اتصالات نیروگاه خورشیدی  600x321 - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

 

سیستم ارتینگ در نیروگاه خورشیدی فتوولتائیک به منظور بهره‌وری بیشتر از پتانسیل انرژی خورشیدی و افزایش عمر مفید تجهیزات نیروگاه خورشیدی استفاده می‌شود. این سیستم معمولاً شامل یک سری عملیات و تجهیزات می‌شود که به صورت هوشمندانه و با استفاده از داده‌های محیطی و تجهیزات نیروگاه، کنترل و مدیریت می‌شوند. در زیر چند مرحله اصلی برای اجرای سیستم ارتینگ در نیروگاه خورشیدی فتوولتائیک آورده شده است:

 

  1. سنجش داده‌ها و شناسایی نیازها:

   – نصب سنسورها و دستگاه‌های اندازه‌گیری در نقاط مختلف نیروگاه خورشیدی برای جمع‌آوری داده‌های مرتبط با شدت نور، دما، سرعت باد و سایر پارامترهای محیطی.

   – استفاده از سامانه‌های نرم‌افزاری برای تحلیل دقیق این داده‌ها و شناسایی نیازها و شرایط بهینه.

در این مرحله، سنسورها و دستگاه‌های اندازه‌گیری در نیروگاه خورشیدی فتوواتائیک نصب می‌شوند تا داده‌های محیطی مرتبط با عملکرد تجهیزات و شرایط زیست‌محیطی جمع‌آوری شود. این داده‌ها ممکن است شامل موارد زیر باشد:

 

1-1. شدت نور:

   – سنسورهای تشخیص نور جهت اندازه‌گیری شدت نور خورشید در موقعیت‌های مختلف نیروگاه خورشیدی نصب می‌شوند.

 

2-1. دما:

   – سنسورها برای اندازه‌گیری دما در نقاط مختلف نیروگاه خورشیدی نصب می‌شوند تا تأثیر حرارت بر عملکرد تجهیزات را نظارت کنند.

 

3-1. سرعت باد:

   – دستگاه‌های اندازه‌گیری سرعت باد جهت ارزیابی تأثیر باد بر روی پنل‌های خورشیدی و سایر تجهیزات نیروگاه خورشیدی استفاده می‌شوند.

 

4-1. فشار جو:

   – اندازه‌گیری فشار جو برای مشخص کردن تأثیر ارتفاع از سطح دریا نیروگاه خورشیدی بر عملکرد تجهیزات از اهمیت بالایی برخوردار است.

 

5-1. رطوبت:

   – سنسورهای رطوبت جهت نظارت بر رطوبت محیط و تأثیر آن بر کارایی تجهیزات نیروگاه خورشیدی به کار گرفته میشوند.

 

6-1. داده‌های الکتریکی:

   – اندازه‌گیری و نظارت بر ولتاژ، جریان و توان تولیدی توسط پنل‌های خورشیدی جز داده های اساسی نظارت برعملکرد نیروگاه خورشیدی میباشد.

 

پس از جمع‌آوری این داده‌ها، سیستم‌های نرم‌افزاری مخصوص برای تحلیل این اطلاعات و شناسایی نیازها به کار می‌روند. با تحلیل این داده‌ها، برای سیستم ارتینگ نیروگاه خورشیدی می‌توانیم تصمیمات هوشمندانه‌ای اتخاذ کنیم و تنظیمات نیروگاه را بهینه‌سازی کنیم تا عملکرد بهتری داشته باشد.

استراکچر خورشیدی  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

نیروگاه خورشیدی آرانیرو

  1. کنترل تجهیزات:

   – نصب سیستم‌های خودکار و هوشمند کنترلی بر روی تجهیزات نیروگاه خورشیدی برای تنظیم بهینه عملکرد آنها.

   – اجرای الگوریتم‌های هوشمند برای بهینه‌سازی جریان انرژی در تجهیزات مختلف نیروگاه خورشیدی.

در مرحله کنترل تجهیزات در نیروگاه خورشیدی فتوولتائیک، از سیستم‌های هوشمند و نرم‌افزارهای پیشرفته برای مدیریت بهینه تجهیزات استفاده می‌شود. این فرآیند شامل چند جنبه اصلی است:

 

1-2. نصب سیستم‌های کنترلی:

   – انجام نصب دستگاه‌ها و سنسورهای هوشمند بر روی تجهیزات نیروگاه خورشیدی به منظور اندازه‌گیری و کنترل عملکرد آنها.

