره‌وری بالا، به حفاظت از محیط زیست نیز کمک می‌کنند. تأکید بر تولید انرژی‌های پایدار و دوستدار محیط زیست، به شرکت‌ها ارزش اجتماعی بالایی نیز می‌بخشد که این ارزش در راستای محدود کردن اثرات تغییر اقلیم ناشی از انتشار گازهای گاخانه ای، برای رسیدن به سطوح پایداری در محیط زیست و کربن صفر میباشد که تفصیل آن را در مقاله پیشین تحت عنوان “ گرمایش جهانی و تغییرات اقلیمی ” شرح داده ام.

2. سرمایه‌گذاری در پروژه‌های نوآورانه
سرمایه‌گذاری در پروژه‌های نوآورانه و فناورانه، نقطه ورودی موثری به بازار انرژی ایران است. این اقدام می‌تواند به تحولات صنعت انرژی کمک کرده و رقابت‌پذیری را تضمین کند.

3. پیشگامی در فناوری‌های پاک
استفاده از فناوری‌های پاک و پیشرفته در تولید و مدیریت انرژی، نقطه ورود استراتژیک موثری است. این شامل استفاده از هوش مصنوعی، اینترنت اشیاء، و سیستم‌های هوشمند در مدیریت انرژی می‌شود.

4. مشارکت فعال در پروژه‌های ملی
مشارکت فعال در پروژه‌ها و برنامه‌های ملی در حوزه انرژی، نقطه موثر دیگری برای ورود استراتژیک به بازار ایران محسوب می‌شود. این اقدام نه تنها به توسعه کشور کمک می‌کند بلکه ارتباطات محلی را نیز بهبود می‌بخشد.

images 000014 lndustry focus img1 - ورود ثروت استراتژیک به بازار انرژی ایران

فرصت‌های سرمایه‌گذاری در انرژی‌های تجدیدپذیر

حوزه انرژی‌های تجدیدپذیر، به عنوان یکی از بخش‌های مهم صنعت انرژی، فرصت‌های فراوانی را برای سرمایه‌گذاران فراهم کرده‌ است. از جمله پروژه ‌های نیروگاه ‌های خورشیدی که در مقالات قبلی به تفصیل در مورد آنها صحبت کردم و لازم به ذکر است که سرمایه‌گذاری در پروژه‌های نیروگاه‌ خورشیدی با ظرفیت بالا، امکان کاهش هزینه‌ها را فراهم می‌کند.
از دیگر این پروژه ها میتوان به نیروگاه های بادی و یا پارک های بادی اشاره کرد که سرمایه‌گذاری با توربین‌های بادی پیشرفته، می‌تواند منجر به تولید انرژی با بهره‌وری بالا گردد. همچنین توسعه فناوری باد دریایی به عنوان یک مکمل مهم در حوزه انرژی بادی، فرصت‌های جدیدی ایجاد می‌کند، مانند توربین‌های بادی فلوتینگ که بر روی سازه‌های شناور نصب می‌شوند و یا توربین‌هایی که به طور مستقیم در زیر سطح آب نصب می‌شوند و می‌توانند از تاثیرات باد و امواج بهره‌مند شوند.
همچنین سرمایه‌گذاری توسعه تکنولوژی ذخیره سازی انرژی شامل باتری‌های پیشرفته، به منظور حل مشکلات نوسانات تولید انرژی از منابع تجدیدپذیر، یک فرصت استراتژیک است که جهت آگاهی بیشتر از تاثیر صنعت باتری در تجارت انرژی های تجدیدپذیر پیشنهاد میکنم مقاله پیشین را که ترجمه اینجانب با عنوان ” طراحی موثر برای نیروگاه های فتوولتائیک متصل به شبکه با وجود بانک باتری” میباشد مطالعه بفرمایید.
یکی دیگر از فرصت های سرمایه گذاری، ورود به پروژه‌های هیدروپاور و استفاده از جریانات رودخانه‌ ای به عنوان یک منبع پایدار از انرژی آبی است. البته در سال های گذشته به دلیل سیاست های سد سازی و کاهش شدید سطح آب رودخانه ها و بعضا خشک شدن دائمی یا فصلی رودها در ایران این فرصت برای سرمایه گذاری کمرنگ شده است، ولی در مقابل توسعه سد‌های پمپاژ به منظور مدیریت بهینه انرژی و تأمین نیاز اوقات پر باری، از فرصت‌های سرمایه‌گذاری در حوزه هیدروپاور است که نمونه آن سد تلمبه ذخیره ای سیاه بیشه (نیروگاه سیاه بیشه) در استان مازندران است.
انرژی‌های تجدیدپذیر، به عنوان یک حوزه رشدآور صنعت انرژی، فرصت‌های بسیاری را برای سرمایه‌گذاران فراهم کرده‌ است. سرمایه‌گذاری در پروژه‌های نیروگاه ‌های خورشیدی، نیروگاه های بادی، تکنولوژی ذخیره سازی انرژی و پروژه‌های هیدروپاور، امکان توسعه پایدار و بهره‌وری بالا را به همراه دارد.

global investment in clean energy transition by sector 2022 e1674849760845 - ورود ثروت استراتژیک به بازار انرژی ایران

استراتژی‌های کاهش ریسک

برای ورود به بازار انرژی و حفظ استقرار در آن، لازم است که از استراتژی‌های کاهش ریسک استفاده کنید. با رویکرد ثروت استراتژیک، استراتژی‌های کاهش ریسک باید به صورت تعادل‌یافته، با هدف بهره‌وری و بهبود سودآوری اجرا شوند، که برخی از این استراتژی‌ها شامل توسعه پروژه‌های مختلف با استفاده از تنوع در پروژه‌های تولید انرژی، تشکیل شراکت‌های استراتژیک و همکاری با سازمان‌های محلی و بین‌المللی در زمینه تولید و توزیع انرژی، سرمایه‌گذاری در تکنولوژی‌های نوین و تحلیل بازار و پیش‌بینی قیمت‌ها میباشد.
حوزه‌های انرژی تجدیدپذیر نه تنها از لحاظ فناوری و محیطی جلب توجه میکنند، بلکه به سیاست‌ها و حمایت‌های دولتی نیز متصل هستند که در مقایسه با سایر حوزه‌های انرژی، به کاهش ریسک‌ سرمایه گذاری کمک کرده‌ است.
بخشی از این سیاست های حمایتی تسهیل در دسترسی به منابع مالی از طریق اعطای تسهیلات و وام‌های مختلف است که باعث کاهش ریسک‌های مالی مرتبط با پروژه‌های انرژی می‌شود.
همچنین معافیت مالیاتی دولت برای پروژه‌های تجدیدپذیر نه تنها هزینه‌ها را کاهش می‌دهد بلکه سودآوری این پروژه ها را نیز افزایش داده است.
یکی دیگر از حمایت های دولتی، تعهدات دولت در خرید تضمینی انرژی است که سبب کاهش ریسک این بازار شده است. البته همه این حمایت ها در جهت تحقق هدف‌ های سهم انرژی تجدیدپذیر در تولید انرژی توسط دولت ها میباشد که باعث رغبت بیشتر به سرمایه‌گذاری در این حوزه شده و ریسک‌های مرتبط با تولید انرژی سنتی را کاهش داده است. چراکه در مقایسه با انرژی‌های فسیلی، تجدیدپذیر نقش کلیدی در حفظ محیط زیست دارد و این امر باعث کاهش ریسک‌های زیست محیطی مرتبط با پروژه‌های انرژی می‌شود. همچنین استفاده از منابع تجدیدپذیر، وابستگی به منابع طبیعی محدود مثل نفت و گاز را کمتر میکند و این امر به کاهش ریسک‌های ارتباطی با منابع انرژی مربوط است، که شرح مدیریت ریسک منابع انرژی را در مقاله پیشین با عنوان ” راهبرد هوشمند انرژی ” به تفصیل اشاره کرده ام.
ضمن اینکه فرآیندهای تولید انرژی تجدیدپذیر از طریق فناوری‌های پویا و قابل اطمینانی انجام می‌شوند که این امر باعث کاهش ریسک‌های این حوزه می‌گردد و اگر از حمایت های دولتی شامل پرداخت تسهیلات و تعهدات خرید انرژی هم بگذریم، همین امر باعث می‌شود که ریسک‌های مرتبط با تجدیدپذیر به میزان قابل ملاحظه‌ای کاهش یابد.

 

REIT2 - ورود ثروت استراتژیک به بازار انرژی ایران REIT3 - ورود ثروت استراتژیک به بازار انرژی ایران

مدیریت موفق ریسک در بخش انرژی: مطالعات موردی

1. پروژه نیروگاه خورشیدی در کالیفرنیا
در این پروژه، استفاده از تکنولوژی‌های جدید در نیروگاه خورشیدی باعث افزایش بهره‌وری و کاهش هزینه‌ها شد. مدیریت موفق ریسک در این پروژه با ترکیب تحقیقات و توسعه، همکاری با تیم‌های متخصص، و استفاده از تجهیزات پیشرفته انجام شد. این رویکرد باعث کاهش ریسک‌های تکنولوژیکی و افزایش سودآوری پروژه شد.

2. پروژه بادگیر در دریای شمالی
یک پروژه بادگیر در منطقه دریای شمالی با استفاده از تکنولوژی‌های بادی جدید موفقیت‌آمیز بود. مدیریت ریسک در این پروژه با توجه به شناخت دقیق از شرایط جغرافیایی، استفاده از تجهیزات مقاوم در برابر شرایط جوی سخت، و همکاری با شرکای استراتژیک انجام شد. این رویکرد باعث مدیریت موثر ریسک‌های اقتصادی و محیطی شد.

3. پروژه هیدروپاور در آمازون
در پروژه‌های هیدروپاور، مواجهه با تغییرات در سطح آب و جریانات رودخانه‌ها چالش‌هایی ایجاد می‌کند. در یک پروژه هیدروپاور در آمازون، مدیران با استفاده از مدل‌های پیشرفته، تجهیزات مقاوم در برابر شرایط طبیعی خاص منطقه، و همکاری با محققان محلی، موفق به مدیریت بهینه ریسک‌های مرتبط با متغیرهای طبیعی شدند.
مطالعات موردی نشان می‌دهند که مدیریت موفق ریسک در بخش انرژی نیازمند یک رویکرد چندفاکتوری است. استفاده از تکنولوژی‌های پیشرفته، تحلیل دقیق بازار، همکاری با تیم‌های متخصص، و انعطاف پذیری در مواجه با چالش‌های طبیعی از جمله عناصر کلیدی هستند که به مدیران انرژی کمک می‌کنند تا ریسک‌ها را با موفقیت مدیریت کنند و به سودآوری پروژه‌های خود برسند.

 

ایجاد مشارکت‌های استراتژیک در بازار انرژی

مشارکت‌های استراتژیک در بازار انرژی می‌توانند به عنوان یک راهبرد موثر برای ایجاد همکاری و افزایش کارایی در صنعت انرژی مطرح شوند. تعیین اهداف مشترک اولین گام برای ایجاد یک مشارکت استراتژیک، بین شرکای ممکن است. این اهداف می‌توانند شامل افزایش بهره‌وری، توسعه فناوری، کاهش انرژی‌های زیان‌آور، یا ایجاد منابع انرژی پاک باشند.
همچنین مشارکت‌های استراتژیک می‌توانند بستر مناسبی برای انتقال فناوری فراهم کنند که منجر به توسعه و به‌روزرسانی تکنولوژی‌ها در صنعت انرژی می شود. و همانطور که پیش تر گفتم تشخیص و مدیریت ریسک‌ها شامل شناسایی، ارزیابی و کاهش ریسک‌های مالی، فنی، سیاسی دارای اهمیت بسیاری است و یکی از عوامل موفقیت مشارکت‌های استراتژیک است، حال آنکه همکاری ها، کلید موفقیت در بازار انرژی ایران است.

شاخص های اقتصادی - ورود ثروت استراتژیک به بازار انرژی ایران

پیش‌بینی روندهای آتی در بازار انرژی ایران

در آینده، توسعه انرژی ‌های تجدیدپذیر از مهمترین ترین روندها در بازار انرژی ایران خواهد بود. سرمایه‌گذاری در زمینه‌ نیروگاه خورشیدی، بادی و دیگر تجدیدپذیرها، با هدف کاهش وابستگی به سوخت‌های فسیلی و افزایش پایداری انرژی کشور ادامه خواهد یافت.
انتظار می رود پیشرفت‌های فناوری در زمینه ‌هایی مانند ذخیره‌سازی انرژی، شبکه‌های هوشمند، و بهینه‌سازی مصرف انرژی، در آینده بازار انرژی ایران تحولات مهمی ایجاد کند. این تحولات باعث بهبود کارایی و کاهش هزینه‌ها در تولید و مدیریت انرژی خواهد شد و در آخر با توسعه سیاست‌های حمایتی دولت و جلب سرمایه‌گذاری‌ بخش خصوصی، نقش این بخش در تولید انرژی و توسعه پروژه‌های جدید افزایش خواهد یافت. این تحول می‌تواند به افزایش تنوع و رقابت در بازار انرژی منجر شود و در شکل گیری ساختار جدید بازار برق ایران تاثیرگذار باشد که مطابق مواردی که در مقاله پیشین تحت عنوان “خصوصی سازی انرژی و بازار آزاد برق” نوشتم، این امر سبب افزایش کارایی و شفافیت در عملکرد مالی و عملیاتی بازار انرژی می‌شود و به بهبود کیفیت ارائه خدمات و کاهش هزینه‌ها کمک میکند.
با افزایش حساسیت به موضوعات محیطی و کاهش موجودیت منابع طبیعی، اقتصاد انرژی به عنوان یک مفهوم مهم به ویژه در بخش صنعتی و تولید، بیشتر به چشم خواهد خورد. بهره‌گیری از تکنولوژی‌ها و استراتژی‌های کاهش مصرف انرژی برای حفظ منابع و بهبود بهره‌وری اقتصادی در دستور کار قرار خواهد گرفت. پیش‌بینی روندهای آتی در بازار انرژی ایران نشان می‌دهد که با توجه به تحولات فناوری، توسعه انرژی‌های تجدیدپذیر، و تغییرات در ساختار سازمانی، بازار در مسیر تحول و بهبود قرار دارد.

 

نتیجه

در پایان باید اشاره کنم، بازار انرژی ایران یک بازار چند وجهی است ولی با پذیرش پیچیدگی ها، درک اختلافات کوچک و اجرای استراتژی های آگاهانه، افراد می توانند برای موفقیت کوتاه مدت و البته بلندمدت به این حوزه پویا ورود کنند. جهت روشن تر شدن مسیر ورود به بازار انرژی تجدیدپذیر جدا از محتوای این مقاله پیشنهاد میکنم به مطالعه مقاله دیگری از من تحت عنوان ” استراتژی ها و دیدگاه های کلیدی برای ورود موفق به تجارت انرژی در ایران ” بپردازید.

نویسنده: مهدی پارساوند

راهبرد هوشمند انرژی:

تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

 

ریسک‌ها در آینده هر کشوری می‌تواند متنوع باشد و به عوامل مختلفی ارتباط داشته باشد. در این مقاله به برخی از ریسک‌های بزرگی که ممکن است در آینده کشورها مطرح شوند، اشاره میکنم و به یکی از مهمترین آن به تفصیل میپردازم.

 1.تغییرات آب و هوا:

تغییرات اقلیمی و پدیده‌های مرتبط مانند سیل، خشکسالی و تغییرات دمایی می‌توانند تأثیرات جدی بر زیرساخت‌ها، کشاورزی و اقتصاد یک کشور داشته باشد. ریسک تغییرات آب و هوایی در مقاله پیشین اینجانب به طور کامل بحث شده که پیشنهاد میکنم اگر نسبت به پایداری زمین و محیط زیست و میراثی که برای نسل آینده از خود به جا خواهید گذاشت، دارای دغدغه هستید این مقاله را تحت عنوان ” گرمایش جهانی و تغییرات اقلیمی، چشم انداز جامع با اشاره به تاثیرپذیری ایران” مطالعه بفرمایید.

 

       2.فرسایش منابع طبیعی:

 به دلیل استفاده بی‌رویه از منابع طبیعی، فرسایش خاک، کاهش تنوع زیستی و کاهش منابع آب، به یکی از چالش‌های مهم کشورها تبدیل شده است. در مقالات آتی از این ریسک بیشتر صحبت خواهم کرد.

 

      3. تکنولوژی و امنیت سایبری:

 توسعه روزافزون تکنولوژی و اتصال دائمی به اینترنت، ریسک‌های مرتبط با امنیت سایبری را افزایش داده و ممکن است به تهدید امنیت ملی تبدیل شوند. امروز که در حال نوشتن این مقاله هستم خبر هک اسنپ فود منتشر شد و افشای اطلاعات هویتی میلیون ها کاربر این سامانه که اگر جستجویی در صفحات وب داشته باشید با مثال های زیادی از این دست مواجه خواهید شد. در مورد این ریسک در ایران و جهان، متخصصان فناوری اطلاعات مقالات زیادی منتشر کرده و قابل استناد است.

 

      4.بحران‌های اقتصادی:

نوسانات بازارها، بحران‌های مالی جهانی، تورم و سایر عوامل می‌توانند به چالش‌های اقتصادی و اجتماعی منجر شوند. در مورد این ریسک هم متخصصان حوزه اقتصادی، موارد زیادی را طرح نموده و البته به تفصیل به مولفه های مختلف این بحران و راهکارهای برون رفت از آن پرداخته شده است.

 

      5.تنش‌های جمعیتی:

افزایش جمعیت، مهاجرت، عدم توازن در ساختار جمعیتی و مسائل مرتبط با آن‌ها یکی دیگر از چالش‌های اجتماعی و اقتصادی درگیرکننده کشورها از جمله ایران است و یکی از تاثیرپذیرترین ریسک ها به شمار می آید و بسیاری از بحران های بالا میتواند درصد این ریسک را افزایش دهد.

 

       6.تهدیدهای امنیتی:

تهدیدات نظامی، تروریسم، ناسازگاری‌های اجتماعی و دیگر عوامل می‌توانند امنیت کشورها را تهدید کنند و جز یک از ریسک های استراتژیک برای کشورها محسوب می شود.

 

       7. بحران‌های بهداشت عمومی:

ویروس‌ها، اپیدمی‌ها و بحران‌های بهداشتی ممکن است به چالش‌های جدی در حوزه سلامت و اقتصاد منجر شوند که در جای خود مورد بحث و بررسی قرار می گیرند و البته برخی از این اپیدمی ها ناشی از تغییرات اقلیمی رخ میدهد.