   – نصب سیستم‌های کنترلی مبتنی بر میکروکنترلرها یا PLC  (کنترلر منطقه‌ای برنامه‌پذیر) جهت اتصال و کنترل تجهیزات نیروگاه خورشیدی.

 

2-2. تنظیمات بهینه:

   – استفاده از الگوریتم‌ها و مدل‌های هوش مصنوعی برای تحلیل داده‌های جمع‌آوری شده و اعمال تنظیمات بهینه بر روی تجهیزات نیروگاه خورشیدی.

   – تنظیمات بهینه شامل تغییر زوایای پنل‌های خورشیدی، جریان الکتریکی تولیدی، و سایر پارامترهای مرتبط با تجهیزات نیروگاه خورشیدی است.

 

3-2. سیستم‌های خودکار:

   – پیاده‌سازی سیستم‌های خودکار برای اجرای تصمیمات اتوماتیک در مورد کنترل تجهیزات نیروگاه خورشیدی.

   – این سیستم‌ها می‌توانند به صورت خودکار به تغییرات در شرایط محیطی و داده‌های جمع‌آوری شده واکنش نشان دهند.

 

4-2. مدیریت انرژی:

   – بهینه‌سازی مصرف انرژی توسط تجهیزات نیروگاه خورشیدی با استفاده از سیستم‌های مدیریت انرژی.

   – کنترل تولید انرژی و مصرف آن بر اساس نیازهای نیروگاه خورشیدی و شرایط محیطی.

 

5-2. ردیابی و نظارت:

   – پیاده‌سازی سیستم‌های ردیابی و نظارت برای پیگیری دقیق تر حرکت خورشید و تنظیم زاویه پنل‌های خورشیدی.

   – نظارت به صورت زنده بر عملکرد تجهیزات و ارتباط با سیستم مرکزی جهت اطلاع‌رسانی و مدیریت بهینه نیروگاه خورشیدی.

 

با این رویکرد، کنترل تجهیزات در نیروگاه خورشیدی فتوولتائیک به صورت هوشمندانه و خودکار صورت می‌گیرد، که منجر به افزایش بهره‌وری و بهینه‌تر شدن عملکرد نیروگاه می‌شود.

با اجرای این مراحل و استفاده از تکنولوژی‌های هوشمند، نیروگاه خورشیدی فتوولتائیک می‌تواند به بهترین شکل ممکن از انرژی خورشید بهره‌مند شود و عمرمفید تجهیزات را افزایش دهد.

 

  1. انواع روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی:

 

1-3. مقاومت زمین سیستمی (System Grounding):

   – در این روش، یکی از نقاط تجهیزات به عنوان نقطه مشترک زمین برای کل سیستم انتخاب می‌شود.

   – مزایا: سادگی و انطباق با استانداردهای ملی.

   – معایب: احتمال اختلال در نقطه زمین وابسته به مواقع مختلف نیروگاه.

مقاومت زمین سیستمی یکی از روش‌های حفاظت الکتریکی است که در آن یک نقطه مشترک برای زمین‌کردن کل سیستم الکتریکی یک نیروگاه یا سیستم تولید انرژی استفاده می‌شود. در این روش، نقطه زمین به عنوان نقطه مشترکی برای اتصال به زمین انتخاب می‌شود تا از جریان‌های ناخواسته جلوگیری کرده و ایمنی تجهیزات و افراد را تضمین کند. مهمترین ویژگی‌های مقاومت زمین سیستمی به خصوص در نیروگاه خورشیدی عبارتند از:

1-3-1. نقطه مشترک زمین:

   – یک نقطه مشترک به عنوان نقطه زمین برای کل سیستم الکتریکی انتخاب می‌شود. این نقطه معمولاً به عنوان “نقطه نیازمندی” نیز شناخته می‌شود.

 

1-3-2. کاهش ولتاژ به زمین:

   – هدف اصلی از استفاده از مقاومت زمین سیستمی، کاهش ولتاژ‌های ناخواسته به زمین است تا از خطرات احتمالی در نیروگاه خورشیدی جلوگیری شود.

 

1-3-3. حفاظت از تجهیزات:

   – مقاومت زمین به عنوان یک مسیر سهل‌العبور برای جریان‌های ناخواسته عمل می‌کند و در نتیجه، تجهیزات و دستگاه‌های نیروگاه خورشیدی را از خطرات احتمالی مرتبط با افزایش ولتاژ حفاظت می‌کند.