 

       8.کاهش منابع انرژی:

 نیاز روزافزون به انرژی و کاهش منابع طبیعی، باعث افزایش ریسک‌های مرتبط با امنیت انرژی و تأمین انرژی می‌شود. در این مقاله میخواهم به تفصیل به این ریسک بپردازم. البته همه این عوامل با توجه به شرایط و ویژگی‌های هر کشور، می‌توانند تأثیرات متفاوتی داشته باشند و اهمیت مدیریت و پیش‌بینی آن‌ها برای توسعه پایدار و امنیت کشورها بسیار حائز اهمیت است، ولی احساس میکنم کاهش منابع انرژی برای هر کشوری میتواند بزرگترین ریسک استراتژیک به حساب آید که در ادامه با جزئیات همراه با مثال های از جهان به آن خواهم پرداخت.

istockphoto 540089526 612x612 1 - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

ریسک کاهش منابع انرژی به امکانات و منابعی اشاره دارد که برای تأمین نیازهای انرژی یک کشور مورد استفاده قرار می‌گیرند و احتمال کاهش آن‌ها در آینده وجود دارد. این مسئله می‌تواند تأثیرات جدی بر اقتصاد، امنیت انرژی، و توسعه پایدار یک کشور داشته باشد. در ادامه، برخی از جنبه‌های مهم ریسک کاهش منابع انرژی را توضیح می دهم:

وابستگی به منابع غیرقابل تجدید:

اگر یک کشور به منابع انرژی غیرقابل تجدید (مانند نفت، گاز و زغال سنگ) وابسته باشد، هر گونه کاهش در دسترسی به این منابع می‌تواند به شدت اثرگذار باشد. نه تنها این منابع محدود هستند، بلکه اثرات زیان بار زیادی بر محیط زیست دارند.

تغییرات در قیمت انرژی:

تغییرات ناپیوسته در قیمت منابع انرژی می‌تواند به عنوان یک ریسک مهم محسوب شود. افزایش ناگهانی در قیمت‌های انرژی می‌تواند به تورم اقتصادی، افت فعالیت‌های صنعتی، و افزایش هزینه‌های زندگی منجر شود.

تغییرات قیمت انرژی تحت تأثیر عوامل مختلفی قرار می‌گیرند. شاخص‌های مختلفی وجود دارند که می‌توانند نشان‌دهنده تغییرات در بازار انرژی باشند. در ادامه، به برخی از این شاخص‌ها اشاره میکنم:

قیمت نفت خام: قیمت نفت خام به عنوان یکی از اهم شاخص‌های تغییرات قیمت انرژی در بازار جهانی شناخته می‌شود. قیمت نفت خام به عواملی مانند تقاضا و عرضه جهانی، سیاست‌های تولیدکنندگان نفت، و وقایع جهانی نظیر تنش‌های سیاسی و اقتصادی حساس است.

قیمت گاز طبیعی: قیمت گاز طبیعی نیز همانند نفت خام به عنوان یک شاخص مهم در تغییرات قیمت انرژی در نظر گرفته می‌شود. تقاضا و عرضه گاز طبیعی، توافقات تجاری، و شرایط هواشناسی بر روی این شاخص تأثیرگذارند.

قیمت زغال سنگ: زغال سنگ نیز به عنوان یک منبع اصلی انرژی در بسیاری از کشورها شناخته می‌شود. قیمت زغال سنگ تحت تأثیر عواملی مانند تقاضا و عرضه، سیاست‌های حکومتی، و تأثیر تحولات فناوری در صنعت معدن قرار دارد.

قیمت برق: قیمت برق یکی از مهم‌ترین شاخص‌های تغییرات قیمت انرژی در داخل یک کشور است. این شاخص تحت تأثیر عواملی نظیر ترکیب میزان تولید انرژی از منابع مختلف (تجدیدپذیر و غیرتجدیدپذیر)، هزینه‌های تولید برق، و نیز تغییرات در نیازهای اقتصادی و اجتماعی قرار دارد.

قیمت منابع تجدیدپذیر: در حال حاضر، قیمت منابع تجدیدپذیر نیز به عنوان یک شاخص مهم در بازار انرژی در نظر گرفته می‌شود. قیمت پنل‌های خورشیدی، توربین‌های بادی، و دیگر فناوری‌های تجدیدپذیر تأثیرگذار بر تغییرات در قیمت انرژی هستند.

این شاخص‌ها به عنوان نماینده‌های مختلفی از بازار انرژی می‌توانند در پیش‌بینی تغییرات و تحولات در صنعت انرژی و اقتصاد کمک کنند.

یکی از مثال‌های نمایان بر تغییرات قیمت انرژی و ریسک کاهش منابع انرژی، تجربه افزایش قیمت نفت در دهه 2000 میلادی است. در سال 2008، قیمت نفت خام به سطح بالایی ارتقا یافت. در ژوئیه 2008، قیمت هر بشکه نفت به حدود 147 دلار رسید، که این افزایش ناگهانی به عواملی نظیر افزایش تقاضا جهانی، نوسانات در عرضه نفت، و تنش‌های سیاسی در مناطق تولید کننده نفت، بخصوص خاورمیانه، بازمی‌گردید.

این افزایش ناگهانی قیمت نفت، علاوه بر پراکندگی های اقتصادی در جهان، به عنوان یک ریسک کلان در کاهش منابع انرژی وابسته به نفت در بسیاری از کشورها شناخته شد. کشورهایی که از نفت به عنوان منبع اصلی انرژی استفاده می‌کردند، با مشکلات اقتصادی و ناتوانی در تأمین نیازهای داخلی خود مواجه شدند.

این مثال نشانگر اهمیت مدیریت موثر ریسک‌های مرتبط با تغییرات قیمت انرژی و تنظیم سیاست‌ها برای کاهش وابستگی به منابع انرژی نفتی است. این تجربه همچنین نشان دهنده نقش تصمیمات سیاسی، توسعه منابع تجدیدپذیر، و توجه به تنوع منابع انرژی در کاهش ریسک‌های مرتبط با کاهش منابع انرژی است.

 

یک مثال دیگر از تغییرات قیمت انرژی و ریسک کاهش منابع انرژی مربوط به تجربه کشورها در حوزه گاز طبیعی است. در دهه 2010، قیمت گاز طبیعی در ایالات متحده به طور چشمگیری کاهش یافت. این کاهش به دلیل افزایش تولید داخلی گاز طبیعی به واسطه تکنولوژی استخراج شیل (شیل گاز) و افت تقاضا ناشی از اقتصاد کاهشی بود.

این تجربه نشانگر تأثیرات برگشت‌پذیر در تولید انرژی می‌باشد. کشورهایی که به واردات گاز طبیعی وابسته بودند، با کاهش قیمت گاز طبیعی و افزایش تولید داخلی مواجه شدند. این مسئله به عنوان یک ریسک کاهش منابع انرژی مطرح شد، زیرا تاثیرات اقتصادی و مالی را در کشورها به وجود آورد.

همچنین، مثالی از تغییرات قیمت برق می‌تواند در اواخر سال‌های 2020 ذکر گردد. برخی کشورها با تغییرات ناگهانی در ساختار تولید انرژی به سوی منابع تجدیدپذیر، مانند افزایش استفاده از برق تولید شده از نیروگاه‌های خورشیدی و بادی، با تغییر در قیمت برق مواجه شدند. این تغییرات ممکن است به عنوان یک ریسک برای کشورها در تحول به سوی سیستم‌های انرژی پایدارتر در نظر گرفته شود و به تغییر در نظام قیمت برق، خصوصاً در کشورهایی که در تولید انرژی از منابع تجدیدپذیر رشد چشمگیری داشته است، منجر شود.

برای مثال، آلمان با اجرای سیاست‌های حمایتی برای تشویق استفاده از انرژی‌های تجدیدپذیر، تولید انرژی از نیروگاه‌های خورشیدی و بادی خود را افزایش داده است. این تحول منجر به افزایش تولید انرژی و برق شد، اما همچنین با تغییر در قیمت برق و اثرات مالی برای شرکت‌های تولید کننده برق و مصرف‌کنندگان مرتبط بوده است.

این مثال نشانگر ضرورت برنامه‌ریزی و مدیریت هوشمندانه تحولات در ساختار تولید انرژی است و اهمیت برنامه‌ریزی دقیق، تنوع در منابع انرژی، و توسعه فناوری‌های پایدار در مدیریت ریسک‌های مبتنی برکاهش منابع انرژی می‌باشند.

energy collae scaled - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

 نوسانات در تأمین انرژی:

ناپایداری در تأمین منابع انرژی می‌تواند منجر به نوسانات در تأمین انرژی برای صنایع، کسب و کارها، و خانواده‌ها شود. این نوسانات می‌توانند باعث ناتوانی در برنامه‌ریزی استفاده از انرژی و بهبود بهره‌وری شوند.

یکی از مثال‌های بارز از نوسانات در تأمین انرژی مرتبط با ریسک کاهش منابع انرژی، تجربه اروپا در زمینه تأمین گاز طبیعی از روسیه است. در دو دوره مختلف یکی سال ۲۰۰۶، درگیری‌های سیاسی بین روسیه و اوکراین منجر به قطع تأمین گاز طبیعی از سوی روسیه به اوکراین شد و دیگری همین جنگ اخیر روسیه و اوکراین که این واقایع باعث نوسانات قابل توجه در تأمین گاز به اروپا شد و بسیاری از کشورهای اروپایی با نقض تأمین گاز مواجه شدند. این مسئله یکی از نشانه‌های ریسک‌های مرتبط با وابستگی به منابع انرژی خارجی بود و بر وابستگی زیاد بعضی از کشورها به تأمین گاز از روسیه تأکید کرد.