 

1-3-4. کنترل جریان زمین:

   – مقاومت زمین سیستمی با کنترل جریان زمین مواجه شده و از افزایش ناگهانی جریان‌ها در نیروگاه خورشیدی جلوگیری می‌کند.

 

1-3-5. تنظیم ولتاژ:

   – از طریق تنظیم ولتاژها و جلوگیری از افزایش ناگهانی آنها، ایمنی سیستم در نیروگاه خورشیدی تامین می‌شود.

 

1-3-6. تأثیر بر مدل توزیع:

   – استفاده از مقاومت زمین سیستمی ممکن است تأثیراتی بر مدل توزیع جریان و ولتاژ در سیستم نیروگاه خورشیدی داشته باشد و این تأثیرات می‌تواند بر ایمنی و بهره‌وری نیروگاه تأثیر بگذارد.

مقاومت زمین سیستمی به عنوان یکی از روش‌های اصلی حفاظت الکتریکی در نیروگاه‌ها و سیستم‌های تولید انرژی استفاده می‌شود و با توجه به ویژگی‌های خود، می‌تواند به بهبود ایمنی و کارایی سیستم الکتریکی کمک کند.

پنل خورشیدی به روز آرانیرو  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

2-3. مقاومت زمین مکانیکی (Physical Grounding):

   – در این حالت، از سیستم مقاومت زمین برای تجهیزات خاصی استفاده می‌شود و هر تجهیز به طور جداگانه زمین می‌شود.

   – مزایا: کنترل بهتر اختلالات مختلف.

   – معایب: پیچیدگی نصب و نگهداری.

مقاومت زمین مکانیکی یکی دیگر از روش‌های حفاظت الکتریکی است که در آن مقاومت زمین بر اساس مکانیک ساختار و تجهیزات انجام می‌شود. این روش به منظور کنترل و مدیریت جریان‌های ناخواسته و حفاظت از تجهیزات و افراد در مقابل خطرات الکتریکی به کار می‌رود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین مکانیکی عبارتند از:

 

2-3-1. ساختار مکانیکی:

   – در این روش، از ساختارهای مکانیکی یا اجزای سازه برای ایجاد مسیرهای زمین‌کردن استفاده می‌شود. این ممکن است شامل فولادهای مقاوم در برابر خوردگی یا دیگر مواد سازه‌ای باشد.

 

2-3-2. زمین‌کردن اجزای ساختار:

   – اجزای ساختاری که به عنوان اجزای غیر الکتریکی در سیستم وجود دارند، به منظور زمین‌کردن استفاده می‌شوند. این اجزا می‌توانند پایه‌ها، ستون‌ها، پایه‌های مستقیم، یا سایر عناصر سازه باشند.

 

2-3-3. استفاده از مصالح مخصوص:

   – مقاومت زمین مکانیکی ممکن است با استفاده از مصالح خاصی که خاصیت زمین‌کردن مناسبی دارند، ایجاد شود. این مصالح می‌توانند شامل آهن‌آلات، فولادهای ضدخوردگی و یا سایر مواد مشابه باشند.

 

2-3-4. کاهش مقاومت:

   – هدف اصلی از استفاده از مقاومت زمین مکانیکی، کاهش مقاومت مسیرهای زمین‌کردن است تا جریان‌های الکتریکی به سرعت به زمین تخلیه شوند و از افزایش ولتاژهای خطرناک جلوگیری شود.

 

2-3-5. پیچیدگی کمتر نسبت به روش‌های دیگر:

   – نسبت به برخی روش‌های دیگر مانند مقاومت زمین سیستمی، اجرای مقاومت زمین مکانیکی ممکن است به لحاظ فنی و عملی کمی پیچیده‌تر باشد.

 

2-3-6. کنترل جریانهای ناخواسته:

   – با استفاده از ساختارهای مکانیکی به عنوان مسیر زمین، می‌توان جریان‌های الکتریکی ناخواسته را کنترل کرد و از تجهیزات و افراد را در مقابل این جریان‌ها حفاظت کرد.

 

هر یک از روش‌های حفاظت الکتریکی از جمله مقاومت زمین مکانیکی بسته به نیازها و شرایط خاص سیستم الکتریکی انتخاب می‌شود و همگی به بهبود ایمنی و عملکرد سیستم کمک می‌کنند.

 

3-3. مقاومت زمین تجهیزات (Equipment Grounding):

   – در این روش، هر تجهیز به یک نقطه زمین مستقل متصل می‌شود.

   – مزایا: جداگانه‌سازی اختلالات و جلوگیری از انتقال جریانهای ناخواسته.