در این مثال، نوسانات در تأمین گاز ناشی از تغییرات در روابط سیاسی و دیپلماتیک باعث شد که کشورها متوجه ریسک‌های احتمالی در تأمین انرژی خود شوند. این واقعه همچنین تحت تأثیر قیمت‌ها و استقرار بازار انرژی در منطقه قرار گرفت و نیاز به توزیع منابع انرژی و ایجاد شبکه‌های انتقال گاز طبیعی را اهمیت بخشید.

این نمونه نشان می‌دهد که نوسانات در تأمین انرژی نه تنها به مسائل اقتصادی بلکه به چالش‌های امنیتی و سیاسی نیز متصل هستند، و بنابراین مدیریت مناسب این ریسک‌ها از اهمیت بالایی برخوردار است.

یک مثال قدیمی تر از نوسانات در تأمین انرژی، تجربه بحران نفت در دهه 1970 میلادی است. در اوایل دهه 1970، برخی از کشورهای صادرکننده نفت در خاورمیانه، اعتراض به حمایت از اسرائیل توسط غرب را به عنوان دلیل برای کاهش تولید نفت و تامین کشورهای غربی اعلام کردند. این تصمیم منجر به بحران نفت 1973، یا همان “جنگ نفتی”، شد.

در اثر این بحران، کشورهای غربی مواجه با تعلیق تأمین نفت شدند و قیمت نفت به شدت افزایش یافت. این نوسانات شدید در بازار نفت به وضوح نشان‌دهنده ریسک‌های مرتبط با وابستگی به منابع انرژی خارجی بود. کشورها متوجه شدند که تأمین نفت به عنوان منبع انرژی اساسی، به خصوص اگر از مناطقی با اختلافات سیاسی و جنگی بهره‌مند باشد، ممکن است از دست برود. این مثال نشان می‌دهد که چگونه نوسانات در تأمین انرژی می‌توانند ناگهانی تحت تأثیر قرارگیرند و به دلیل عوامل سیاسی و جغرافیایی نیز می‌توانند بر جوامع و اقتصادها تأثیر گذار باشند. بنابراین، برنامه‌ریزی و اجرای سیاست‌هایی که به توزیع منابع انرژی و کاهش وابستگی به منابع خاص کمک کنند، از اهمیت بالایی برخوردار است.

 

مثال دیگری از نوسانات در تأمین انرژی مرتبط با ریسک کاهش منابع انرژی، تجربه کشور ژاپن پس از حادثه هسته‌ای فوکوشیما در سال 2011 است. زلزله و سونامی این حادثه را ایجاد کردند که منجر به آسیب دیدن نیروگاه هسته‌ای فوکوشیما شد. در پی این حادثه، ژاپن بخش قابل توجهی از نیروگاه‌های هسته‌ای خود را تعطیل کرد و تأمین انرژی الکتریکی از این منابع کاهش یافت. نوسانات در تأمین انرژی در ژاپن به دلیل اتکا به نیروگاه‌های هسته‌ای برای تأمین بخش قابل توجهی از انرژی الکتریکی بود. پس از حادثه، ژاپن مجبور به افزایش وابستگی به سوخت‌های فسیلی و واردات نفت و گاز شد که به تحولات ناگهانی در بازارهای جهانی انرژی منجر شد. این نوسانات تأثیر زیادی بر هزینه‌ها، امنیت انرژی، و سیاست‌های انرژی ژاپن داشتند. این مثال نشان می‌دهد که حوادث غیرمنتظره مانند حوادث هسته‌ای می‌توانند به طور قابل‌توجهی بر تأمین انرژی تأثیرگذار باشند و نیاز به تصمیمات فوری و تغییرات در سیاست‌های انرژی را برجسته می‌کنند. برنامه‌ریزی جهت افزایش انعطاف‌پذیری در سیستم تأمین انرژی و اجتناب از اتکا به منابع خاص می‌تواند از مهمترین راهکارها باشد.

 

تغییرات تکنولوژیک:

پیشرفت در فناوری‌های تجدیدپذیر و افزایش بهره‌وری انرژی می‌تواند منجر به کاهش نیاز به منابع انرژی سنتی شود. کشورهایی که بتوانند با چنین تغییراتی همگام شوند، می‌توانند از ریسک‌های کاهش منابع انرژی کاسته و به سوی سیستم‌های پایدارتر حرکت کنند. البته تغییرات تکنولوژیک می‌توانند یکی از عوامل مهم در ایجاد ریسک کاهش منابع انرژی باشند. به عنوان مثال، افزایش استفاده از فناوری‌های تجدیدپذیر و تغییرات در حوزه ذخیره‌سازی انرژی می‌توانند به تغییر در تقاضا و عرضه انرژی منجر شوند.

یک مثال از تغییرات تکنولوژیک می‌تواند مربوط به پیشرفت در فناوری باتری‌ها و ذخیره‌سازی انرژی باشد. افزایش کارآیی باتری‌ها و توسعه تکنولوژی‌های ذخیره‌سازی، می‌تواند باعث افزایش توانایی استفاده از انرژی تجدیدپذیر (مانند برق تولیدی از نیروگاه‌های خورشیدی و بادی) شده و در نتیجه به کاهش وابستگی به منابع انرژی فسیلی کمک کند.

همچنین، پیشرفت در فناوری‌های مرتبط با بهینه‌سازی مصرف انرژی در صنایع و افزایش بهره‌وری در انتقال و توزیع انرژی نیز می‌تواند تأثیرگذار باشد. به عنوان مثال، تجهیزات و شبکه‌های هوشمند در صنعت انرژی می‌توانند به مدیریت بهتر تقاضا و تأمین انرژی کمک کنند.

این تغییرات تکنولوژیک، هرچند که می‌توانند به کاهش وابستگی به منابع انرژی سنتی کمک کنند، اما همچنین ممکن است نیازمند سرمایه‌گذاری و تغییر در زیرساخت‌های انرژی باشند. بنابراین، برنامه‌ریزی و مدیریت مناسب در حوزه فناوری انرژی، جهت کاهش ریسک‌های احتمالی و بهبود امنیت انرژی ضروری است.

compressed img XBwQ9OMD6BbnDB8MmMfxJFqW 1536x878 1 - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

وابستگی به واردات انرژی:

اگر یک کشور به واردات بیش از حد انرژی وابسته باشد، تحت تأثیر قیمت‌ها و شرایط سیاسی دیگر کشورها قرار می‌گیرد. این وابستگی می‌تواند در مواقع بحرانی وضعیت امنیتی و اقتصادی را تهدید کند.

یک مثال از وابستگی به واردات انرژی، تجربه ژاپن می‌باشد. ژاپن، یک کشور کم‌منابع در حوزه انرژی است و همانطور که در بندهای قبلی عرض کردم بخش قابل توجهی از نیازهای انرژی خود را از واردات انرژی مانند نفت و گاز تأمین می‌کند. این وابستگی بیشتر به واردات انرژی نه تنها هزینه‌های اقتصادی زیادی به دنبال داشته، بلکه امنیت انرژی کشور را نیز تحت تأثیر قرار داد.

 

در مثال دیگر می‌توان به تجربه کشورهای اعضای اتحادیه اروپا اشاره داشت. بسیاری از این کشورها وابستگی زیادی به واردات گاز طبیعی از کشورهای خارج از اتحادیه دارند و همانطور که عرض شد در صورت بروز تنش‌های سیاسی یا مسائل امنیتی در مناطق تأمین‌کننده، این کشورها با مشکلات در تأمین انرژی مواجه می‌شوند.

این نمونه‌ها نشان می‌دهند که وابستگی به واردات انرژی می‌تواند کشورها را در معرض ریسک‌های اقتصادی، سیاسی و امنیتی قرار دهد. برنامه‌ریزی برای توزیع منابع انرژی و توسعه منابع داخلی، می‌تواند به کاهش این وابستگی و افزایش امنیت انرژی کمک کند.

با توجه به این نکات، مدیریت مناسب منابع انرژی، توسعه فناوری‌های پایدار و تنوع در تأمین انرژی می‌تواند به عنوان راهکارهایی برای کاهش ریسک‌های مرتبط با کاهش منابع انرژی مدنظر قرار گیرد.

Risk challenges GettyImages 500304596 - تصویری برای تحول پایدار آینده و مدیریت ریسک منابع انرژی

در پایان با توجه به تفاسیر بالا به صورت چکیده و موردی برای برون رفت از ریسک‌های وابستگی به واردات انرژی و کاهش منابع انرژی، تلاش دارم راهکارهایی را پیشنهاد بدم:

۱. توسعه منابع داخلی انرژی: سرمایه‌گذاری در توسعه منابع داخلی انرژی، از جمله نیروگاه‌های بادی، خورشیدی، هسته‌ای و سایر منابع تجدیدپذیر، که به کشورها کمک می‌کند تا وابستگی خود به واردات انرژی را کاهش دهند.

۲. توسعه فناوری های انرژی: سرمایه‌گذاری در تحقیقات و توسعه فناوری‌های پیشرفته در زمینه انرژی، افزایش بهره‌وری و کاهش هزینه‌ها را ایجاد می‌کند. این اقدامات می‌توانند توانمندی‌های داخلی را در تولید انرژی افزایش دهند.

۳. توزیع منابع: افزایش منابع متنوع انرژی، کشورها را در برابر نوسانات قیمت و مشکلات تأمین محدودیت‌های مربوط به یک منبع خاص محافظت می‌کند.