   – معایب: زمین‌های متعدد ممکن است موجب ایجاد اختلال شوند.

 

مقاومت زمین تجهیزات یکی از روش‌های حفاظت الکتریکی است که برای محافظت از تجهیزات الکتریکی در برابر خطرات الکتریکی مورد استفاده در نیروگاه خورشیدی قرار می‌گیرد. در این روش، هر تجهیز به یک نقطه زمین خاص متصل می‌شود تا در صورت وقوع اختلال یا خطای الکتریکی، جریان الکتریکی به سمت زمین تخلیه شود و از ایجاد خسارت به تجهیزات و افراد جلوگیری شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین تجهیزات عبارتند از:

 

3-3-1. زمین‌کردن تجهیزات:

   – هر تجهیز الکتریکی، از جمله دستگاه‌ها، دستورالعمل‌ها، و ابزارها، به یک نقطه زمین خاص متصل می‌شود. این نقطه زمین به عنوان مسیر بازگشت جریان الکتریکی ناخواسته به زمین عمل می‌کند.

 

3-3-2. کاهش ولتاژ:

   – استفاده از مقاومت زمین تجهیزات به منظور کاهش ولتاژهای ناخواسته و جلوگیری از افزایش ناگهانی آنها موثر است.

 

3-3-3. جلوگیری از جریانهای خطرناک:

   – هدف اصلی این روش، جلوگیری از ایجاد جریانهای خطرناک از تجهیزات به سمت افراد یا دیگر تجهیزات است.

 

3-3-4. افزایش ایمنی:

   – با زمین‌کردن تجهیزات، ایمنی افراد کارکننده با تجهیزات و دستگاه‌ها افزایش می‌یابد، زیرا جریان‌های الکتریکی به سمت زمین تخلیه می‌شوند و از تماس مستقیم با افراد جلوگیری می‌کنند.

 

3-3-5. پیشگیری از خسارات مالی:

   – استفاده از این روش می‌تواند از خسارات مالی ناشی از خرابی تجهیزات در اثر جریان‌های الکتریکی ناخواسته جلوگیری کند.

 

3-3-6. مطابقت با استانداردها:

   – استفاده از مقاومت زمین تجهیزات باعث مطابقت با استانداردها و مقررات ایمنی الکتریکی مربوطه می‌شود.

 

3-3-7. نظارت و بازرسی:

   – سیستم‌ها و تجهیزات باید به طور دوره‌ای تحت بازرسی و نظارت قرار گیرند تا اطمینان حاصل شود که مقاومت زمین تجهیزات همواره به درستی عمل می‌کند.

 

مقاومت زمین تجهیزات به عنوان یکی از روش‌های حفاظت الکتریکی به خصوص در سیستم‌ها و محیط‌های صنعتی و نیروگاهی به ویژه نیروگاه خورشیدی مورد استفاده قرار می‌گیرد و با توجه به خصوصیات آن، به ارتقاء ایمنی و بهره‌وری تجهیزات کمک می‌کند.

کنترل تجهیزات - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

4-3. مقاومت زمین دقیق (Precision Grounding):

   – این روش از مقاومت زمین با دقت بالا برخوردار است که جهت کاهش نویزهای الکتریکی و جریان‌های پارازیتی از آن استفاده می‌شود.

   – مزایا: حداقل کردن نویزهای الکتریکی.

   – معایب: نیاز به نگهداری دقیق و هزینه‌بر بودن.

مقاومت زمین دقیق یک روش پیشرفته در حوزه حفاظت الکتریکی است که برای بهبود دقت و کارایی در زمین‌کردن سیستم‌های الکتریکی مورد استفاده قرار می‌گیرد. در این روش، مقاومت زمین با دقت بسیار بالا و با کنترل دقیق بر ارزش مقاومت تنظیم می‌شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین دقیق عبارتند از:

 

4-3-1. دقت بالا:

   – یکی از ویژگی‌های بارز مقاومت زمین دقیق، دقت بالا در تنظیم مقاومت آن است. این روش برای حصول بهینه‌ترین نتایج در کنترل جریان‌های زمین استفاده می‌شود.

 

4-3-2. استفاده از مواد با کیفیت:

   – مقاومت زمین دقیق از مواد با کیفیت بالا و خصوصیات الکتریکی خوب ساخته می‌شود. این مواد ممکن است شامل آلیاژهای خاص یا فولادهای ویژه باشد.

 

4-3-3. تنظیم الکترونیکی:

   – برخی از سیستم‌های مقاومت زمین دقیق دارای امکانات تنظیم الکترونیکی هستند که به کنترل دقیق و تنظیم مقاومت کمک می‌کنند.

 

4-3-4. مدیریت هوشمند:

   – سیستم‌های مقاومت زمین دقیق معمولاً دارای مدیریت هوشمند هستند که با استفاده از الگوریتم‌ها و سنسورهای مختلف، بهینه‌سازی جریان‌های زمین را انجام می‌دهند.

 

4-3-5. کاهش نویزهای الکتریکی:

   – استفاده از مقاومت زمین دقیق به منظور کاهش نویزهای الکتریکی و افزایش پایداری سیستم‌های الکتریکی موثر است.

 

4-3-6. تنظیم ولتاژ:

   – این روش می‌تواند به طور دقیق ولتاژها را تنظیم کرده و از افزایش ناگهانی آنها جلوگیری نماید.

 

4-3-7. کاربردهای حساس:

   – مقاومت زمین دقیق معمولاً در سیستم‌های الکتریکی حساس به ولتاژها و جریان‌های ناخواسته، مانند سیستم‌های الکترونیکی پیشرفته و تجهیزات پزشکی، به کار می‌رود.

 

4-3-8. تطبیق با شرایط محیطی:

   – این سیستم‌ها به خوبی با شرایط محیطی مختلف تطبیق می‌شوند و می‌توانند در شرایط مختلف دما، رطوبت، و فشار به صورت موثر عمل کنند.

 

مقاومت زمین دقیق به عنوان یک روش پیشرفته حفاظت الکتریکی به خصوص در سیستم‌های الکتریکی حساس و نیازمند دقت بالا به کار می‌رود و به ارتقاء ایمنی و عملکرد این سیستم‌ها کمک می‌کند.

نیروگاه های خورشیدی در ایران  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

5-3. مقاومت زمین فعال (Active Grounding):

   – در این حالت از تجهیزات فعال به منظور ترتیب و تنظیم مقاومت زمین استفاده می‌شود.

   – مزایا: امکان کنترل دقیق‌تر مقاومت زمین و جلوگیری از افزایش غیرهمسانی ولتاژ.

   – معایب: پیچیدگی و هزینه بالا.

مقاومت زمین فعال یک روش پیشرفته در حوزه حفاظت الکتریکی است که برای بهبود دقت و کارایی در زمین‌کردن سیستم‌های الکتریکی مورد استفاده قرار می‌گیرد. در این روش، علاوه بر استفاده از یک نقطه زمین، تجهیزات الکترونیکی فعال (مانند آمپلیفایرها یا تقویت‌کننده‌ها) نیز به کار گرفته می‌شوند تا به نحوی مداخله کنند که مقاومت زمین به صورت فعال تنظیم و کنترل شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین فعال عبارتند از:

 

5-3-1. استفاده از تجهیزات فعال:

   – این روش از تجهیزات الکترونیکی فعال به عنوان بخشی از سیستم زمین‌کردن استفاده می‌کند. این تجهیزات معمولاً به عنوان تقویت‌کننده‌های جریان یا ولتاژ عمل می‌کنند.

 

5-3-2. کنترل دقیق مقاومت زمین:

   – با استفاده از تجهیزات فعال، مقاومت زمین به نحو دقیق تنظیم و کنترل می‌شود. این امکان به مدیران سیستم اجازه می‌دهد که مقدار مقاومت زمین را به صورت دینامیک تطبیق دهند.

 

5-3-3. کاهش نویزهای الکتریکی:

   – استفاده از تجهیزات فعال به عنوان بخشی از مقاومت زمین فعال می‌تواند به کاهش نویزهای الکتریکی و افزایش پایداری سیستم کمک کند.

 

5-3-4. اصلاح ولتاژهای ناخواسته:

   – با استفاده از تجهیزات فعال، امکان اصلاح ولتاژهای ناخواسته و افزایش کنترل بر ولتاژهای سیستم وجود دارد.

 

5-3-5. پاسخ سریع به تغییرات:

   – سیستم‌های مقاومت زمین فعال معمولاً با پاسخ سریع به تغییرات در شرایط سیستم شناخته می‌شوند، که این امکان را فراهم می‌کند تا به بهترین شکل مقاومت زمین تنظیم شود.

 

5-3-6. مناسب برای بارهای پویا:

   – این روش به ویژه برای سیستم‌ها و بارهای الکتریکی پویا یا متغیر مناسب است.