۴. توسعه انرژی‌های تجدیدپذیر: استفاده بیشتر از انرژی‌های تجدیدپذیر نظیر نیروگاه خورشیدی و نیروگاه بادی، به کاهش وابستگی به منابع انرژی سنتی کمک می‌کند و همچنین در راستای حفظ محیط زیست خواهد بود.

۵. تسهیل در انجام تبادلات انرژی: توسعه شبکه‌های انرژی بین‌المللی و تسهیل در تبادلات انرژی با کشورهای همسایه، می‌تواند به افزایش انعطاف‌پذیری و کاهش ریسک‌های مرتبط با تأمین انرژی کمک کند.

۶. ترویج کاربرد تکنولوژی‌های نوین: استفاده از تکنولوژی‌های هوش مصنوعی، اینترنت اشیاء و تحلیل داده‌ها در صنعت انرژی می‌تواند به بهبود بهره‌وری، پیش‌بینی تقاضا و مدیریت بهینه شبکه‌های انرژی کمک کند.

۷. توسعه شبکه‌ برق کشور: ساختار قوی و انعطاف‌پذیر در شبکه‌ برق باعث می‌شود که توانایی انتقال و توزیع برق بهبود یابد و از وابستگی به منابع خارجی کاسته شود.

۸. تشویق به مصرف مسئولانه انرژی: افزایش آگاهی مردم در خصوص مصرف انرژی و ترویج رفتارهای مسئولانه نظیر صرفه‌جویی در مصرف انرژی و استفاده از انرژی‌های تجدیدپذیر، به کاهش فشار بر تأمین انرژی کمک می‌کند.

۹. تشویق به سرمایه‌گذاری خصوصی: ایجاد شرایط لازم و تشویق به سرمایه‌گذاری در زمینه تولید و ذخیره انرژی، به ویژه در صنعت‌های نوظهور، می‌تواند به توسعه منابع داخلی انرژی و کاهش وابستگی به واردات کمک کند.

 

۱۰. تعامل بین‌المللی: برقراری همکاری‌های بین‌المللی در زمینه انرژی، تبادل تکنولوژی و دانش، و ایجاد توافقات برای تأمین انرژی می‌تواند امنیت انرژی را در سطح جهانی تقویت کند و ریسک‌های مشترک را کاهش دهد.

این راهکارها به یکدیگر ترکیب شده و با رویکردهای سیاست‌گذاری مناسب، می‌توانند به کشورها کمک کنند تا در حوزه انرژی خود امنیت داشته باشند و به واردات انرژی وابستگی کمتری داشته باشند.

نویسنده: مهدی پارساوند

12/10/1402

اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

امسال شاهد رکوردشکنی تولید خورشیدی و «تغییر چشمگیر» در تولید باتری بودیم.
رهبر جدید انرژی خورشیدی جهان، در سال 2023 انرژی های تجدیدپذیر را با سرعت سرسام آوری اضافه کرد.
اگر این روند تقویت شود، به زمین کمک می کند تا از سوخت های فسیلی دور شود و از گرم شدن شدید زمین و اثرات آن جلوگیری کند.

انرژی پاک اغلب کم هزینه ترین گزینه است. بر اساس گزارش آژانس بین‌المللی انرژی، کشورها سیاست‌هایی را اتخاذ کردند که از انرژی‌های تجدیدپذیر حمایت می‌کنند، برخی از آنها به نگرانی‌های امنیت انرژی اشاره می‌کنند. این عوامل با نرخ‌های بهره بالا و چالش‌های مداوم در تهیه مواد و قطعات در بسیاری از مکان‌ها مقابله کردند.
آژانس بین المللی انرژی پیش بینی کرد که بیش از 440 گیگاوات انرژی تجدیدپذیر در سال 2023 اضافه شد که بیشتر از کل ظرفیت برق نصب شده آلمان و اسپانیا با هم است.
در اینجا نگاهی به سال در انرژی خورشیدی، باد و باتری داریم.

یک سال رکورد برای انرژی خورشیدی
طبق گزارش آژانس بین‌المللی انرژی‌های تجدیدپذیر (IEA)، چین، اروپا و ایالات متحده هر کدام رکوردهای نصب را برای یک سال ثبت می‌کنند.

افزوده‌های چین، بسته به اینکه پروژه‌های پایان سال چگونه پیش می‌روند، ظرفیت‌های سایر کشورها را بین 180 تا 230 گیگاوات کاهش داد. اروپا 58 گیگاوات اضافه کرد که رشدی 40 درصدی نسبت به سال 2022 داشت.
خورشیدی اکنون ارزان‌ترین شکل برق در اکثر کشورهاست.
مایکل تیلور، تحلیلگر ارشد آژانس بین‌المللی انرژی‌های تجدیدپذیر (IRENA) می‌گوید: «به‌ویژه در اروپا، گسترش استقرار با سرعت سرسام‌آوری انجام شده است.»
زمانی که اعداد نهایی برای سال 2023 مشخص شد، انتظار می‌رود که انرژی خورشیدی از نظر ظرفیت کل انرژی از انرژی آبی در سطح جهان پیشی بگیرد، اما برای برق واقعی تولید شده، انرژی آبی همچنان برای مدتی پیشتاز خواهد بود زیرا می‌تواند در تمام ساعات شبانه روز تولید کند.

در ایالات متحده، کالیفرنیا همچنان بیشترین انرژی خورشیدی را دارد و پس از آن تگزاس، فلوریدا، کارولینای شمالی و آریزونا قرار دارند.

دانیل برست، رئیس موسسه مطالعات محیطی و انرژی، یک سازمان غیرانتفاعی آموزش و سیاست، می‌گوید که مشوق‌های ایالتی و فدرال هر دو تأثیر زیادی بر رشد خورشیدی ایالات متحده داشتند.

با وجود موفقیت خورشیدی در سال 2023، موانعی وجود دارد. برست می گوید که کمبود ترانسفورماتور وجود داشته است، در حالی که نرخ بهره افزایش یافته است.

در ایالات متحده، تولید خورشیدی نیز رشد کرد. ابیگیل راس هاپر، رئیس و مدیر عامل انجمن صنایع انرژی خورشیدی، می‌گوید: «ما تأثیر قانون کاهش تورم را از لحاظ تأمین سوخت سرمایه‌گذاری‌ها دیده‌ایم… بیش از 60 تأسیسات تولید خورشیدی در سال گذشته اعلام شد.

131003788 gettyimages 1614630351 - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

چالش های انرژی باد

تا پایان سال 2023، جهان به اندازه کافی نیروگاه بادی برای تامین برق نزدیک به 80 میلیون خانه اضافه کرد و این یک سال رکورد محسوب می شود.

طبق تحقیقات Wood Mackenzie، مانند خورشیدی، بیشترین رشد با بیش از 58 گیگاوات در چین اضافه شد. به گفته Global Energy Monitor، چین در مسیر رسیدن به هدف بلندپروازانه 2030 خود یعنی 1200 گیگاوات ظرفیت انرژی خورشیدی و بادی پنج سال زودتر از برنامه زمان بندی شده، در صورتی که همه پروژه های برنامه ریزی شده ساخته شوند، پیشی می گیرد.

به گفته شورای جهانی انرژی بادی، چین یکی از معدود بازارهای رو به رشد امسال برای انرژی بادی بود. صدور مجوز سریعتر و سایر بهبودها در بازارهای کلیدی مانند آلمان و هند نیز به افزایش انرژی بادی کمک کرد. وود مکنزی گفت، اما تاسیسات در اروپا نسبت به سال گذشته 6 درصد کاهش یافته است.

چالش‌های کوتاه‌مدت مانند تورم بالا، افزایش نرخ‌های بهره و افزایش هزینه‌های مصالح ساختمانی، برخی از توسعه‌دهندگان نیروگاه بادی اقیانوسی را مجبور به مذاکره مجدد یا حتی لغو قراردادهای پروژه و برخی از توسعه‌دهندگان انرژی بادی مستقر در زمین را مجبور کرد تا پروژه‌ها را تا سال ۲۰۲۴ یا ۲۰۲۵ به تعویق بیندازند.
بادهای معکوس اقتصادی در زمان دشواری برای صنعت نوپای بادی فراساحلی ایالات متحده رخ داد، زیرا تلاش می کند اولین مزارع بادی فراساحلی در مقیاس تجاری را راه اندازی کند. ساخت و ساز در دو در سال جاری آغاز شد. هر دو قصد دارند در اوایل سال 2024 افتتاح شوند و یکی از سایت ها در حال تحویل برق به شبکه ایالات متحده است. مزارع بادی بزرگ فراساحلی برای سه دهه در اروپا و اخیراً در آسیا برق تولید می کنند.

پس از سال‌ها رشد بی‌سابقه، گروه صنعتی امریکن کلین پاور پیش‌بینی می‌کند تا پایان سال تعدادی نیروگاه بادی زمینی در ایالات متحده اضافه شود که تقریباً برای تامین برق 2.7 تا 3 میلیون خانه کافی است. این گروه می گوید توسعه دهندگان از اعتبارات مالیاتی جدیدی که سال گذشته در قانون کاهش تورم تصویب شد، استفاده می کنند، اما سال ها طول میکشد تا پروژه ها به شبکه متصل شوند. از زمان تصویب IRA تاکنون 383 میلیارد دلار (344 میلیارد یورو) سرمایه گذاری در انرژی پاک اعلام شده است.

ما در مورد سال 2023 اساساً به عنوان یک سال عملکرد پایین تر صحبت می کنیم، اما در طرح بزرگ همه چیز، 8 تا 9 گیگاوات هنوز عددی است که باید در مورد آن هیجان زده شد. جان هنسلی، معاون تحقیقات و تجزیه و تحلیل ACP می‌گوید: «نیروگاه های پاک بسیار زیادی به شبکه اضافه خواهد شد.

در سطح جهانی نیز باد امسال کندتر بود. سه بازار برتر امسال همچنان چین، ایالات متحده و آلمان برای انرژی بادی تولید شده در خشکی و چین، بریتانیا و آلمان برای فراساحل هستند.

تحلیلگران پیش‌بینی می‌کنند که صنعت جهانی در سال 2024 رونق گرفته و نزدیک به 12 درصد انرژی بادی بیشتری در سراسر جهان در دسترس خواهد بود.

3d137278 c18d 4865 ba6f 7e4bf697fa0f - اروپا، آمریکا، چین: بیشترین نیروگاه بادی و خورشیدی در سال 2023 کجا نصب شده است؟

سالی بزرگ برای باتری ها

به گفته آژانس بین‌المللی انرژی، در میان تلاش‌های مداوم برای کاهش آسیب‌های حمل‌ونقل به اقلیم، روند خودروهای الکتریکی در سال 2023 در سطح جهانی شتاب گرفت و طبق گزارش آژانس بین‌المللی انرژی، از هر پنج خودروی فروخته شده در سال جاری، یک خودرو الکتریکی بوده است. این بدان معنی بود که سال ۲۰۲۳ پرچمدار دیگری برای باتری ها بود.

طبق سیاست عمومی اطلس، بیش از 43.4 میلیارد دلار (39 میلیارد یورو) فقط در ایالات متحده در سال جاری صرف ساخت باتری و بازیافت باتری شده است که عمدتاً به لطف قانون کاهش تورم است. این امر ایالات متحده را در زمین بازی مساوی با اروپا قرار می‌دهد، اما همچنان پشت سر چین یعنی ابرقدرت باتری قرار دارد.

طبق گزارش Benchmark Mineral Intelligence، در مورد کارخانه‌های باتری‌سازی بزرگ که گیگافکتوری نامیده می‌شوند، ایالات متحده و اروپا هر کدام تا اواخر نوامبر 38 کارخانه داشتند. اما در چین 295 کارخانه در حال کار است.

به گفته کارشناسان، این صنعت همچنان به کشف راه‌های مختلف ساخت باتری‌ها بدون وابستگی زیاد به مواد مضر و همچنین راه‌هایی برای پایدارتر کردن قطعات ادامه داده، و به گفته کارشناسان، صنعت بازیافت باتری پیشرفت کرده است.
ایوان هارتلی، تحلیلگر ارشد بنچمارک، می گوید که هزینه مواد خام کلیدی باتری، از جمله لیتیوم نیز به میزان قابل توجهی کاهش یافته است.
پل براون، استاد علم و مهندسی مواد دانشگاه ایلینویز می‌گوید: «هزینه باتری اکنون در مسیری قرار دارد که اکثر آمریکایی‌ها می‌توانند یک خودروی الکتریکی بخرند».

2023 سفر آسانی نبود. صنعت در ایالات متحده، چندین باد مخالف را پشت سر گذاشت. تاسیسات عظیم باتری پاناسونیک در کانزاس با چالش های انرژی مواجه بود. تویوتا باید سایت خود در کارولینای شمالی را تقویت کند. نقض ایمنی و بهداشت در یک کارخانه سرمایه گذاری مشترک بین شرکت جنرال موتورز و LG Energy Solution در اوهایو مشاهده شد و این لیست ادامه دارد.

صرف نظر از منطقه، موانع موجود در مواد معدنی، زنجیره تأمین، مسئول ایجاد زیرساخت های شارژ خواهد ماند. جان آیشبرگر، مدیر اجرایی مؤسسه انرژی حمل‌ونقل، می‌گوید: «این موضوع دستور کار بعدی خواهد بود. اما کارشناسان خوش بین هستند که رشد باتری در سراسر جهان ادامه خواهد داشت.

منبع خبر : Isabella O’Malley, Jennifer McDermott, Alexa St. John with AP
Published on 29/12/2023

تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

    انتقال انرژی نیاز به زیرساخت مناسب دارد و احداث شبکه‌های انتقال برق و زیرساخت‌های توزیع برق برای انتقال انرژی تولید شده از نیروگاه‌ها به مناطق مصرف انرژی ضروری است. این زیرساخت‌ها باید به روز رسانی شده و به توسعه برسند تا تأمین انرژی پایدار و بهینه را تضمین کنند. زیرساخت‌های لازم برای انتقال انرژی از محل تولید به محل مصرف شامل خطوط و تجهیزات انتقال برق، زیرساخت‌های نگهداری، کنترل و اندازه‌گیری میشود.

   خطوط انتقال برق شامل سیم‌ها، پایه ها، و سازه‌های حمایتی هستند که انرژی تولیدی از نیروگاه‌ها را از منطقه تولید به منطقه مصرف منتقل می‌کنند. این زیرساخت از انتقال بهینه انرژی به نقاط مختلف و حفظ پایداری شبکه برق کمک می‌کند. احداث و نگهداری خطوط انتقال برق هزینه‌های گسترده‌ای دارد که به عوامل مختلفی بستگی دارد و شامل هزینه‌های مرتبط با طراحی، تهیه مواد، نصب تجهیزات، و ساختارهای حمایتی خطوط انتقال برق است و طول خط انتقال، نوع تجهیزات استفاده شده، و پیچیدگی شرایط محیطی ازعوامل تاثیرگذار روی این هزینه هاست.

   تجهیزات انتقال برق شامل ترانسفورماتورها، سوئیچ‌ها، و تجهیزات کنترلی است که در سیستم انتقال برق به کنترل جریان و ولتاژ و مدیریت شبکه کمک می‌کنند. در ادامه به شرح کاملی از این تجهیزات می پردازیم.

articleFiles 45934648 3jlav 1647155329 copy - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

ترانسفورماتورها:

   ترانسفورماتورها به عنوان یکی از اجزای اصلی سیستم‌های انتقال و توزیع برق، جهت تغییر ولتاژ بین خطوط انتقال برق به کار می‌روند. انواع مختلفی دارند، در زیر به برخی انواع ترانسفورماتورها و ویژگی‌های آنها اشاره می‌شود:

 

  1. ترانسفورماتورهای توزیع:

ترانسفورماتورهای توزیع نقش مهمی در سیستم‌های انتقال و توزیع برق ایفا می‌کنند. این ترانسفورماتورها عمدتاً برای تنظیم ولتاژ برق از سطح انتقال به سطح توزیع به کار می‌روند. در زیر توضیحات بیشتری درباره ترانسفورماتورهای توزیع آورده شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای توزیع برای انتقال برق از سطح انتقال (که ولتاژ آن بالاتر است) به سطح توزیع (که ولتاژ آن پایین‌تر است) به کار می‌روند.

   – مهمترین وظیفه آنها تغییر ولتاژ برق به مقداری مناسب برای استفاده در صنعت، شهری، یا مناطق روستایی است.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای توزیع دارای دو سیم پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

مزایا:

   – تغییر ولتاژ به صورت ایمن و مؤثر.

   – عمر طولانی و نیاز به نگهداری کم.

   – افت ولتاژ و توان‌های فراوانی را به حداقل می‌رسانند.

 کاربردها:

   – در شبکه‌های توزیع برق شهری، صنعتی و روستایی مورد استفاده قرار می‌گیرند.

   – در ایستگاه‌های تقسیم بار برای تنظیم ولتاژ و توزیع به مصارف مختلف.

 

۳. انواع ترانسفورماتورهای توزیع:

   – ترانسفورماتورهای روغنی: از روغن به عنوان عایق استفاده می‌کنند و عمدتاً در محیط‌های صنعتی استفاده می‌شوند.

۱. مزایا:

   – عایق کاری خوب: روغن به عنوان یک عایق خوب در ترانسفورماتورهای روغنی عمل می‌کند.

   – خنک‌کنندگی: روغن به خوبی حرارت تولید شده در ترانسفورماتور را انتقال می‌دهد.

   – عملکرد پایدار در شرایط مختلف: توانایی کارکرد در شرایط محیطی مختلف از جمله دما و رطوبت را داراست.

۲. معایب:

   – احتمال نشت روغن: این ترانسفورماتورها با مشکل احتمال نشت روغن مواجه هستند.

   – اندازه و وزن بالا: نسبت به ترانسفورماتورهای خشک، این نوع ترانسفورماتورها اندازه و وزن بیشتری دارند.

   – نیاز به فضای اضافی برای جلوگیری از خطرات احتمالی نشت روغن.

 

   – ترانسفورماتورهای خشک: بدون استفاده از روغن یا گاز به عنوان عایق عمل می‌کنند و اغلب در مکان‌هایی که استفاده از روغن ممنوع یا مشکل است، مورد استفاده قرار می‌گیرند.

مقایسه ترانسفورماتورهای روغنی و خشک از نظر مزایا و معایب نشان می‌دهد که هر یک از این انواع ترانسفورماتور دارای ویژگی‌ها و کاربردهای خاصی هستند. در زیر به مقایسه دقیق این دو نوع ترانسفورماتور پرداخته شده است:

۱. مزایا:

   – بدون روغن: از عایق‌های خشک برای جلوگیری از نیاز به روغن استفاده می‌کنند.

   – نگهداری آسان: به دلیل عدم وجود روغن، نگهداری و تعمیرات آسان‌تر و اقتصادی‌تر هستند.

   – احتمال کمتر نشت: به دلیل عدم وجود روغن، خطر نشت کمتر است.

 

۲. معایب:

   – کمترین خنک‌کنندگی: نسبت به ترانسفورماتورهای روغنی، توانایی خنک‌کنندگی کمتری دارند.

   – مناسب برای کاربردهای محدودتر: بیشتر در محیط‌های خشک و با دماهای پایین مورد استفاده قرار می‌گیرند.

 

با توجه به نیازها و شرایط محیطی، انتخاب بین ترانسفورماتورهای روغنی و خشک بستگی به موارد خاص هر کاربرد دارد. همیشه تصمیم بهتر از طریق مشاوره با متخصصان ترانسفورماتور و شناخت دقیق از نیازهای سیستم خود به دست می‌آید.

 

   – ترانسفورماتورهای گازی: ترانسفورماتورهای گازی یا همان ترانسفورماتورهای گاز‌دار Gas-Insulated Transformers یا GIS) ) نوعی ترانسفورماتورهستند که مواد عایق میانه بین پیچ‌ها و هسته آن گاز است و به جای عایق‌های سنتی نفتی یا عایق‌های جامد مورد استفاده قرار می‌گیرد. معمولاً گاز مورد استفاده در این ترانسفورماتورها گاز سولفورهگزا فلوراید ( (SF6است که خواص عایقی عالی دارد.

مزایا:

   – طراحی فشرده: ترانسفورماتورهای گازی نسبت به ترانسفورماتورهای سنتی با عایق روغنی دارای طراحی فشرده‌تری هستند که برای نصب در مناطق شهری با فضای محدود مناسب هستند.

   – کاهش نیاز به نگهداری: طراحی محافظت شده باعث کاهش نیاز به نگهداری می‌شود.

   – مقاومت الکتریکی بالا: گاز SF6 مقاومت الکتریکی بالایی دارد که امکان انجام تنظیمات الکتریکی را فراهم می‌کند.

   – تقویت ایمنی: محفظه مهر و مومی به افزایش ایمنی کمک می‌کند با جلوگیری از فرار گاز و کاهش خطر آتش سوزی.

 کاربردها:

   – نصب‌های شهری: ترانسفورماتورهای گازی به عنوان یک انتخاب مناسب برای نصب در مناطق شهری با فضای محدود شناخته شده‌اند.

 

electrical substation - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

  1. ترانسفورماتورهای قدرت (انتقال):

ترانسفورماتورهای قدرت نقش حیاتی در سیستم‌های انتقال و توزیع برق دارند. این ترانسفورماتورها عمدتاً برای انتقال انرژی برق از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و نقش ترانسفورماتورهای قدرت پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای قدرت برای تغییر ولتاژ برق به منظور انتقال به فواصل بلند از نیروگاه‌ها به شبکه‌های انتقال و سپس به سیستم‌های توزیع و مصارف نهایی استفاده می‌شوند.

 

۲. ساختار و عملکرد:

   – ترانسفورماتورهای قدرت دارای دو یا چند پیچه هستند: پیچه اصلی (پیچه بالابر) و پیچه ثانویه (پیچه پایین‌بر).

 

۳. انواع ترانسفورماتورهای قدرت:

   – ترانسفورماتورهای انتقال: جهت انتقال انرژی برق به فواصل بلند استفاده می‌شوند و ولتاژ آنها معمولاً بسیار بالاست.

   – ترانسفورماتورهای توزیع: برای انتقال انرژی به فواصل کمتر و در سطح شهری و صنعتی به کار می‌روند و ولتاژ آنها کمتر از ترانسفورماتورهای انتقال است.

 

۴. مزایا:

   – انتقال انرژی با افت ولتاژ کم.

   – افزایش یا کاهش ولتاژ به شکل مستمر و به صورت اتوماتیک.

   – عمر طولانی و نیاز به نگهداری کم.

 

۵. معایب:

   – اندازه و وزن بالا: برخی از ترانسفورماتورهای قدرت به دلیل توان بالا، اندازه و وزن بسیار بالایی دارند.

   – نیاز به مکان‌های ویژه برای نصب و نگهداری.

 

۶. کاربردها:

   – استفاده اصلی این ترانسفورماتورها در نقاط انتقال انرژی بین نیروگاه‌ها، ایستگاه‌های انتقال، و سیستم‌های توزیع برق است.

 

ترانسفورماتورهای قدرت با توجه به توان، نیازهای ولتاژی، و شرایط محیطی، به صورت اختصاصی برای هر نقطه انتقال و توزیع طراحی و استفاده می‌شوند. این ترانسفورماتورها جزء اجزای اساسی سیستم‌های انتقال و توزیع برق به شمار می‌آیند.

  

 

ترانسفورماتورهای یکپارچه (Compact):

ترانسفورماتورهای یکپارچه یا همان  Compact Transformersنوعی ترانسفورماتور هستند که به دلیل طراحی خاص و اندازه کوچک، معمولاً برای فضاها و نقاط محدود به کار می‌روند. در زیر به شرح مهمترین ویژگی‌ها و کاربردهای ترانسفورماتورهای یکپارچه پرداخته شده است:

 

۱. هدف استفاده:

   – ترانسفورماتورهای یکپارچه با طراحی کوچک و یکپارچه خود به منظور استفاده در فضاهای محدود و نیازهای خاص ساخته شده‌اند.

 

۲. ساختار و عملکرد:

   – این ترانسفورماتورها به صورت یکپارچه و با اندازه کوچک‌تر و وزن سبک‌تر نسبت به ترانسفورماتورهای سنتی ساخته می‌شوند.

   – توان ولتاژی و جریانی که این ترانسفورماتورها توانسته‌اند پوشش دهند معمولاً کمتر از ترانسفورماتورهای بزرگ و سنتی است.

 

۳. مزایا:

   – اندازه کوچک و وزن سبک: این ترانسفورماتورها مناسب برای فضاهای محدود و نیازهای کاربردی خاص هستند.

   – نصب و استفاده آسان: به دلیل اندازه کوچک، نصب و نگهداری آنها نسبت به ترانسفورماتورهای بزرگتر ساده‌تر است.

   – قابلیت تنظیم ولتاژ: برخی از ترانسفورماتورهای یکپارچه دارای قابلیت تنظیم ولتاژ هستند.

 

۴. کاربردها:

   – در ایستگاه‌های تقسیم بار، که نیاز به ترانسفورماتورهای کوچک و مؤثر برای توزیع برق به مصارف مختلف دارند.

   – در صنایع خاص و اتوماسیون، جایی که فضا محدود و نیاز به تنظیم ولتاژ وجود دارد.

 

ترانسفورماتورهای یکپارچه به دلیل اندازه کوچک و وزن سبک، مختص فضاهای محدود و نیازهای خاصی هستند. این ترانسفورماتورها به عنوان یکی از اجزای مهم در سیستم‌های برق و اتوماسیون برای افزایش بهره‌وری و انجام وظایف خاص به کار می‌روند.

   هر نوع ترانسفورماتور بر اساس نیازها و محیط کاربردی خود مزایا و معایب خاصی دارد. انتخاب نوع مناسب ترانسفورماتور بر اساس شرایط خاص سیستم برق و نیازهای انتقال و توزیع انرژی اهمیت زیادی دارد.

 

 تجهیزات حفاظت:

تجهیزات حفاظت در خطوط انتقال برق برای محافظت از تجهیزات و انسان‌ها در مواجهه با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ، یا افزایش جریان و… استفاده می‌شوند. این تجهیزات با شناسایی خطاها و حوادث به سرعت و به صورت اتوماتیک عملکرد می‌کنند تا خسارت به تجهیزات و افراد را کاهش دهند. در زیر به شرح تجهیزات حفاظت خطوط انتقال برق پرداخته شده است:

 

۱. رله‌های حفاظت:

   – این رله‌ها به صورت اتوماتیک عملکرد دارند و به تشخیص خطاها مانند اتصال کوتاه، افت ولتاژ، جریان بیش از حد، و … می‌پردازند.

   – رله‌های حفاظت بر اساس استانداردهای تعیین شده برای حفاظت از تجهیزات و خطوط برق تنظیم می‌شوند.

 

۲. ترمینال‌ها و سوئیچ‌های حفاظتی:

   – ترمینال‌ها و سوئیچ‌های حفاظتی به صورت مکانیکی یا الکتریکی جهت قطع و وصل سریع خطوط برق در صورت حادثه به کار می‌روند.

 

۳. ترانسفورماتورهای حفاظتی:

   – این ترانسفورماتورها وظیفه تغییر ولتاژ جهت اندازه‌گیری جریان و ولتاژ در خطوط را دارند تا اطلاعات لازم برای تشخیص حوادث به رله‌های حفاظت منتقل شود.

 

۴. کمپانساتورهای دینامیک:

   – برای مدیریت ولتاژ در خطوط انتقال از کمپانساتورهای دینامیک استفاده می‌شود تا افت ولتاژ در سیستم‌ها جلوگیری شود.

 

۵. سیستم‌های مانیتورینگ:

   – سیستم‌های مانیتورینگ مدام وضعیت خطوط را نظارت کرده و در صورت وقوع حوادث، اطلاعات را به تجهیزات حفاظت اطلاع می‌دهند.

 

۶. سوئیچ‌های خودکار:

   – سوئیچ‌های خودکار برای اتصال و قطع خودکار خطوط در شرایط خاص و زمان‌های اضطراری به کار می‌روند.

 

۷. کنترل‌ها و تجهیزات اتوماسیون:

   – تجهیزات اتوماسیون و کنترل‌ها برای مدیریت اتوماتیک خطوط و ایستگاه‌های انتقال برق به کار می‌روند.

 

 این تجهیزات حفاظت، ایمنی سیستم‌های برق را حفظ کرده و در مواجهه با حوادث احتمالی سریعاً و به صورت اتوماتیک عمل میکنند تا خسارت‌ها را به حداقل برسانند.

Figure1 0 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

 

تجهیزات کنترل و کمکی:

تجهیزات کنترل و کمکی در خطوط انتقال برق برای مدیریت و کنترل بهینه‌تر جریان برق، تنظیم ولتاژ، و مدیریت عملیات انتقال انرژی بین ایستگاه‌ها به کار می‌روند. این تجهیزات نقش مهمی در بهره‌وری و پایداری سیستم‌های برق ایفا می‌کنند. در زیر به شرح تجهیزات کنترل و کمکی در خطوط انتقال برق پرداخته شده است:

 

۱. سیستم‌های کنترل:

   – سیستم‌های کنترل مسئول مدیریت عملیات کلان شبکه برق و تنظیم پارامترهای مختلف مانند ولتاژ، جریان، و توان هستند.

   – این سیستم‌ها از الگوریتم‌ها و منطق کنترلی برای اجرای تصمیمات بهینه بر اساس وضعیت شبکه استفاده می‌کنند.

 

۲. واحدهای کنترل کننده فرکانس (Governor):

   – این واحدها به تنظیم سرعت ژنراتورها و ایستگاه‌ها بر اساس نیازهای فرکانس شبکه برق می‌پردازند تا تطابق تولید و مصرف انرژی حفظ شود.

 

۳. کنترل‌های ولتاژ (Voltage Control):

   – این کنترل‌ها واحدهای تنظیم ولتاژ در نقاط مختلف شبکه برق هستند تا ولتاژ در سطوح مشخصی نگهداری شود.

 

۴. تجهیزات کمکی:

   – ترمینال‌ها و تجهیزات کمکی برای مدیریت انرژی و تجهیزات در ایستگاه‌های انتقال به کار می‌روند.

   – این تجهیزات شامل کمپانساتورها، ترانسفورماتورهای کمکی، باتری‌ها و سیستم‌های UPS می‌شوند.

 

۵. سیستم‌های ارتباطات:

   – سیستم‌های ارتباطات برای انتقال داده‌ها و اطلاعات بین ایستگاه‌ها، زیرسیستم‌های کنترل، و تجهیزات مختلف استفاده می‌شوند.

 

۶. مانیتورینگ و ابزار دقیق:

   – دستگاه‌های مانیتورینگ و ابزار دقیق برای نظارت بر وضعیت تجهیزات، اندازه‌گیری جریان، ولتاژ و سایر پارامترهای سیستم به کار می‌روند.

 

۷. تجهیزات حفاظت و کنترل:

   – تجهیزات حفاظت و کنترل برای تشخیص و مقابله با حوادث ناخواسته مانند اتصال کوتاه، افت ولتاژ و … مورد استفاده قرار می‌گیرند.

 

تمام این تجهیزات کنترل و کمکی با همکاری و هماهنگی با سیستم‌های حفاظتی و مانیتورینگ، ایمنی و بهره‌وری شبکه برق را افزایش می‌دهند. این تجهیزات بر اساس تکنولوژی‌های پیشرفته جهت بهبود عملکرد و اطمینان‌پذیری سیستم‌های برق به‌کار می‌روند.

 

 

خطوط انتقال برق:

خطوط انتقال برق از جمله اجزای حیاتی در سیستم‌های برق هستند که برای انتقال انرژی برق از منبع تولید به مصارف نهایی مورد استفاده قرار می‌گیرند. این خطوط اغلب به صورت یک سیستم شبکه‌ای و پیچیده، بر روی ایستاه‌ها و ستون‌ها قرار گرفته و نقل قدرت برق را امکان‌پذیر می‌سازند. در زیر به شرح اجزای مهم خطوط انتقال برق پرداخته شده است:

 

۱.انواع خطوط انتقال:

   – خطوط انتقال مستقیم (Overhead Lines) :خطوطی که بر روی ستون‌ها یا برج‌ها نصب شده و به وسیله سیم‌های هوایی منتقل می‌شود.

   – خطوط زیرزمینی (Underground Cables): خطوطی که در زیر زمین قرار دارند و انرژی برق را به وسیله کابل‌های زیرزمینی انتقال می‌دهند.

 

  1. ویژگی‌های خطوط انتقال:

   – ولتاژ عملیاتی: خطوط انتقال برق معمولاً با ولتاژ‌های بسیار بالا عمل می‌کنند تا از افت انرژی در مسافت‌های طولانی جلوگیری شود.

   – ساختار و مواد: ساختار خطوط انتقال از جنس موادی مانند فولاد، آلومینیوم، و یا مخلوطی از این مواد استفاده می‌کند.

EMS starts work on EUR 8 15 million Bistrica substation e1529062487986 - تجهیزات و خطوط انتقال برق و هزینه های مرتبط با آن و راهکارهای کاهش این هزینه ها

تأثیر نیروگاه‌های تجدیدپذیر برهزینه‌های تجهیزات و خطوط انتقال برق

نیروگاه‌های تجدیدپذیر مانند نیروگاه‌ خورشیدی، نیروگاه بادی و هیدروالکتریک به طور قابل توجهی بر ساختار و هزینه‌های تجهیزات و خطوط انتقال برق تأثیر می‌گذارند. این تأثیرات می‌توانند در چند زمینه مهم مشاهده شوند:

 

۱. تولید برق ناپایدار:

   – نیروگاه‌های تجدیدپذیر بر پایه باد، خورشید یا آب، تولید برق ناپایداری دارند که به دلیل شرایط آب و هوایی متغیر و تغییرات در سطح تابش خورشید یا سرعت باد اتفاق می‌افتد.

   – این ناپایداری توسط سیستم‌های انتقال برق باید مدیریت شود تا پایداری و امنیت شبکه برق حفظ شود. که در مقاله گذشته با عنوان ” یک روش طراحی موثر برای نیروگاه های فتوولتائیک خورشیدی  ” راه حل آن ارائه شده است. به منظور تعدیل نوسانات تولید نیروگاه‌های تجدیدپذیر، فناوری‌های ذخیره‌سازی انرژی نیز در شبکه برق معرفی می‌شوند. این ذخیره‌سازی ممکن است هزینه‌های اضافی برای نصب و نگهداری داشته باشد.

 

  1. بهبود زیرساخت‌ها:

   – با توسعه نیروگاه‌های تجدیدپذیر، نیاز به بهبود و توسعه زیرساخت‌های انتقال برق نیز احساس می‌شود. این شامل افزایش ظرفیت و بهبود کیفیت خطوط انتقال و تجهیزات مرتبط است.

 

  1. کاهش افت ولتاژ:

   – نیروگاه‌های تجدیدپذیر مانند نیروگاه‌های خورشیدی و بادی در نواحی دور از مراکز مصرف نصب می‌شوند. این نیروگاه‌ها می‌توانند افت ولتاژ را در نواحی دورتر از مراکز تولید انرژی کاهش دهند. کاهش افت ولتاژ ممکن است نیاز به احداث خطوط انتقال با قطر بزرگتر را کاهش داده و هزینه‌های احداث و نگهداری را در خطوط انتقال برق کاهش دهد.

 

  1. کاهش ازدحام:

کاهش ازدحام در سیستم انتقال برق به معنای کاهش ترافیک و فشار در شبکه انتقال برق است و می‌تواند به عنوان یک مزیت مهم در نتیجه استفاده از نیروگاه‌های تجدیدپذیرمثل نیروگاه‌ خورشیدی و بادی در سیستم انرژی مدنظر قرار گیرد. برخی از جنبه‌های کاهش ازدحام کاهش افت شبکه بین نقاط تولید و مصرف است. این اقدام ممکن است باعث کاهش طول خطوط انتقال و ازدحام مرتبط با آنها شود. نیروگاه‌های تجدیدپذیر معمولاً از منابع محلی انرژی مانند نور خورشید در نیروگاه خورشیدی یا باد در نیروگاه بادی بهره می‌برند. استفاده از این منابع محلی نیاز به انتقال انرژی از مناطق دورتر را کاهش میدهد که می‌تواند هزینه‌های انتقال و از دست دادن انرژی را به حداقل برساند.

همچنین، استفاده از تکنولوژی‌های هوشمند و سیستم‌های اتوماسیون در اداره شبکه انتقال برق می‌تواند به بهبود بهره‌وری و مدیریت ازدحام در شبکه برق کمک کند. این تدابیر می‌توانند در کاهش هزینه‌های انتقال انرژی و افزایش پایداری سیستم تأثیرگذار باشند.

تأثیرات دقیق بر هزینه‌های تجهیزات و خطوط انتقال برق با توجه به مکان، نوع نیروگاه تجدیدپذیر، و شرایط محیطی متفاوت خواهد بود. این تأثیرات باید به عنوان یکی از عوامل در برنامه‌ریزی و طراحی سیستم انتقال برق در نظر گرفته شوند.

بنابراین، تأثیر نیروگاه‌های تجدیدپذیر بر هزینه‌ها و ساختار تجهیزات و خطوط انتقال برق نیازمند مدیریت دقیق، فناوری‌های پیشرفته و توسعه زیرساخت‌های مناسب است.

 

نویسنده: مهدی پارساوند