 

5-3-7. مدیریت هوشمند:

   – بسیاری از سیستم‌های مقاومت زمین فعال دارای مدیریت هوشمند هستند که با استفاده از الگوریتم‌ها و سنسورها، بهینه‌سازی جریان‌های زمین را انجام می‌دهند.

 

5-3-8. کاربردهای حساس:

   – مقاومت زمین فعال معمولاً در سیستم‌های الکتریکی حساس به ولتاژها و جریان‌های ناخواسته، مانند سیستم‌های الکترونیکی پیشرفته، به کار می‌رود.

مقاومت زمین فعال به عنوان یک روش پیشرفته حفاظت الکتریکی برای سیستم‌های الکتریکی حساس و نیازمند دقت بالا به کار می‌رود و به بهبود ایمنی و عملکرد این سیستم‌ها کمک می‌کند.

تجهیزات نیروگاه خورشیدی آرانیرو - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

6-3. مقاومت زمین به صورت توزیع شده (Distributed Grounding):

   – در این روش، مقاومت زمین به صورت گسترده در سراسر نیروگاه توزیع می‌شود.

   – مزایا: کاهش احتمال افزایش ولتاژ و جریان‌های غیرهمسانی.

   – معایب: هزینه نصب و نگهداری بالا.

مقاومت زمین به صورت توزیع شده یک روش زمین‌کردن پیشرفته است که در آن مفهوم زمین‌کردن به صورت یکنواخت در سطح گسترده‌ای اعمال می‌شود. در این روش، نقاط مختلف سیستم به صورت مستقل به زمین متصل می‌شوند، و این اتصالات توزیع شده‌ای دارند که از مزایای این نوع زمین‌کردن بهره‌مند می‌شوند. ویژگی‌ها و جزئیات مربوط به مقاومت زمین به صورت توزیع شده عبارتند از:

 

6-3-1. توزیع یکنواخت:

   – در مقاومت زمین به صورت توزیع شده، نقاط مختلف سیستم به صورت مستقل به زمین متصل می‌شوند و این توزیع به یکنواختی در زمین‌کردن سیستم منجر می‌شود.

 

6-3-2. کاهش مقاومت:

   – با توزیع یکنواخت زمین، مقاومت کل سیستم به صورت کلی کاهش می‌یابد که این موجب افزایش کارایی و کاهش ولتاژهای ناخواسته می‌شود.

 

6-3-3. پیشگیری از جریان‌های ناخواسته:

   – این روش می‌تواند بهبودی در جلوگیری از جریان‌های ناخواسته و افزایش ایمنی سیستم ایجاد کند.

 

6-3-4. مدیریت جریان:

   – توزیع یکنواخت جریان زمین بهبود مدیریت جریان‌های الکتریکی را فراهم می‌کند و از تجاوز جریان به نقاط حساس سیستم جلوگیری می‌کند.

 

6-3-5. قابلیت اطمینان بالا:

   – به دلیل توزیع یکنواخت زمین، سیستم با قابلیت اطمینان بالا و عملکرد پایدار روبرو می‌شود.

 

6-3-6. سازگار با تغییرات:

   – این روش سازگاری بالایی با تغییرات سیستم، اندازه‌ی گسترش یا تغییرات در تجهیزات دارد.

 

6-3-7. مناسب برای سیستم‌های بزرگ:

   – مخصوصاً در سیستم‌های الکتریکی بزرگ که از ابعاد گسترده استفاده می‌کنند، توزیع یکنواخت زمین می‌تواند یک گزینه موثر باشد.

 

6-3-8. پیاده‌سازی نسبت به استانداردها:

   – این روش معمولاً با استانداردها و مقررات الکتریکی سازگاری دارد و می‌تواند در پیاده‌سازی‌های مختلف به کار گرفته شود.

مقاومت زمین به صورت توزیع شده با توجه به مزایای مطرح شده، به عنوان یک گزینه کارآمد در زمینه حفاظت الکتریکی در سیستم‌های الکتریکی گسترده استفاده می‌شود.

 

هرکدام از این روش‌ها بسته به نیازها و شرایط خاص هر نیروگاه ممکن است انتخاب شود. انتخاب بهترین روش باید با توجه به استانداردها، اهداف حفاظتی، و شرایط محیطی انجام شود.

نویسنده: مهدی پارساوند

4.6/5 - (7 امتیاز)
0 پاسخ

دیدگاه خود را ثبت کنید

تمایل دارید در گفتگوها شرکت کنید؟
در گفتگو ها شرکت کنید!

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *