نوشته‌ها

اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

 

موتورهای الکتریکی در تراکر نیروگاه خورشیدی:

   – تراکرها مجهز به موتورهای الکتریکی هستند که مسئولیت حرکت پنل‌ها را برعهده دارند. این موتورها معمولاً با استفاده از برق شبکه یا منابع تولید برق مستقل مانند پنل‌های خورشیدی انرژی می‌گیرند.

موتورهای الکتریکی که در تراکرهای نیروگاه‌های خورشیدی به کار می‌روند، باید از ویژگی‌ها و امکانات خاصی برخوردار باشند تا بتوانند به طور دقیق و با کارایی بالا پنل‌های خورشیدی را در سمت خورشید دنبال کنند. در زیر به برخی از جزئیات این موتورهای الکتریکی اشاره می‌شود:

   – موتورهای الکتریکی استفاده شده در تراکرهای نیروگاه‌های خورشیدی معمولاً از نوع موتورهای الکتریکی مستقیم(DC)  یا موتورهای الکتریکی سنکرون (AC) با اینورترهای خاص میباشند.

   – این موتورها ممکن است از سیستم‌های تغذیه مختلفی استفاده کنند. برخی از تراکرها ممکن است از برق شبکه برای تغذیه موتورهای خود استفاده کنند، در حالی که برخی دیگر از پنل‌های خورشیدی برای تأمین انرژی مورد نیاز موتورها استفاده می‌کنند.

   – موتورهای الکتریکی تراکرها دارای سیستم کنترل پیشرفته‌ای هستند که با استفاده از سنسورها و الگوریتم‌های خاص، حرکت دقیق و بهینه را برای دنبال کردن مسیر حرکت خورشید فراهم می‌کنند.

   – موتورهای الکتریکی برای تراکرها باید با کارایی بالا عمل کنند تا انرژی الکتریکی بهینه به حرکت تراکرها تأمین شود. بازدهی بالا و عدم ایجاد گرمای زیاد مهمترین ویژگی‌های این موتورهاست.

   – موتورهای الکتریکی تراکر باید مقاوم در برابر شرایط محیطی نظیر دما، رطوبت، گرد و غبار و شرایط آب و هوایی مختلف باشند.

   – برخی از موتورهای الکتریکی تراکرها از قابلیت تنظیم سرعت برای تطبیق بهتر با تغییرات در زاویه و مسیر حرکت خورشید استفاده می‌کنند.

   – به منظور جلوگیری از افزایش دما و حفظ بازده موتورها، سیستم خنک‌کننده نیز در برخی از موتورهای الکتریکی مورد استفاده قرار می‌گیرد.

   – موتورهای الکتریکی تراکرها باید کم‌صدا و با نویز کم عمل کنند تا تأثیر کمتری بر محیط زیست و نزدیکی به مناطق مسکونی داشته باشند.

برخی از موتورهای الکتریکی معروف که در تراکرها به‌کار می‌روند عبارتند از:

  1. موتورهای الکتریکی جریان مستقیم (DC) :

   – موتورهای جریان مستقیم(DC)  به فراوانی در تراکرهای خورشیدی دیده می‌شوند. موتورهایی از نوع براشلس (Brushless)  نیز جزء گزینه‌های معمول محسوب می‌شوند. این موتورها معمولاً با استفاده از اینورترها برای تغذیه الکتریکی کار می‌کنند.

در زیر، نحوه عملکرد موتورهای DC در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

تغذیه الکتریکی:

   – موتورهای DC نیاز به تغذیه الکتریکی مستقیم دارند. این تغذیه الکتریکی ممکن است از شبکه برق یا از منابع تولید برق مستقل مانند پنل‌های خورشیدی تأمین شود.

الگوریتم کنترل:

   – سیستم کنترل تراکر با استفاده از الگوریتم‌های خاص و سنسورهای نوری محیطی تعیین می‌کند که در کدام جهت و چه مقدار باید پنل‌های خورشیدی حرکت کنند. این الگوریتم‌ها معمولاً بهینه‌سازی شده‌اند تا به بهترین شکل ممکن از تابش خورشید استفاده شود.

موتور الکتریکی:

   – موتورهای DC به عنوان سیستم حرکتی اصلی تراکر بکار می‌روند. این موتورها در پاسخ به دستورات سیستم کنترل حرکت می‌کنند تا پنل‌های خورشیدی را به سمت مناسب جهت‌دهی کنند.

انتقال حرکت:

   – برخی از تراکرها از گیربکس (چرخ دنده) برای انتقال حرکت موتور به پنل‌های خورشیدی استفاده می‌کنند. گیربکس معمولاً برای تغییر سرعت و افزایش گشتاور موتور به‌کار می‌رود.

سیستم قفل و تثبیت:

   – موتورهای DC برای جلوگیری از حرکت ناخواسته پنل‌ها در شرایط بادی یا هوایی نامساعد، دارای سیستم‌های قفل و تثبیت هستند که در زمان‌های غیرفعالیت تراکر عمل می‌کنند.

سنسورها:

   – سیستم حرکت تراکر مجهز به سنسورهای نوری است که نور خورشید را اندازه‌گیری می‌کنند. این سنسورها به کنترلر اطلاعات می‌فرستند تا زمان و جهت حرکت را تعیین کند.

پنل‌های خورشیدی:

   – موتورهای DC با تغذیه پنل‌های خورشیدی از انرژی نور خورشید بهره می‌برند. انرژی الکتریکی تولیدی این پنل‌ها تامین کننده توان الکتریکی لازم برای حرکت تراکر هستند.

به این ترتیب، موتورهای DC با همکاری با سیستم کنترل و سایر اجزای تراکر، به دنبال کردن دقیق تر مسیر حرکت خورشید و بهره‌وری بیشتر از تابش خورشید کمک می‌کنند.

استفاده از موتورهای الکتریکی جریان مستقیم در تراکرهای نیروگاه‌های خورشیدی با محدودیت‌ها و معایبی نیز همراه است. در زیر، محدودیت‌ها و معایب استفاده از موتورهای DC در تراکرها توضیح داده شده‌اند:

ابتلا به سایش:

   – موتورهای DC ممکن است در معرض سایش و فرسایش باشند، به ویژه در صورت استفاده مداوم و در شرایط محیطی سخت مانند گرد و غبار و شرایط آب و هوایی نامساعد.

نیاز به تعویض قطعات:

   – به دلیل ابتلا به سایش، بعضی از قطعات موتورهای DC ممکن است نیاز به تعویض داشته باشند، که این امر می‌تواند هزینه نگهداری را افزایش دهد.

بازدهی محدودتر در سرعت های پایین:

   – موتورهای DC ممکن است در سرعت های پایین بازدهی کمتری داشته باشند. این مسئله ممکن است در شرایطی که سیستم تراکر با سرعت پایین حرکت می‌کند (به عنوان مثال، در حالت‌های کمینه‌ی خورشید) به چالش کشیده شود.

نیاز به تدابیر خنثی‌سازی نویز:

   – موتورهای DC ممکن است نویزهای الکترومغناطیسی ایجاد کنند که ممکن است تدابیر خاصی برای کنترل یا کاهش این نویزها نیاز باشد.

محدودیت در مقاومت در برابر بارهای سنگین:

   – موتورهای DC ممکن است در مقابل بارهای سنگین کمتر مقاوم باشند، که این موضوع نیاز به نصب گیربکس یا تنظیمات خاص برای مقابله با این مسئله را ایجاب کند.

تأثیر حرارت:

   – افزایش حرارت در موتورهای DC ممکن است باعث کاهش بازدهی و عمر مفید آنها شود. در شرایط دمای بالا، نیاز به سیستم خنک‌کننده و یا تدابیر دیگر جهت مدیریت حرارت احتمالی افزایش می‌یابد.

نیاز به تدابیر خاص برای افزایش بازدهی:

   – برخی از مدل‌های موتورهای DC نیاز به تدابیر خاصی برای افزایش بازدهی دارند، مثل استفاده از تکنولوژی‌های حسگر مغناطیسی (encoder) برای بهبود کنترل موقعیت.

بازدهی محدود در محیط‌های متغیر:

   – در محیط‌هایی که دما، رطوبت یا شرایط محیطی دیگر تغییرات زیادی دارند، بازدهی موتورهای DC ممکن است متغیر شود.

هزینه نگهداری:

   – هزینه نگهداری موتورهای DC ممکن است نسبت به برخی از سایر گزینه‌ها بالاتر باشد، به خصوص اگر نیاز به تعویض قطعات و تعمیرات مداوم وجود داشته باشد.

201912191429019042662 - اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

  1. موتورهای الکتریکی متناوب (AC):

   – موتورهای AC با سیستم‌های تغذیه مستقیم (Direct Drive) یا تغذیه مستقیم بدون سیستم گیربکس (Gearless) در تراکرهای خورشیدی نیز به کار می‌روند. این موتورها معمولاً به دلیل بازدهی بالا و نیاز کم به نگهداری مورد توجه قرار می‌گیرند.

در زیر، نحوه عملکرد موتورهای AC در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

تغذیه الکتریکی:

   – موتورهای AC نیاز به تغذیه الکتریکی متناوب دارند. این تغذیه الکتریکی ممکن است از شبکه برق یا از منابع تولید برق مستقل مانند پنل‌های خورشیدی تأمین شود.

انواع موتور AC:

   – در تراکرهای نیروگاه‌های خورشیدی، دو نوع موتور AC رایج مورد استفاده قرار می‌گیرد: موتورهای سنکرون (Synchronous Motors) و موتورهای آسنکرون (Asynchronous Motors)، که به عنوان موتورهای الکتریکی بدون گیربکس شناخته می‌شوند.

سیستم کنترل:

   – همانند موتورهای DC، موتورهای AC نیز با استفاده از سیستم کنترل پیشرفته و الگوریتم‌های مختلفی که بر اساس سنسورها تنظیم می‌شوند، جهت و سرعت حرکت پنل‌های خورشیدی را کنترل می‌کنند.

گیربکس (اختیاری):

   – برخی از تراکرها از گیربکس (چرخ دنده) برای انتقال حرکت موتور به پنل‌های خورشیدی استفاده می‌کنند. اما برخی از موتورهای AC بدون گیربکس نیز طراحی شده‌اند که به عنوان موتورهای الکتریکی بدون گیربکس شناخته می‌شوند.

کنترل دقیق سرعت:

   – یکی از ویژگی‌های برجسته موتورهای AC این است که می‌توانند به‌طور دقیق کنترل شوند. این ویژگی باعث می‌شود موتورها بتوانند با تغییرات در زاویه و مسیر حرکت خورشید به بهترین شکل ممکن پنل‌های خورشیدی را در مسیر خورشید جهت‌دهی کنند.

بازدهی بالا:

   – موتورهای AC با بازدهی بالا عمل می‌کنند و به دلیل این کارایی بالا، گاهی اوقات نیازی به گیربکس ندارند که این امر باعث کاهش هزینه‌ها و افزایش بازدهی می‌شود.

مقاومت در برابر بارهای سنگین:

   – این نوع موتورها معمولاً مقاومت بالا در برابر بارهای سنگین دارند و می‌توانند به خوبی با دامنه های مختلف حرکت های مربوط به تراکر سازگار شوند.

استفاده از موتورهای الکتریکی متناوب در تراکرهای نیروگاه‌های خورشیدی نیز با محدودیت‌ها و معایب خاصی همراه است. در زیر، به برخی از این محدودیت‌ها و معایب موتورهای الکتریکی متناوب اشاره شده است:

پیچیدگی سیستم کنترل:

   – سیستم کنترل موتورهای AC پیچیده‌تر از موتورهای DC است. این پیچیدگی ممکن است نیاز به تجهیزات و دانش مهندسی بیشتری داشته باشد.

نیاز به تجهیزات جانبی بیشتر:

   – برای اجرای بهینه موتورهای AC، نیاز به تجهیزات جانبی مانند مبدل‌های فرکانس، سنسورها و کنترل‌گرهای پیشرفته است. این موارد هزینه و پیچیدگی را افزایش می‌دهند.

هزینه بالاتر در مقایسه با موتورهای جریان مستقیم:

   – معمولاً هزینه تجهیزات و نگهداری موتورهای AC بیشتر از موتورهای DC است. این موضوع ممکن است در مواقعی که برنامه بودجه مهم است، تأثیر منفی داشته باشد.

بازدهی کم در حالت‌های کم‌نوری:

   – موتورهای AC معمولاً در سرعتهای پایین در شرایط کمینه‌ی خورشید و حالت‌های کم‌نوری بازدهی کمی دارند.

نیاز به منابع برق مستقل:

   – اجرای موتورهای AC نیاز به منابع برق مستقل و پایداری ولتاژ دارند. در صورت نوسانات ولتاژ، عملکرد آنها تحت‌تأثیر قرار می‌گیرد.

نیاز به تجهیزات خنک‌کننده:

   – موتورهای AC به دلیل تولید حرارت بیشتر در مقایسه با موتورهای DC، ممکن است نیاز به سیستم‌های خنک‌کننده داشته باشند.

بازدهی محدودتر در محیط‌های متغیر:

   – مانند موتورهای DC، موتورهای AC نیز ممکن است در محیط‌هایی با تغییرات شدید در دما، رطوبت یا شرایط محیطی دیگر، بازدهی متغیر شود.

نیاز به تخصص فنی:

   – نصب، تنظیم و نگهداری موتورهای AC نیاز به تخصص فنی بیشتری دارد که این مسئله ممکن است برخی از پروژه‌ها را به چالش بکشد.

533035022 - اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

  1. موتورهای خطی (Linear Motors):

   – موتورهای خطی در تراکرهای نیروگاه‌های خورشیدی به عنوان یکی از انواع موتورهای حرکتی استفاده می‌شوند. این موتورها به جای چرخهای گردان، حرکت خطی دارند و به پیگیری دقیق‌تر خورشید و افزایش بهره‌وری کمک می‌کنند. در زیر، نحوه عملکرد موتورهای خطی در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

ساختار موتور خطی:

   – موتورهای خطی از ساختار خاصی برخوردار هستند که حرکت خطی را به جای حرکت گردان ایجاد می‌کنند. این موتورها شامل بخش‌های مغناطیسی و الکترومغناطیسی هستند که با هم تعامل دارند.

سیستم تغذیه الکتریکی:

   – موتورهای خطی نیاز به تغذیه الکتریکی برق مستقیم (DC) دارند. این تغذیه می‌تواند از شبکه برق یا از منابع تولید برق مستقل مانند پنل‌های خورشیدی تأمین شود.

تأثیر میدان مغناطیسی:

   – در موتورهای خطی، تأثیر میدان مغناطیسی بر روی سیم‌ها یا المان‌های مغناطیسی خطی باعث ایجاد نیروی خطی می‌شود. این نیرو باعث جلب یا دفع المان‌ها می‌شود و حرکت خطی ایجاد می‌کند.

سنسورها و بازخورد:

   – موتورهای خطی معمولاً دارای سیستم‌های سنسوری هستند که جهت و موقعیت را نظارت می‌کنند. این سنسورها به سیستم کنترل اطلاعات می‌فرستند تا موتور بتواند به دقت حرکت کند.

سیستم کنترل:

   – برای مدیریت حرکت موتورهای خطی و پیگیری دقیق خورشید، سیستم کنترل پیشرفته‌ای نیاز است. این سیستم‌ها با استفاده از الگوریتم‌های خاصی که بر اساس بازخورد سنسوری تنظیم می‌شوند، موتور را به سمت و مسیر مطلوب جهت‌دهی می‌کنند.

بدون گیربکس:

   – یکی از ویژگی‌های مهم موتورهای خطی این است که معمولاً نیازی به گیربکس برای انتقال حرکت ندارند. این ویژگی باعث می‌شود که سیستم ساده‌تر و با کمترین افت انرژی عمل کند.

بازدهی بالا:

   – موتورهای خطی به دلیل ساختار خاص و عدم نیاز به گیربکس، معمولاً بازدهی بالایی دارند که این امر موجب افزایش عملکرد و کاهش اتلاف انرژی می‌شود.

استفاده از موتورهای خطی در تراکرهای نیروگاه‌های خورشیدی به بهبود عملکرد و دقت در رهگیری موقعیت خورشید کمک می‌کند و به افزایش بهره‌وری نهایی نیروگاه می‌انجامد.

موتورهای خطی نیز با محدودیت‌ها و معایب خاصی در تراکرهای نیروگاه‌های خورشیدی همراه هستند. در زیر، به برخی از این محدودیت‌ها و معایب موتورهای خطی اشاره شده است:

هزینه بالا:

   – موتورهای خطی به دلیل فناوری پیشرفته و پیچیدگی ساختار، هزینه تولید و نصب بالاتری دارند که ممکن است به عنوان یکی از معایب اصلی محسوب شود.

نیاز به سیستم کنترل پیشرفته:

   – اجرای بهینه موتورهای خطی نیاز به سیستم‌های کنترل پیشرفته دارد که این امر ممکن است نیاز به تجهیزات پیچیده و دانش فنی برتر داشته باشد.

حساسیت به محیط:

   – موتورهای خطی به عوامل محیطی نظیر گرد و غبار، رطوبت، و شرایط جوی حساس هستند و نیازمند محافظت مناسب در مقابل این عوامل هستند.

نیاز به سیستم خنک‌کننده:

   – به دلیل تولید حرارت بالا در اثر حرکت و انتقال الکتریکی، موتورهای خطی ممکن است به سیستم‌های خنک‌کننده نیاز داشته باشند.

پیچیدگی نصب و نگهداری

   – نصب، تنظیم و نگهداری موتورهای خطی نسبت به سایر نوع‌های موتورها پیچیده‌تر است و نیاز به مهارت‌ها و دانش تخصصی بیشتری دارد.

بازدهی در دماهای بالا:

   – در دماهای بالا، ممکن است بازدهی موتورهای خطی کاهش یابد. برای مدیریت حرارت و بهبود بازدهی، سیستم‌های خنک‌کننده ویژه ممکن است نیاز باشند.

پیچیدگی نوع تکنولوژی:

   – استفاده از موتورهای خطی نیاز به تسلط بر تکنولوژی‌های خاص دارد و در صورت نیاز به تعویض یا ارتقاء، پیچیدگی بیشتری ایجاد می‌شود.

محدودیت در بارهای سنگین:

   – موتورهای خطی ممکن است در مقابل بارهای سنگین کمتر مقاوم باشند و نیاز به تجهیزات افزوده یا تغییرات در ساختار داشته باشند.

 

  1. موتورهای برقی فشار آب:

موتورهای برقی که با استفاده از فشار آب عمل می‌کنند، به عنوان یکی دیگر از انواع موتورهای حرکتی مورد استفاده در تراکرهای نیروگاه‌های خورشیدی شناخته می‌شوند. این موتورها از انرژی آب برای ایجاد حرکت در سیستم تراکر استفاده می‌کنند. در زیر، عملکرد موتورهای برقی با فشار آب در تراکرهای نیروگاه‌های خورشیدی توضیح داده شده است:

مبدأ انرژی:

   – موتورهای برقی با فشار آب از انرژی آب برای ایجاد حرکت در سیستم تراکر استفاده می‌کنند. این آب ممکن است از منابع مانند چاه‌ها، رودخانه‌ها، یا منابع آبی محلی تأمین شود.

تأثیر فشار آب:

   – فشار آب به عنوان منبع اصلی انرژی بر روی توربین یا مکانیسم دیگری اثر می‌گذارد که حرکت پنل‌های خورشیدی را فراهم می‌کند. فشار آب این توربین یا مکانیسم را به حرکت تبدیل می‌کند.

مکانیسم تبدیل حرکت:

   – فشار آب باعث چرخش یا جابه‌جایی مکانیسم تبدیل حرکت می‌شود. این مکانیسم معمولاً به صورت مستقیم یا غیرمستقیم به پنل‌های خورشیدی متصل است.

سیستم کنترل:

   – برای مدیریت حرکت پنل‌های خورشیدی و پیگیری خورشید، سیستم کنترل پیچیده‌ای در سیستم تراکر نصب شده است. این سیستم‌ها بر اساس اطلاعات سنسوری از جمله موقعیت خورشید و جهت حرکت سیستم تراکر عمل می‌کنند.

بدون گیربکس (گاهی اوقات):

   – برخی از موتورهای برقی با فشار آب به دلیل ساختار ساده‌تر خود و توانایی بالا در تحمل فشار آب، نیاز به گیربکس برای انتقال حرکت به پنل‌های خورشیدی ندارند.

استفاده از انرژی هیدروپنیک:

   – در برخی موارد، این نوع موتورها از انرژی هیدروپنیک (انرژی مستقیماً به‌دست آمده از فشار آب) به عنوان منبع اصلی انرژی استفاده می‌کنند.

پیشرفت‌های تکنولوژیک:

   – با پیشرفت تکنولوژی، موتورهای برقی با فشار آب بهبود یافته‌اند و توانسته‌اند با کمترین اتلاف انرژی حرکت مطلوب را ایجاد کنند.

استفاده از موتورهای برقی با فشار آب در تراکرهای نیروگاه‌های خورشیدی به عنوان یک روش پایدار و قابل تجدید استفاده از منابع آب و انرژی هیدروپنیک را تسهیل می‌کند.

موتورهای برقی که با استفاده از فشار آب عمل می‌کنند، نیز با محدودیت‌ها و معایب خاصی در استفاده از آنها در تراکرهای نیروگاه‌های خورشیدی همراه هستند. در زیر، به برخی از این محدودیت‌ها و معایب موتورهای برقی با فشار آب اشاره شده است:

وابستگی به منابع آب:

   – عملکرد موتورهای برقی با فشار آب به میزان منابع آب و دسترسی به آنها وابسته است. در مناطق با مشکلات آبی، استفاده از این نوع موتورها ممکن است با مشکلات مواجه شود.

نیاز به سیستم‌های پمپاژ:

   – استفاده از موتورهای برقی با فشار آب نیازمند سیستم‌های پمپاژ قوی و پیچیده است که ممکن است نیاز به هزینه و نگهداری بیشتر داشته باشد.

حساسیت به تغییرات فشار:

   – موتورهای برقی با فشار آب حساس به تغییرات فشار آب هستند. نوسانات فشار می‌توانند به کاهش بازدهی و عمر مفید آنها منجر شوند.

نیاز به تعهدات سیستم خنک‌کننده:

   – این نوع موتورها به دلیل تولید حرارت بالا، نیاز به سیستم‌های خنک‌کننده دارند. این ممکن است در شرایط آب و هوایی خاص و مخصوصاً در دماهای بالا یا مناطق گرم تر به چالش کشیده شود.

 

هزینه نگهداری:

   – هزینه نگهداری موتورهای برقی با فشار آب ممکن است بالاتر از برخی دیگر از گزینه‌های موتوری باشد، به ویژه اگر نیاز به تعمیرات و تغییرات مداوم باشد.

نیاز به تجهیزات الکترونیکی مقاوم در برابر آب:

   – با توجه به استفاده از آب در محیط، نیاز به تجهیزات الکترونیکی مقاوم در برابر آب (waterproof) و محافظت در مقابل خرابی ناشی از آب وجود دارد.

محدودیت در محیط‌های سرد:

   – در شرایط دمای پایین، ممکن است فشار آب منجر به تشکیل یخ شود و عملکرد موتورها را تحت تأثیر قرار دهد. این موضوع نیازمند تدابیر خاصی در مناطق سردسیر است.

نیاز به ایستگاه پمپاژ:

   – برای بهینه کردن عملکرد موتورهای برقی با فشار آب، نیاز به ایستگاه‌های پمپاژ با عملکرد بالا و کنترل دقیق دارند. این ایستگاه‌ها نیاز به محیط های سرپوشیده و نگهداری مناسب دارند.

توجه داشته باشید که نوع موتورهای مورد استفاده در تراکرها به معماری و تکنولوژی مربوط به هر تولیدکننده و پروژه خاص بستگی دارد. هر یک از این موتورها ویژگی‌ها و مزایای خود را دارند که بر اساس نیازهای خاص هر پروژه انتخاب می‌شوند.

Array Technologies single axis tracker underside pxuf0ksmvbdgq6xaibb5940vy3gs6o0pawpb5qxcaw - اجزای اصلی تراکر یا ردیاب در نیروگاه خورشیدی

تولیدکنندگان موتورهای الکتریکی برای تراکرهای نیروگاه‌های خورشیدی متعدد هستند. برخی از شرکت‌های معتبر که در این حوزه فعالیت دارند عبارتند از:

  1. ABB

   – ABB یک شرکت بین‌المللی سوئیسی است که در زمینه فناوری‌های برق و اتوماسیون فعالیت دارد. این شرکت موتورها و تجهیزات الکتریکی برای صنایع مختلف تولید می‌کند.

 

  1. NEXTracker

   – NEXTracker یک شرکت تخصصی در زمینه توسعه و تولید تراکرهای نیروگاه‌های خورشیدی است. این شرکت از موتورهای الکتریکی متنوعی در تراکرهای خود استفاده می‌کند.

 

  1. PVH

   – PVH یک تولیدکننده بین‌المللی تجهیزات نیروگاه‌های خورشیدی است و از موتورهای الکتریکی برای حرکت تراکرهای خود استفاده می‌کند.

 

  1. DEGERenergie

   – DEGERenergie یک شرکت آلمانی است که در زمینه توسعه و تولید تجهیزات نیروگاه‌های خورشیدی فعالیت دارد. این شرکت نیز سازنده موتورهای الکتریکی برای تراکرهای خورشیدی است.

 

  1. SunPower

   – SunPower یک شرکت آمریکایی است که در زمینه توسعه و تولید تجهیزات نیروگاه‌های خورشیدی فعالیت دارد. این شرکت از تکنولوژی‌های مدرن در موتورهای الکتریکی برای تراکرهای خود بهره می‌برد.

 

گیربکس (چرخ دنده) در تراکر نیروگاه خورشیدی

گیربکس یا چرخ دنده در تراکرهای نیروگاه‌های خورشیدی یک عنصر مهم برای تنظیم حرکت و جهت پنل‌های خورشیدی است. گیربکس با انتخاب نسبت‌های مناسب بین دنده‌ها، سرعت و جهت حرکت پنل‌ها را تنظیم می‌کند. در زیر به برخی از جنبه‌ها و انواع گیربکس‌ها در تراکرهای خورشیدی اشاره می‌شود:

وظیفه گیربکس در تراکر:

گیربکس در تراکرهای خورشیدی عملکرد اصلی تنظیم سرعت و جهت حرکت پنل‌های خورشیدی را دارد. این عنصر به دنباله دنده‌ها و سازه‌های مکانیکی دیگری که در سیستم نصب شده‌اند، متصل می‌شود و با تغییر نسبت بین دنده‌ها، حرکت پنل‌ها را مطابق با مسیر خورشید تنظیم می‌کند.

انواع تایپ گیربکس:

  1. گیربکس مارپیچ (Helical Gearbox):

   – دنده‌های این گیربکس به شکل مارپیچ (پیچدار) هستند. این ساختار باعث کاهش نویز و افزایش صحت در انتقال حرکت می‌شود. گیربکس مارپیچ در پروژه‌هایی که به دقت بالا در رهگیری خورشید نیاز دارند، مناسب است.

 

  1. گیربکس دنده‌ای مخروطی (Bevel Gearbox):

   – این گیربکس برای انتقال حرکت بین دو محور متقارن با یکدیگر (مانند محور افقی و عمودی) استفاده می‌شود. گیربکس دنده‌ای مخروطی مناسب برای سیستم‌هایی است که نیاز به تغییر جهت حرکت دارند.

 

  1. گیربکس موازی (Parallel Shaft Gearbox):

   – این گیربکس دارای دنده‌های موازی با یکدیگر است و معمولاً در مواقعی که نیاز به انتقال حرکت به خطوط موازی و دقت بالا داریم، مورد استفاده قرار می‌گیرد.

 

  1. گیربکس مخلوط (Planetary Gearbox):

   – در گیربکس مخلوط، دنده‌ها در ساختار مانند یک سیستم خورشیدی و سیاره‌ای طراحی شده‌اند. این ساختار به موتور این امکان را می‌دهد که با سرعتهای مختلف چرخانده شود و کارایی بالایی در انتقال حرکت ارائه دهد.

 

  1. گیربکس هیپوئید (Hypoid Gearbox):

   – این گیربکس دارای دنده‌های هلیکال مخروطی است که در زوایای شیب‌دار قرار دارند. این ساختار باعث کاهش نویز و افزایش کارایی در انتقال حرکت می‌شود.

 

هر کدام از این انواع گیربکس‌ها با توجه به نیازها و شرایط خاص پروژه‌های خورشیدی انتخاب می‌شوند.

 

سیستم‌های الکترونیکی تراکر نیروگاه خورشیدی:

   – سنسورها: تراکرها از سنسورهای نوری برای تشخیص جهت خورشید استفاده می‌کنند. این سنسورها نیازمند الگوریتم‌ها و سیستم‌های الکترونیکی پیچیده‌ای هستند.

   – کنترلرها: سیستم کنترل تراکر برای مدیریت حرکت‌ها و تنظیمات الکترونیکی نیازمند کنترل‌های پیچیده و سیستم‌های میکروکنترلری است.

   – ارتباط بین تراکرها: در نیروگاه‌های خورشیدی بزرگ، امکان تعامل بین تراکرها به منظور هماهنگی حرکت‌ها و جلوگیری از اشکالات نیازمند سیستم‌های ارتباطات پیشرفته است.

   – ارتباط با سیستم اصلی نیروگاه: تراکرها باید با سیستم کلی نیروگاه خورشیدی ارتباط برقرار کنند تا داده‌ها و اطلاعات مورد نیاز برای کنترل بهینه سیستم به‌دست آید.

 

نویسنده: مهدی پارساوند

 

تراکر یا ردیاب خورشیدی( Solar Tracker )

تراکر یا ردیاب خورشیدی(Solar Tracker)  یک سیستم مکانیزه یا الکترونیکی است که جهت پنل‌های خورشیدی را به‌طور اتوماتیک تنظیم می‌کند تا همیشه به سمت نور خورشید باشند. این سیستم باعث افزایش بازدهی و بهره‌وری تولید انرژی در نیروگاه‌های خورشیدی می‌شود. تراکرها می‌توانند به دو دسته الکترونیکی (سنسور میزان نور و رگولاتورهای الکترونیکی) و مکانیکی (با استفاده از سیستم‌های مکانیکی و قطعات حرکتی) تقسیم شوند.

 

ویژگی‌ها و عملکرد تراکرها در نیروگاه خورشیدی:

پیگیری خورشید:

   تراکرها دارای سنسورهای نوری هستند که مقدار نور دریافتی را اندازه‌گیری می‌کنند و پنل‌ها را به سمت نور خورشید جهت می‌دهند. این عمل باعث افزایش مستمر و بهینه در تولید انرژی در نیروگاه‌ خورشیدی می‌شود.

 

تنظیم در دو جهت:

   برخی از تراکرها به دو جهت، یعنی افقی(Azimuth)  و عمودی (Elevation)، قابل تنظیم هستند. افقی تنظیم موقعیت پنل‌ها در جهت شرق و غرب را مشخص می‌کند، در حالی که عمودی نسبت به زاویه شیب خورشید، موقعیت پنل‌ها را در نیروگاه‌ خورشیدی تنظیم می‌کند.

 

افزایش بازدهی:

   با دنبال کردن مسیر خورشید، تراکرها باعث افزایش بازدهی و تولید بیشتر انرژی در مقایسه با پنل‌های ثابت می‌شوند. این افزایش تولید در نیروگاه‌ خورشیدی معمولاً 20 تا 30 درصد می‌تواند باشد.

 

کاهش سایه:

   تراکرها می‌توانند تاثیرات سایه را کاهش دهند. زمانی که یک شیء سایه بر سطح پنل ایجاد کند، تراکر به سرعت پنل را جابجا می‌کند تا از اثرات سایه در تولید نیروگاه‌ خورشیدی کاسته شود.

 

سازگاری با مکان‌های مختلف:

   تراکرها به راحتی در مکان‌های مختلف و با زوایا و میزان شیب‌های مختلف قابل نصب هستند، که این امکان را فراهم می‌کند تا در مناطق مختلف جغرافیایی نیز مورد استفاده قرار گیرند.

 

معایب استفاده از تراکرها در نیروگاه خورشیدی

درسته استفاده از تراکرها در نیروگاه‌های خورشیدی با ویژگی‌های مثبت همراه است، اما دارای برخی معایب نیز میباشد. در زیر به برخی از معایب استفاده از تراکرها اشاره می‌شود:

  1. هزینه بالا:

   نصب و نگهداری تراکرها هزینه‌های اضافی به سیستم نیروگاه خورشیدی افزوده و هزینه نهایی پروژه را افزایش می‌دهد. این هزینه‌ها شامل هزینه نصب، نگهداری مکانیزم‌ها، انرژی مصرفی برای حرکت تراکرها و سایر هزینه‌های مرتبط می‌شود.

هزینه بالا در مورد نصب و نگهداری تراکرها در نیروگاه‌های خورشیدی به علت عوامل مختلفی افزایش می‌یابد. در زیر به برخی از عوامل اصلی و افزایش درصدی که ممکن است برای هر یک از این عوامل ایجاد شود، اشاره می‌شود:

1-1. هزینه نصب:

   نصب تراکرها نیاز به کارگران ماهر و تجهیزات خاص دارد. همچنین، ساختار پایه‌ها و مکانیزم‌های مکانیکی نیز باید به‌صورت دقیق و محکم نصب شوند. همه این عوامل باعث افزایش هزینه نصب می‌شوند.

 

1-2. هزینه تجهیزات:

   تجهیزات الکترونیکی و مکانیکی تراکرها نیازمند تکنولوژی پیشرفته و دقت بالا هستند. این تجهیزات هزینه تولید و تهیه بالایی به نیروگاه‌ خورشیدی تحمیل میکنند.

 

1-3. نیاز به انرژی برای حرکت:

   تراکرها نیاز به انرژی برای حرکت دارند. این انرژی ممکن است از منابع مختلفی تأمین شود از جمله اتصال به شبکه برق یا استفاده از پنل‌های خورشیدی اضافی. هزینه مصرف این انرژی نیز به هزینه نهایی نیروگاه‌ خورشیدی اضافه می‌شود.

 

1-4. نیاز به نگهداری مکانیکی:

   مکانیکی بودن تراکرها به دلیل قطعات متحرک، نیاز به نگهداری و تعمیرات بیشتری دارد. این نگهداری ها باعث افزایش هزینه نگهداری و تعمیرات در نیروگاه‌ خورشیدی می‌شود.

 

1-5. نیاز به سیستم کنترل:

   نصب و بهره‌برداری از یک سیستم کنترل پیچیده برای ردیابی دقیق خورشید نیز هزینه‌ها را در نیروگاه‌ خورشیدی افزایش می‌دهد.

 

به‌طور کلی، افزایش هزینه بستگی به شرایط خاص هر پروژه دارد. اما به طور تقریبی، هزینه نصب و نگهداری تراکرها می‌تواند به میزان 20 تا 30 درصد هزینه کل پروژه نیروگاه خورشیدی را افزایش دهد. این مقدار بسته به شرایط محیطی، تکنولوژی مورد استفاده و اقتصاد منطقه متغیر می باشد.

تراکر ردیاب خورشیدی آرا نیرو  solar tracker system bracket efficiency - تراکر یا ردیاب خورشیدی (Solar Tracker)

 

  1. نیاز به فضای بیشتر:

   نصب تراکرها نیازمند فضای بیشتری است، چرا که پنل‌ها در طی حرکتشان نیاز به فضای آزاد دارند. این امر ممکن است در مکان‌های با محدودیت فضا به چالش بخورد.

نیاز به فضای بیشتر در نصب تراکرها در نیروگاه‌های خورشیدی از دو جهت مهم مطرح می‌شود: اولاً، فضای فیزیکی برای نصب سازه‌ها و تجهیزات مکانیکی؛ دوماً، فضای زیستی و زمین‌های مورد نیاز.

 

2-1. فضای فیزیکی برای نصب سازه‌ها و تجهیزات:

   – ساختار پایه‌ها: نصب تراکرها نیازمند ساختار پایه‌های قوی است که به پایداری و عملکرد بهینه تراکرها کمک کنند. برای هر تراکر نیازمند یک ساختار پایه و پشتیبانی مناسب است.

   – حرکت مکانیکی: وجود سیستم‌های حرکتی و مکانیکی نیازمند فضای بیشتری برای جابجایی پنل‌ها به سمت خورشید است. این امر به معنای فضای آزاد اطراف تراکرها و پنل‌ها در نیروگاه‌ خورشیدی می‌باشد.

 

2-2. فضای زیستی و زمین‌های مورد نیاز:

   – فضای زیستی: ممکن است در صورت نیاز به اجرای تغییرات زیست محیطی یا انجام اقدامات مرتبط با حفاظت از محیط زیست و گیاهان محلی نیاز به فضای زیستی افزایش یابد.

   – زمین‌های مورد نیاز: برای نصب تراکرها نیازمند زمین‌های بیشتری هستیم و باید مساحت‌های بزرگتری از زمین را اختصاص دهیم. این امر به خصوص در نیروگاه‌های خورشیدی با ظرفیت بالا به وجود می‌آید.

درصد افزایش فضای مورد نیاز بر اساس نوع و تعداد تراکرها، ابعاد ساختارهای مکانیکی، و شرایط محیطی متغیر است. به طور کلی، افزایش مساحت فضایی بر اثر نصب تراکرها می‌تواند به میزان حداقل 10 تا 20 درصد از مساحت نیروگاه خورشیدی بیافزاید. این میزان ممکن است بسته به شرایط خاص هر پروژه، نوع تراکر، ویژگی‌های زمین، و نیازمندی‌های محیط زیستی، متغیر باشد.

 

  1. پیچیدگی سیستم:

   تراکرها دارای سیستم‌های پیچیده مکانیکی یا الکترونیکی هستند. این پیچیدگی سیستم می‌تواند باعث افزایش احتمال خرابی و کاهش قابلیت اطمینان سیستم شود.

پیچیدگی سیستم تراکرها در نیروگاه‌های خورشیدی به دلیل وجود عناصر مکانیکی و الکترونیکی بسیار است. در زیر به برخی از عوامل مهم توجیه کننده پیچیدگی این سیستم پرداخته می‌شود:

3-1. ساختار مکانیکی:

   ساختار مکانیکی تراکرها در نیروگاه‌های خورشیدی بر اساس نوع و مدل تراکر متفاوت است، اما برخی از جزئیات مشترک در ساختار مکانیکی تراکرها عبارتند از:

3-1-1. پایه‌ها و ستون‌ها: ساختار پایه‌های تراکرها نیازمند طراحی و ساخت قوی و پایدار است. این پایه‌ها ممکن است به اندازه یک سازه مهندسی ساخته شوند و نیازمند مهندسی دقیق هستند.

– پایه‌ها معمولاً از مواد قوی مانند فولاد یا بتن ساخته می‌شوند. این پایه‌ها ممکن است به صورت استوانه‌ای یا مستطیلی طراحی شده باشند.

   – ستون‌ها بخشی از پایه‌ها هستند و از میان پایه بلندتر برآمده و به پنل‌های خورشیدی اتصال داده می‌شوند.

 

 3-1-2. سیستم‌های حرکتی:

سیستم حرکتی تراکرها در نیروگاه‌های خورشیدی برای بهینه کردن تابش خورشیدی بر سطح پنل‌های خورشیدی به‌کار می‌رود. وجود سیستم‌های مکانیکی برای حرکت تراکرها نیازمند موتورهای الکتریکی ، چرخ دنده‌ها، رولرها، و سیستم‌های جلوگیری از سایش است که این عناصر افزوده علاوه بر اینکه باعث حرکت دقیق تراکرها می‌شوند، میزان پیچیدگی را افزایش می‌دهند.

 

توجیه اقتصادی تراکر نیروگاه خورشیدی:

به طور کلی، استفاده از تراکرها نیاز به ارزیابی دقیق هزینه‌ها و مزایا، و توجیه اقتصادی دقیق در پروژه نیروگاه‌های خورشیدی دارد. عملکرد تراکرها نیازمند مصرف انرژی برای حرکت مکانیکی و تنظیمات الکترونیکی است. این مصرف انرژی اضافی ممکن است به اندازه تولید انرژی اضافی توسط پنل‌ها نباشد و موجب کاهش بهره‌وری نهایی شود.

فرایند تولید، نصب و نگهداری تراکرها ممکن است تأثیرات محیطی منفی داشته باشد. این مشکلات شامل مصرف منابع زیاد، تولید پسماندهای الکترونیکی، و تأثیرات بر زیستگاه‌های محلی می‌شود.

هزینه بالا و نیاز به سرمایه گذاری اضافی، ممکن است بازگشت سرمایه پروژه نیروگاه خورشیدی با تراکر را با تاخیر مواجه کند و باعث افزایش زمان بازگشت سرمایه شود.

startak TCU 2020 600px - تراکر یا ردیاب خورشیدی (Solar Tracker)

راهکارهای جایگزین استفاده از تراکر خورشیدی

استفاده از تراکرهای خورشیدی برای پیگیری حرکت خورشید و بهبود بازدهی پنل‌های خورشیدی یکی از راهکارهای موثر در نیروگاه‌های خورشیدی است، اما در برخی موارد ممکن است به دلیل محدودیت‌های مالی، فنی یا محیطی، استفاده از راهکارهای جایگزین مورد توجه قرار گیرد. در زیر به برخی از راهکارهای جایگزین برای تولید انرژی خورشیدی بدون استفاده از تراکرها اشاره شده است:

 

  1. سامانه‌های ثابت (Fixed-tilt PV Systems):

   – در این روش، پنل‌های خورشیدی به یک زاویه ثابت نسبت به سطح زمین تنظیم می‌شوند. این سیستم‌ها عموماً برای مناطق با تغییرات کمتر در مسیر خورشید مناسب هستند.

مزایا:

سادگی ساختار و نصب، کاهش هزینه‌ها.

نیاز به نگهداری کمتر در مقایسه با سیستم‌های پیچیده‌تر.

کمترین تلفات انرژی در اثر حرکت گیربکس یا ردیاب.

معایب:

کارایی پایین‌تر در شرایط نور کم یا زوایای خورشیدی متغیر.

عدم تطابق با مسیر حرکت خورشید.

 

  1. پنل‌های خورشیدی با تکنولوژی‌های پیشرفته:

   – استفاده از پنل‌های خورشیدی با تکنولوژی‌های پیشرفته که به دنبال بهبود بازدهی در شرایط نور کمتر و زوایای متغیر هستند، می‌تواند نیاز به تراکرها در نیروگاه‌ خورشیدی را کاهش دهد.

مزایا:

بهبود در کارایی در شرایط نور کم.

افزایش بازدهی در تکنولوژی‌های نوین سلول‌های خورشیدی.

معایب:

هزینه بالا برای تکنولوژی‌های پیشرفته.

ریسک تکنولوژی جدید و نقص‌های احتمالی.

این تکنولوژی‌ها شامل چندین نوع سلول و پنل مختلف می‌شوند. در زیر به برخی از پیشرفت‌های تکنولوژی‌های پنل‌های خورشیدی اشاره می‌شود:

  1. سلول‌های پروسکایتی (Perovskite Solar Cells):

   – این سلول‌ها از مواد معدنی به نام پروسکایت استفاده می‌کنند و توانایی بهبود عملکرد در شرایط نور کم، هوای محیط و دماهای متغیر را دارند. سلول‌های پروسکایتی به دلیل هزینه تولید پایین و کارایی بالا، توجه زیادی را به خود جلب کرده‌اند.

  1. سلول‌های Organic Photovoltaic Cells – OPV :

   – این سلول‌ها از مواد آلی به نام اروتنین استفاده می‌کنند و به دلیل انعطاف‌پذیری بیشتر و وزن کمتر، مناسب برای استفاده در سطوح منحنی و انعطاف‌پذیر هستند. سلول‌های OPV می‌توانند در شرایط نور کم و حتی در محیط‌های داخلی نیز عملکرد خوبی داشته باشند.

  1. سلول‌های آلی-انرژی‌های چسبنده (Perovskite-Silicon Tandem Solar Cells):

   – این تکنولوژی از ترکیب سلول‌های پروسکایتی با سلول‌های خورشیدی سیلیکونی استفاده می‌کند. این ترکیب بهبود کارایی در تولید انرژی و حذف نقاط ضعف هر یک از تکنولوژی‌ها را فراهم می‌کند.

  1. سلول‌های خورشیدی رنگی (Colored Solar Cells):

   – این سلول‌ها به دلیل طراحی‌های خاص و رنگ‌های متنوع، امکان استفاده از آنها در معماری و نمای ساختمان‌ها را فراهم کرده‌اند. این پنل‌ها علاوه بر تولید انرژی، نقش دکوراتیو و زیبایی را نیز دارند.

  1. سلول‌های خورشیدی نانوساختار (Nanostructured Solar Cells):

   – این تکنولوژی از ساختارهای نانومتری در سلول‌های خورشیدی استفاده می‌کند تا باعث افزایش سطح جذب نور و بهبود کارایی در نیروگاه‌ خورشیدی گردد. این سلول‌ها می‌توانند در شرایط نور کمتر نیز بهترین عملکرد را ارائه دهند.

  1. سلول‌های خورشیدی با اتصال بیشتر (Multi-junction Solar Cells):

   – این سلول‌ها از لایه‌های مختلف سلول‌های خورشیدی با انرژی‌های متفاوت استفاده می‌کنند تا انرژی از بیشترین محدوده طول موج را جذب کنند. این باعث افزایش بازدهی و عملکرد در شرایط متنوع نوری می‌شود.

  1. سلول‌های خورشیدی گرافن (Graphene Solar Cells):

   – این سلول‌ها از مواد گرافن برای بهبود هدایت الکتریکی و افزایش انعطاف‌پذیری استفاده می‌کنند. گرافن به عنوان یک ماده نانوتکنولوژیکی باعث افزایش حرکت الکترون‌ها می‌شود.

  1. سلول‌های خورشیدی Tandem Solar Cells :

   – این سلول‌ها از ترکیب چندین لایه سلول با انرژی‌های مختلف برای بهبود بازدهی استفاده می‌کنند. این ترکیب این امکان را فراهم می‌کند که انرژی خورشید را از طیف وسیعی از طول‌های موج جذب کنند.

  1. سلول‌های خورشیدی تراکمی (Concentrator Photovoltaics):

    – این سلول‌ها از عدسی‌ها یا آینه‌ها برای تمرکز نور بر روی سلول‌های خورشیدی استفاده می‌کنند. این روش مناسب برای مناطق با تابش نور خورشید زیاد است و باعث افزایش تولید انرژی می‌شود.

  1. پنل‌های خورشیدی شفاف (Transparent Solar Panels):

    – این نوع پنل‌ها به عنوان سلول‌های خورشیدی شفاف یا شیشه‌های خورشیدی شناخته می‌شوند. آنها به صورت شفاف بر روی سطوح شیشه‌ای نصب می‌شوند و این امکان را فراهم می‌کنند که ساختمان‌ها انرژی خورشیدی تولید کنند و همچنین نور خورشید را وارد محیط داخلی ساختمان کنند.

  1. پنل‌های خورشیدی دوطرفه (Bifacial Solar Panels):

پنل‌های خورشیدی دو طرفه(Bifacial)  یک نوع پنل خورشیدی هستند که قابلیت جذب نور از هر دو طرف را دارند، به این معنا که هم از سمت جلوی پنل (از طریق تابش مستقیم خورشید) و هم از سمت پشت پنل (از طریق تابش پراکنده و بازتابی از محیط) نور خورشید را تبدیل به انرژی الکتریکی می‌کنند. این ویژگی باعث افزایش بازدهی و تولید بیشتر انرژی در مقایسه با پنل‌های یک طرفه معمولی می‌شود. از مزایای این پنل ها میتوان به موارد زیر اشاره کرد:

  1. افزایش بازدهی به دلیل جذب نور از هر دو سمت
  2. کاهش هزینه تولید انرژی با افزایش بازدهی و تولید بیشتر انرژی
  3. تناسب با محیط زیست به طوریکه این نوع پنل‌ها در محیط‌های با بیشترین تغییرات در شدت نور (مثل مناطق ابری و مناطق با تغییرات جوی فصلی زیاد) عملکرد بهتری دارند.

در نتیجه، پنل‌های خورشیدی دو طرفه به عنوان یک فناوری پیشرفته و با تأثیر مثبت در افزایش بازدهی و تولید انرژی در نیروگاه‌ خورشیدی برجسته هستند.

 

  1. تکنولوژی‌های تجمعی زیاد (High Concentration Technologies):

   – این تکنولوژی‌ها از عدسی‌ها یا آینه‌ها برای جمع‌آوری نور خورشید و تمرکز آن بر روی سلول‌های خورشیدی استفاده می‌کنند. این راهکارها برای تولید انرژی با کارایی بالا در مناطق با تابش نور خورشید زیاد مناسب هستند.

مزایا:

بازدهی بالا در مناطق با تابش خورشید زیاد.

استفاده مؤثر از فضا و کاهش نیاز به پنل بزرگ.

معایب:

هزینه بالا و پیچیدگی در ساخت و نگهداری.

تأثیرات حرارتی بیشتر برای سلول‌ها.

single axis solar tracking تراکر آرانیرو ردیاب خورشیدی  - تراکر یا ردیاب خورشیدی (Solar Tracker)

  1. سیستم‌های ردیابی تک محوره (Single-axis Tracking Systems):

   – در مقایسه با تراکرهای دو محوره، سیستم‌های ردیابی تک محوره ساده‌تر هستند و همچنان امکان اصلاح زاویه تابش خورشید در فصول مختلف سال را فراهم می‌کنند. این سیستم‌ها باعث بهبود در بازدهی نسبت به سامانه‌های ثابت هستند.

مزایا:

افزایش بازدهی در مقایسه با سامانه‌های ثابت.

تطابق بیشتر با حرکت خورشید و تغییرات زاویه نور در فصول مختلف.

معایب:

هزینه بالا در نصب و نگهداری.

راندمان پایین تر در بازدهی نسبت به تراکرهای دو محوره.

توصیه نهایی به استفاده یا عدم استفاده از تراکر تک یا دو محوره در نیروگاه‌های خورشیدی در ایران ممکن است بستگی به شرایط خاص هر پروژه داشته باشد، اما می‌توان به برخی از نکات زیر اشاره کرد:

  1. هزینه بالا:

   – استفاده از تراکر دو محوره باعث افزایش هزینه‌های نصب، نگهداری و عملکرد سیستم می‌شود. در صورتی که شرایط آب و هوایی ایران و تابش خورشید متداول در این منطقه، توانایی کافی برای بهره گیری پنل‌ها در شرایط نصب ثابت را فراهم می‌کنند، افزایش هزینه به نسبت بازدهی افزوده شده ممکن است منطقی نباشد.

  1. مصرف آب:

   – عملکرد تراکر دو محوره نیازمند مصرف آب برای خنک‌کردن مکانیسم حرکتی و حفظ سیستم است. در مناطق کم آب و با توجه به مشکلات مدیریت منابع آب در ایران، استفاده از تراکر دو محوره ممکن است به مسائل زیست محیطی منفی منجر شود.

  1. پیچیدگی سیستم:

   – تراکر دو محوره سیستم‌های پیچیده‌تری نسبت به سیستم‌های ثابت هستند و نیازمند نگهداری و تعمیرات بیشتری می‌باشند. این موضوع می‌تواند در مدت زمان طولانی موجب افزایش هزینه‌های نگهداری شود.

  1. تغییرات جوی:

   – شرایط هوایی متنوع ایران، از جمله بادهای شدید، گردوغبار و دمای بالا می‌تواند بر عملکرد و پایداری تراکر دو محوره تأثیر بگذارد. سیستم‌های ثابت معمولاً مقاومتر به شرایط جوی هستند.

 

در نهایت، تصمیم در مورد استفاده یا عدم استفاده از تراکر در نیروگاه‌های خورشیدی در ایران باید با توجه به مشخصات فنی پروژه، شرایط جغرافیایی منطقه، و تحلیل دقیق هزینه-سود اتخاذ شود. همواره مهندسان آرا نیرو در زمینه انرژی خورشیدی و اطلاعات به‌روز مرتبط با پروژه مورد نظرتان، آماده ارائه مشاوره تخصصی به شما می باشد.

نویسنده: مهدی پارساوند

متن خبر:

در حالی که جهان از سوخت‌های فسیلی به دلیل مسائل زیست محیطی همچون گرمایش جهانی به سمت انرژی‌های تجدیدپذیر گرایش میابد، مشکل آلودگی جدیدی مطرح می‌شود: با پنل‌های خورشیدی قدیمی یا فرسوده چه کنیم؟

 

 هزاران تخته پنل فتوولتائیک هر روز در سراسر ایالات متحده نصب می شوند، به ویژه در غرب و جنوب آفتابی این کشور، در حالی که ایالت هایی مانند کالیفرنیا در تلاش برای تولید انرژی سبزتر هستند.

 

 اما با طول عمر مورد انتظار حدود 30 سال، موج اول تاسیسات خورشیدی اکنون به پایان کار خود نزدیک شده است و دغدغه‌ای را برای بازیافت تجهیزاتی ایجاد می کند که در غیر این صورت ممکن است به محل دفن زباله ختم شوند.

 

 آدام ساقی، مدیر اجرایی We Recycle Solar واقع در آریزونا، گفت: «آنچه در شرف وقوع است، سونامی پانل‌های خورشیدی است که به زنجیره تأمین بازمی‌گردند».

 

 یکی از چالش‌های هر صنعتی این است که برنامه‌ریزی چندانی برای اقتصاد دوره ای وجود نداشته است.

(توضیح مترجم: اقتصاد دوره‌ای یا “Circular Economy” یک مفهوم اقتصادی است که بر اصل بازیافت، استفاده مجدد، و کاهش ضایعات تأکید دارد. در این مدل اقتصادی، مواد مصرفی به جای اینکه بعد از استفاده دور ریخته شوند، به سیکل بازیافت و استفاده مجدد وارد می‌شوند. این بهبودها در مدیریت منابع منجر به کاهش زیان زیست‌محیطی و افزایش بهره‌وری اقتصادی می‌شود.)

 

 “(انرژی خورشیدی) یک شکل پایدار از انرژی است؛ باید برنامه ای برای بازنشستگی این دارایی ها وجود داشته باشد.”

 

 طرح ساقعی (Saghei’s plan) از جمله شامل استفاده مجدد از پانل ها است.

 

 تا پنج درصد از پانل ها یا نقص تولید جزئی دارند یا در حین حمل و نقل یا نصب آسیب می بینند.

 

 ساقعی می‌گوید این پانل‌هایی که هنوز کار می‌کنند را می‌توان بازسازی کرد و به بازارهای دیگر، اغلب در خارج از کشور، هدایت کرد.

 

 اما برای پانل‌هایی که دیگر کار نمی‌کنند – یا به دلیل فرسوده بودن، یا به دلیل اینکه در حین نصب بیش از حد آسیب دیده‌اند، یا در اثر تگرگ شکسته شده‌اند – ارزشی وجود دارد که می‌توان آن را بازیافت.

 

 ساقعی با اشاره به فرآیندی که مهندسانش سه سال طول کشیده تا به سرانجام برسند، می‌گوید: «ما کاری را انجام می‌دهیم که به آن معدن شهری می‌گویند.

 

 این معدن نقره، مس، آلومینیوم، شیشه و سیلیکون را بازیابی می کند _همه کالاهایی که در بازار آزاد دارای ارزش هستند._

 

 در حالی که کاربری فلزات ممکن است واضح باشد، کاربری سیلیکون و شیشه کمتر است، اما با این وجود جذاب است.

 ساقعی می‌گوید: «می‌توانید از آن برای تله‌های شن در زمین‌های گلف استفاده کنید، می‌توانید آن را برای مخلوط سندبلاست، همچنین می‌توانید برای سنگ‌ها یا مخلوط شیشه‌ای که برای شومینه‌های فضای باز تهیه می‌کنید استفاده کنید».

 

 با ظرفیت پردازش 7500 پانل هر روز در کارخانه در یوما، مقدار بسیار کمی از منابع به طرز شگفت انگیزی هدر می رود.

 بسته به نوع و مدل پنل‌ها، می‌توانیم تا 99 درصد نرخ بازیابی را دریافت کنیم.

 

 – لجستیک –

 

 برای منگ تائو، متخصص زیرساخت های انرژی پایدار در دانشگاه ایالتی آریزونا، توسعه چرخه عمر کارآمد برای پنل های خورشیدی یک مسئله مبرم است.

 

 با توجه به اینکه ایالات متحده در میان کشورهایی متعهد به کنار گذاشتن سوخت های فسیلی به دنبال توافقنامه آب و هوایی برجسته COP28 است، به نظر می رسد نصب پنل های خورشیدی تا دو دهه آینده به اوج خود برسد.

 

 او به خبرگزاری فرانسه گفت: «پس از بلوغ صنعت بازیافت، نصب سالانه و از کار انداختن آن تقریباً یکسان خواهد بود.

 

 اما برای 20 سال آینده… حداقل برای 10 سال آینده… ما فقط نصب های بیشتری نسبت به بازیافت خواهیم داشت.”

 

 او می‌گوید مشکل بازیافت فقط این نیست که ارزش مواد بازیافتی از پنل‌ها می‌تواند نسبتاً پایین باشد، بلکه هزینه های لجستیکی نیز دارد.

 با توزیع پنل ها در هزاران پشت بام در فواصل دور از هم، هزینه زیادی را باید صرف رساندن آنها به یک مرکز بازیافت کرد و بر خلاف برخی از حوزه‌های قضایی، ایالات متحده هزینه حذف و بازیافت را بر مصرف‌کننده نهایی تحمیل می‌کند – و این امر به خانواده‌ها القا میکند که واحدهای قدیمی خود را در محل دفن زباله محلی تخلیه کنند و در فکر بازیافت نباشند.

 

 تائو می‌گوید: «باید سیاست حمایتی وجود داشته باشد» تا شکاف بین آنچه مصرف‌کنندگان می‌پردازند و هزینه چرخه بازیافت پنل‌ها برطرف شود.

 

 – بازار درحال رشد –

 

 برای ساقعی، مانند هر رهبر تجاری، سودآوری مهم است.

 او می گوید: “شما نمی بینید که افراد زیادی وارد این کسب و کار می شوند، زیرا بازیافت هزینه دارد. رایگان نیست. کار سختی است و انرژی بر است.”

اما او بازیافت را راهی به جلو می بیند.
او متقاعد شده است که بازیابی مواد از پنل های خورشیدی قدیمی که می توانند دوباره در صفحات خورشیدی جدید قرار داده شوند، یک پیشنهاد برنده است.

او می گوید: «اینها بازارهایی هستند که در حال رشد هستند.
«درست از طریق این فرآیند، زمانی که صنعت به ارقام بزرگ‌تر رسید، می‌توانیم آن کالاهای خام را دوباره به زنجیره تأمین برگردانیم.
“آنچه هیجان انگیز است این است که ما در خط مقدم هستیم.”

منبع:
Yuma, United States (AFP)
Dec 23, 2023

سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

 

سیستم ارتینگ در نیروگاه خورشیدی فتوولتائیک به منظور بهره‌وری بیشتر از پتانسیل انرژی خورشیدی و افزایش عمر مفید تجهیزات نیروگاه خورشیدی استفاده می‌شود. این سیستم معمولاً شامل یک سری عملیات و تجهیزات می‌شود که به صورت هوشمندانه و با استفاده از داده‌های محیطی و تجهیزات نیروگاه، کنترل و مدیریت می‌شوند. در زیر چند مرحله اصلی برای اجرای سیستم ارتینگ در نیروگاه خورشیدی فتوولتائیک آورده شده است:

 

  1. سنجش داده‌ها و شناسایی نیازها:

   – نصب سنسورها و دستگاه‌های اندازه‌گیری در نقاط مختلف نیروگاه خورشیدی برای جمع‌آوری داده‌های مرتبط با شدت نور، دما، سرعت باد و سایر پارامترهای محیطی.

   – استفاده از سامانه‌های نرم‌افزاری برای تحلیل دقیق این داده‌ها و شناسایی نیازها و شرایط بهینه.

در این مرحله، سنسورها و دستگاه‌های اندازه‌گیری در نیروگاه خورشیدی فتوواتائیک نصب می‌شوند تا داده‌های محیطی مرتبط با عملکرد تجهیزات و شرایط زیست‌محیطی جمع‌آوری شود. این داده‌ها ممکن است شامل موارد زیر باشد:

 

1-1. شدت نور:

   – سنسورهای تشخیص نور جهت اندازه‌گیری شدت نور خورشید در موقعیت‌های مختلف نیروگاه خورشیدی نصب می‌شوند.

 

2-1. دما:

   – سنسورها برای اندازه‌گیری دما در نقاط مختلف نیروگاه خورشیدی نصب می‌شوند تا تأثیر حرارت بر عملکرد تجهیزات را نظارت کنند.

 

3-1. سرعت باد:

   – دستگاه‌های اندازه‌گیری سرعت باد جهت ارزیابی تأثیر باد بر روی پنل‌های خورشیدی و سایر تجهیزات نیروگاه خورشیدی استفاده می‌شوند.

 

4-1. فشار جو:

   – اندازه‌گیری فشار جو برای مشخص کردن تأثیر ارتفاع از سطح دریا نیروگاه خورشیدی بر عملکرد تجهیزات از اهمیت بالایی برخوردار است.

 

5-1. رطوبت:

   – سنسورهای رطوبت جهت نظارت بر رطوبت محیط و تأثیر آن بر کارایی تجهیزات نیروگاه خورشیدی به کار گرفته میشوند.

 

6-1. داده‌های الکتریکی:

   – اندازه‌گیری و نظارت بر ولتاژ، جریان و توان تولیدی توسط پنل‌های خورشیدی جز داده های اساسی نظارت برعملکرد نیروگاه خورشیدی میباشد.

 

پس از جمع‌آوری این داده‌ها، سیستم‌های نرم‌افزاری مخصوص برای تحلیل این اطلاعات و شناسایی نیازها به کار می‌روند. با تحلیل این داده‌ها، برای سیستم ارتینگ نیروگاه خورشیدی می‌توانیم تصمیمات هوشمندانه‌ای اتخاذ کنیم و تنظیمات نیروگاه را بهینه‌سازی کنیم تا عملکرد بهتری داشته باشد.

استراکچر خورشیدی  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

نیروگاه خورشیدی آرانیرو

  1. کنترل تجهیزات:

   – نصب سیستم‌های خودکار و هوشمند کنترلی بر روی تجهیزات نیروگاه خورشیدی برای تنظیم بهینه عملکرد آنها.

   – اجرای الگوریتم‌های هوشمند برای بهینه‌سازی جریان انرژی در تجهیزات مختلف نیروگاه خورشیدی.

در مرحله کنترل تجهیزات در نیروگاه خورشیدی فتوولتائیک، از سیستم‌های هوشمند و نرم‌افزارهای پیشرفته برای مدیریت بهینه تجهیزات استفاده می‌شود. این فرآیند شامل چند جنبه اصلی است:

 

1-2. نصب سیستم‌های کنترلی:

   – انجام نصب دستگاه‌ها و سنسورهای هوشمند بر روی تجهیزات نیروگاه خورشیدی به منظور اندازه‌گیری و کنترل عملکرد آنها.

   – نصب سیستم‌های کنترلی مبتنی بر میکروکنترلرها یا PLC  (کنترلر منطقه‌ای برنامه‌پذیر) جهت اتصال و کنترل تجهیزات نیروگاه خورشیدی.

 

2-2. تنظیمات بهینه:

   – استفاده از الگوریتم‌ها و مدل‌های هوش مصنوعی برای تحلیل داده‌های جمع‌آوری شده و اعمال تنظیمات بهینه بر روی تجهیزات نیروگاه خورشیدی.

   – تنظیمات بهینه شامل تغییر زوایای پنل‌های خورشیدی، جریان الکتریکی تولیدی، و سایر پارامترهای مرتبط با تجهیزات نیروگاه خورشیدی است.

 

3-2. سیستم‌های خودکار:

   – پیاده‌سازی سیستم‌های خودکار برای اجرای تصمیمات اتوماتیک در مورد کنترل تجهیزات نیروگاه خورشیدی.

   – این سیستم‌ها می‌توانند به صورت خودکار به تغییرات در شرایط محیطی و داده‌های جمع‌آوری شده واکنش نشان دهند.

 

4-2. مدیریت انرژی:

   – بهینه‌سازی مصرف انرژی توسط تجهیزات نیروگاه خورشیدی با استفاده از سیستم‌های مدیریت انرژی.

   – کنترل تولید انرژی و مصرف آن بر اساس نیازهای نیروگاه خورشیدی و شرایط محیطی.

 

5-2. ردیابی و نظارت:

   – پیاده‌سازی سیستم‌های ردیابی و نظارت برای پیگیری دقیق تر حرکت خورشید و تنظیم زاویه پنل‌های خورشیدی.

   – نظارت به صورت زنده بر عملکرد تجهیزات و ارتباط با سیستم مرکزی جهت اطلاع‌رسانی و مدیریت بهینه نیروگاه خورشیدی.

 

با این رویکرد، کنترل تجهیزات در نیروگاه خورشیدی فتوولتائیک به صورت هوشمندانه و خودکار صورت می‌گیرد، که منجر به افزایش بهره‌وری و بهینه‌تر شدن عملکرد نیروگاه می‌شود.

با اجرای این مراحل و استفاده از تکنولوژی‌های هوشمند، نیروگاه خورشیدی فتوولتائیک می‌تواند به بهترین شکل ممکن از انرژی خورشید بهره‌مند شود و عمرمفید تجهیزات را افزایش دهد.

 

  1. انواع روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی:

 

1-3. مقاومت زمین سیستمی (System Grounding):

   – در این روش، یکی از نقاط تجهیزات به عنوان نقطه مشترک زمین برای کل سیستم انتخاب می‌شود.

   – مزایا: سادگی و انطباق با استانداردهای ملی.

   – معایب: احتمال اختلال در نقطه زمین وابسته به مواقع مختلف نیروگاه.

مقاومت زمین سیستمی یکی از روش‌های حفاظت الکتریکی است که در آن یک نقطه مشترک برای زمین‌کردن کل سیستم الکتریکی یک نیروگاه یا سیستم تولید انرژی استفاده می‌شود. در این روش، نقطه زمین به عنوان نقطه مشترکی برای اتصال به زمین انتخاب می‌شود تا از جریان‌های ناخواسته جلوگیری کرده و ایمنی تجهیزات و افراد را تضمین کند. مهمترین ویژگی‌های مقاومت زمین سیستمی به خصوص در نیروگاه خورشیدی عبارتند از:

1-3-1. نقطه مشترک زمین:

   – یک نقطه مشترک به عنوان نقطه زمین برای کل سیستم الکتریکی انتخاب می‌شود. این نقطه معمولاً به عنوان “نقطه نیازمندی” نیز شناخته می‌شود.

 

1-3-2. کاهش ولتاژ به زمین:

   – هدف اصلی از استفاده از مقاومت زمین سیستمی، کاهش ولتاژ‌های ناخواسته به زمین است تا از خطرات احتمالی در نیروگاه خورشیدی جلوگیری شود.

 

1-3-3. حفاظت از تجهیزات:

   – مقاومت زمین به عنوان یک مسیر سهل‌العبور برای جریان‌های ناخواسته عمل می‌کند و در نتیجه، تجهیزات و دستگاه‌های نیروگاه خورشیدی را از خطرات احتمالی مرتبط با افزایش ولتاژ حفاظت می‌کند.

 

1-3-4. کنترل جریان زمین:

   – مقاومت زمین سیستمی با کنترل جریان زمین مواجه شده و از افزایش ناگهانی جریان‌ها در نیروگاه خورشیدی جلوگیری می‌کند.

 

1-3-5. تنظیم ولتاژ:

   – از طریق تنظیم ولتاژها و جلوگیری از افزایش ناگهانی آنها، ایمنی سیستم در نیروگاه خورشیدی تامین می‌شود.

 

1-3-6. تأثیر بر مدل توزیع:

   – استفاده از مقاومت زمین سیستمی ممکن است تأثیراتی بر مدل توزیع جریان و ولتاژ در سیستم نیروگاه خورشیدی داشته باشد و این تأثیرات می‌تواند بر ایمنی و بهره‌وری نیروگاه تأثیر بگذارد.

مقاومت زمین سیستمی به عنوان یکی از روش‌های اصلی حفاظت الکتریکی در نیروگاه‌ها و سیستم‌های تولید انرژی استفاده می‌شود و با توجه به ویژگی‌های خود، می‌تواند به بهبود ایمنی و کارایی سیستم الکتریکی کمک کند.

پنل خورشیدی به روز آرانیرو  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

2-3. مقاومت زمین مکانیکی (Physical Grounding):

   – در این حالت، از سیستم مقاومت زمین برای تجهیزات خاصی استفاده می‌شود و هر تجهیز به طور جداگانه زمین می‌شود.

   – مزایا: کنترل بهتر اختلالات مختلف.

   – معایب: پیچیدگی نصب و نگهداری.

مقاومت زمین مکانیکی یکی دیگر از روش‌های حفاظت الکتریکی است که در آن مقاومت زمین بر اساس مکانیک ساختار و تجهیزات انجام می‌شود. این روش به منظور کنترل و مدیریت جریان‌های ناخواسته و حفاظت از تجهیزات و افراد در مقابل خطرات الکتریکی به کار می‌رود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین مکانیکی عبارتند از:

 

2-3-1. ساختار مکانیکی:

   – در این روش، از ساختارهای مکانیکی یا اجزای سازه برای ایجاد مسیرهای زمین‌کردن استفاده می‌شود. این ممکن است شامل فولادهای مقاوم در برابر خوردگی یا دیگر مواد سازه‌ای باشد.

 

2-3-2. زمین‌کردن اجزای ساختار:

   – اجزای ساختاری که به عنوان اجزای غیر الکتریکی در سیستم وجود دارند، به منظور زمین‌کردن استفاده می‌شوند. این اجزا می‌توانند پایه‌ها، ستون‌ها، پایه‌های مستقیم، یا سایر عناصر سازه باشند.

 

2-3-3. استفاده از مصالح مخصوص:

   – مقاومت زمین مکانیکی ممکن است با استفاده از مصالح خاصی که خاصیت زمین‌کردن مناسبی دارند، ایجاد شود. این مصالح می‌توانند شامل آهن‌آلات، فولادهای ضدخوردگی و یا سایر مواد مشابه باشند.

 

2-3-4. کاهش مقاومت:

   – هدف اصلی از استفاده از مقاومت زمین مکانیکی، کاهش مقاومت مسیرهای زمین‌کردن است تا جریان‌های الکتریکی به سرعت به زمین تخلیه شوند و از افزایش ولتاژهای خطرناک جلوگیری شود.

 

2-3-5. پیچیدگی کمتر نسبت به روش‌های دیگر:

   – نسبت به برخی روش‌های دیگر مانند مقاومت زمین سیستمی، اجرای مقاومت زمین مکانیکی ممکن است به لحاظ فنی و عملی کمی پیچیده‌تر باشد.

 

2-3-6. کنترل جریانهای ناخواسته:

   – با استفاده از ساختارهای مکانیکی به عنوان مسیر زمین، می‌توان جریان‌های الکتریکی ناخواسته را کنترل کرد و از تجهیزات و افراد را در مقابل این جریان‌ها حفاظت کرد.

 

هر یک از روش‌های حفاظت الکتریکی از جمله مقاومت زمین مکانیکی بسته به نیازها و شرایط خاص سیستم الکتریکی انتخاب می‌شود و همگی به بهبود ایمنی و عملکرد سیستم کمک می‌کنند.

 

3-3. مقاومت زمین تجهیزات (Equipment Grounding):

   – در این روش، هر تجهیز به یک نقطه زمین مستقل متصل می‌شود.

   – مزایا: جداگانه‌سازی اختلالات و جلوگیری از انتقال جریانهای ناخواسته.

   – معایب: زمین‌های متعدد ممکن است موجب ایجاد اختلال شوند.

 

مقاومت زمین تجهیزات یکی از روش‌های حفاظت الکتریکی است که برای محافظت از تجهیزات الکتریکی در برابر خطرات الکتریکی مورد استفاده در نیروگاه خورشیدی قرار می‌گیرد. در این روش، هر تجهیز به یک نقطه زمین خاص متصل می‌شود تا در صورت وقوع اختلال یا خطای الکتریکی، جریان الکتریکی به سمت زمین تخلیه شود و از ایجاد خسارت به تجهیزات و افراد جلوگیری شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین تجهیزات عبارتند از:

 

3-3-1. زمین‌کردن تجهیزات:

   – هر تجهیز الکتریکی، از جمله دستگاه‌ها، دستورالعمل‌ها، و ابزارها، به یک نقطه زمین خاص متصل می‌شود. این نقطه زمین به عنوان مسیر بازگشت جریان الکتریکی ناخواسته به زمین عمل می‌کند.

 

3-3-2. کاهش ولتاژ:

   – استفاده از مقاومت زمین تجهیزات به منظور کاهش ولتاژهای ناخواسته و جلوگیری از افزایش ناگهانی آنها موثر است.

 

3-3-3. جلوگیری از جریانهای خطرناک:

   – هدف اصلی این روش، جلوگیری از ایجاد جریانهای خطرناک از تجهیزات به سمت افراد یا دیگر تجهیزات است.

 

3-3-4. افزایش ایمنی:

   – با زمین‌کردن تجهیزات، ایمنی افراد کارکننده با تجهیزات و دستگاه‌ها افزایش می‌یابد، زیرا جریان‌های الکتریکی به سمت زمین تخلیه می‌شوند و از تماس مستقیم با افراد جلوگیری می‌کنند.

 

3-3-5. پیشگیری از خسارات مالی:

   – استفاده از این روش می‌تواند از خسارات مالی ناشی از خرابی تجهیزات در اثر جریان‌های الکتریکی ناخواسته جلوگیری کند.

 

3-3-6. مطابقت با استانداردها:

   – استفاده از مقاومت زمین تجهیزات باعث مطابقت با استانداردها و مقررات ایمنی الکتریکی مربوطه می‌شود.

 

3-3-7. نظارت و بازرسی:

   – سیستم‌ها و تجهیزات باید به طور دوره‌ای تحت بازرسی و نظارت قرار گیرند تا اطمینان حاصل شود که مقاومت زمین تجهیزات همواره به درستی عمل می‌کند.

 

مقاومت زمین تجهیزات به عنوان یکی از روش‌های حفاظت الکتریکی به خصوص در سیستم‌ها و محیط‌های صنعتی و نیروگاهی به ویژه نیروگاه خورشیدی مورد استفاده قرار می‌گیرد و با توجه به خصوصیات آن، به ارتقاء ایمنی و بهره‌وری تجهیزات کمک می‌کند.

کنترل تجهیزات - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

4-3. مقاومت زمین دقیق (Precision Grounding):

   – این روش از مقاومت زمین با دقت بالا برخوردار است که جهت کاهش نویزهای الکتریکی و جریان‌های پارازیتی از آن استفاده می‌شود.

   – مزایا: حداقل کردن نویزهای الکتریکی.

   – معایب: نیاز به نگهداری دقیق و هزینه‌بر بودن.

مقاومت زمین دقیق یک روش پیشرفته در حوزه حفاظت الکتریکی است که برای بهبود دقت و کارایی در زمین‌کردن سیستم‌های الکتریکی مورد استفاده قرار می‌گیرد. در این روش، مقاومت زمین با دقت بسیار بالا و با کنترل دقیق بر ارزش مقاومت تنظیم می‌شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین دقیق عبارتند از:

 

4-3-1. دقت بالا:

   – یکی از ویژگی‌های بارز مقاومت زمین دقیق، دقت بالا در تنظیم مقاومت آن است. این روش برای حصول بهینه‌ترین نتایج در کنترل جریان‌های زمین استفاده می‌شود.

 

4-3-2. استفاده از مواد با کیفیت:

   – مقاومت زمین دقیق از مواد با کیفیت بالا و خصوصیات الکتریکی خوب ساخته می‌شود. این مواد ممکن است شامل آلیاژهای خاص یا فولادهای ویژه باشد.

 

4-3-3. تنظیم الکترونیکی:

   – برخی از سیستم‌های مقاومت زمین دقیق دارای امکانات تنظیم الکترونیکی هستند که به کنترل دقیق و تنظیم مقاومت کمک می‌کنند.

 

4-3-4. مدیریت هوشمند:

   – سیستم‌های مقاومت زمین دقیق معمولاً دارای مدیریت هوشمند هستند که با استفاده از الگوریتم‌ها و سنسورهای مختلف، بهینه‌سازی جریان‌های زمین را انجام می‌دهند.

 

4-3-5. کاهش نویزهای الکتریکی:

   – استفاده از مقاومت زمین دقیق به منظور کاهش نویزهای الکتریکی و افزایش پایداری سیستم‌های الکتریکی موثر است.

 

4-3-6. تنظیم ولتاژ:

   – این روش می‌تواند به طور دقیق ولتاژها را تنظیم کرده و از افزایش ناگهانی آنها جلوگیری نماید.

 

4-3-7. کاربردهای حساس:

   – مقاومت زمین دقیق معمولاً در سیستم‌های الکتریکی حساس به ولتاژها و جریان‌های ناخواسته، مانند سیستم‌های الکترونیکی پیشرفته و تجهیزات پزشکی، به کار می‌رود.

 

4-3-8. تطبیق با شرایط محیطی:

   – این سیستم‌ها به خوبی با شرایط محیطی مختلف تطبیق می‌شوند و می‌توانند در شرایط مختلف دما، رطوبت، و فشار به صورت موثر عمل کنند.

 

مقاومت زمین دقیق به عنوان یک روش پیشرفته حفاظت الکتریکی به خصوص در سیستم‌های الکتریکی حساس و نیازمند دقت بالا به کار می‌رود و به ارتقاء ایمنی و عملکرد این سیستم‌ها کمک می‌کند.

نیروگاه های خورشیدی در ایران  - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

5-3. مقاومت زمین فعال (Active Grounding):

   – در این حالت از تجهیزات فعال به منظور ترتیب و تنظیم مقاومت زمین استفاده می‌شود.

   – مزایا: امکان کنترل دقیق‌تر مقاومت زمین و جلوگیری از افزایش غیرهمسانی ولتاژ.

   – معایب: پیچیدگی و هزینه بالا.

مقاومت زمین فعال یک روش پیشرفته در حوزه حفاظت الکتریکی است که برای بهبود دقت و کارایی در زمین‌کردن سیستم‌های الکتریکی مورد استفاده قرار می‌گیرد. در این روش، علاوه بر استفاده از یک نقطه زمین، تجهیزات الکترونیکی فعال (مانند آمپلیفایرها یا تقویت‌کننده‌ها) نیز به کار گرفته می‌شوند تا به نحوی مداخله کنند که مقاومت زمین به صورت فعال تنظیم و کنترل شود. ویژگی‌ها و جزئیات مربوط به مقاومت زمین فعال عبارتند از:

 

5-3-1. استفاده از تجهیزات فعال:

   – این روش از تجهیزات الکترونیکی فعال به عنوان بخشی از سیستم زمین‌کردن استفاده می‌کند. این تجهیزات معمولاً به عنوان تقویت‌کننده‌های جریان یا ولتاژ عمل می‌کنند.

 

5-3-2. کنترل دقیق مقاومت زمین:

   – با استفاده از تجهیزات فعال، مقاومت زمین به نحو دقیق تنظیم و کنترل می‌شود. این امکان به مدیران سیستم اجازه می‌دهد که مقدار مقاومت زمین را به صورت دینامیک تطبیق دهند.

 

5-3-3. کاهش نویزهای الکتریکی:

   – استفاده از تجهیزات فعال به عنوان بخشی از مقاومت زمین فعال می‌تواند به کاهش نویزهای الکتریکی و افزایش پایداری سیستم کمک کند.

 

5-3-4. اصلاح ولتاژهای ناخواسته:

   – با استفاده از تجهیزات فعال، امکان اصلاح ولتاژهای ناخواسته و افزایش کنترل بر ولتاژهای سیستم وجود دارد.

 

5-3-5. پاسخ سریع به تغییرات:

   – سیستم‌های مقاومت زمین فعال معمولاً با پاسخ سریع به تغییرات در شرایط سیستم شناخته می‌شوند، که این امکان را فراهم می‌کند تا به بهترین شکل مقاومت زمین تنظیم شود.

 

5-3-6. مناسب برای بارهای پویا:

   – این روش به ویژه برای سیستم‌ها و بارهای الکتریکی پویا یا متغیر مناسب است.

 

5-3-7. مدیریت هوشمند:

   – بسیاری از سیستم‌های مقاومت زمین فعال دارای مدیریت هوشمند هستند که با استفاده از الگوریتم‌ها و سنسورها، بهینه‌سازی جریان‌های زمین را انجام می‌دهند.

 

5-3-8. کاربردهای حساس:

   – مقاومت زمین فعال معمولاً در سیستم‌های الکتریکی حساس به ولتاژها و جریان‌های ناخواسته، مانند سیستم‌های الکترونیکی پیشرفته، به کار می‌رود.

مقاومت زمین فعال به عنوان یک روش پیشرفته حفاظت الکتریکی برای سیستم‌های الکتریکی حساس و نیازمند دقت بالا به کار می‌رود و به بهبود ایمنی و عملکرد این سیستم‌ها کمک می‌کند.

تجهیزات نیروگاه خورشیدی آرانیرو - سیستم ارتینگ و روش‌های اجرای سیستم مقاومت زمین جهت حفاظت الکتریکی از تجهیزات نیروگاهی (با تمرکز بر نیروگاه خورشیدی فتوولتائیک)

6-3. مقاومت زمین به صورت توزیع شده (Distributed Grounding):

   – در این روش، مقاومت زمین به صورت گسترده در سراسر نیروگاه توزیع می‌شود.

   – مزایا: کاهش احتمال افزایش ولتاژ و جریان‌های غیرهمسانی.

   – معایب: هزینه نصب و نگهداری بالا.

مقاومت زمین به صورت توزیع شده یک روش زمین‌کردن پیشرفته است که در آن مفهوم زمین‌کردن به صورت یکنواخت در سطح گسترده‌ای اعمال می‌شود. در این روش، نقاط مختلف سیستم به صورت مستقل به زمین متصل می‌شوند، و این اتصالات توزیع شده‌ای دارند که از مزایای این نوع زمین‌کردن بهره‌مند می‌شوند. ویژگی‌ها و جزئیات مربوط به مقاومت زمین به صورت توزیع شده عبارتند از:

 

6-3-1. توزیع یکنواخت:

   – در مقاومت زمین به صورت توزیع شده، نقاط مختلف سیستم به صورت مستقل به زمین متصل می‌شوند و این توزیع به یکنواختی در زمین‌کردن سیستم منجر می‌شود.

 

6-3-2. کاهش مقاومت:

   – با توزیع یکنواخت زمین، مقاومت کل سیستم به صورت کلی کاهش می‌یابد که این موجب افزایش کارایی و کاهش ولتاژهای ناخواسته می‌شود.

 

6-3-3. پیشگیری از جریان‌های ناخواسته:

   – این روش می‌تواند بهبودی در جلوگیری از جریان‌های ناخواسته و افزایش ایمنی سیستم ایجاد کند.

 

6-3-4. مدیریت جریان:

   – توزیع یکنواخت جریان زمین بهبود مدیریت جریان‌های الکتریکی را فراهم می‌کند و از تجاوز جریان به نقاط حساس سیستم جلوگیری می‌کند.

 

6-3-5. قابلیت اطمینان بالا:

   – به دلیل توزیع یکنواخت زمین، سیستم با قابلیت اطمینان بالا و عملکرد پایدار روبرو می‌شود.

 

6-3-6. سازگار با تغییرات:

   – این روش سازگاری بالایی با تغییرات سیستم، اندازه‌ی گسترش یا تغییرات در تجهیزات دارد.

 

6-3-7. مناسب برای سیستم‌های بزرگ:

   – مخصوصاً در سیستم‌های الکتریکی بزرگ که از ابعاد گسترده استفاده می‌کنند، توزیع یکنواخت زمین می‌تواند یک گزینه موثر باشد.

 

6-3-8. پیاده‌سازی نسبت به استانداردها:

   – این روش معمولاً با استانداردها و مقررات الکتریکی سازگاری دارد و می‌تواند در پیاده‌سازی‌های مختلف به کار گرفته شود.

مقاومت زمین به صورت توزیع شده با توجه به مزایای مطرح شده، به عنوان یک گزینه کارآمد در زمینه حفاظت الکتریکی در سیستم‌های الکتریکی گسترده استفاده می‌شود.

 

هرکدام از این روش‌ها بسته به نیازها و شرایط خاص هر نیروگاه ممکن است انتخاب شود. انتخاب بهترین روش باید با توجه به استانداردها، اهداف حفاظتی، و شرایط محیطی انجام شود.

نویسنده: مهدی پارساوند

تابلوهای الکتریکال حفاظت، مدیریت و نظارت در نیروگاه خورشیدی

 

تابلوهای الکتریکال در نیروگاه خورشیدی نقش بسیار حیاتی در اطمینان از ایمنی، کارکرد صحیح و پایداری سیستم دارند. این تابلوها برای مدیریت و کنترل سیستم الکتریکی نیروگاه استفاده می‌شوند. در زیر به جزئیات بیشتر در مورد تابلوهای الکتریکال حفاظتی نیروگاه خورشیدی پرداخته‌ام:

 

۱. تابلوهای کنترل و کنترل فرآیند نیروگاه خورشیدی:

– وظیفه:

  – مدیریت و کنترل کارکرد دستگاه‌های الکتریکی از جمله اینورترها و تجهیزات مهم دیگر.

– ویژگی‌ها:

  – دارای سوئیچ‌ها، نمایشگرها و سنسورهای مورد نیاز برای کنترل و نظارت.

تابلوهای کنترل و کنترل فرآیند در نیروگاه خورشیدی فتوولتائیک نقش بسیار مهمی را در بهره‌وری و عملکرد بهینه این نوع نیروگاه ایفا می‌کنند. این تابلوها و سیستم‌های کنترل به صورت مجزا یا یکپارچه برای مدیریت و نظارت بر هر جنبه از عملیات نیروگاه مورد استفاده قرار می‌گیرند. در زیر، به برخی از کاربردهای اصلی این تجهیزات در نیروگاه خورشیدی فتوولتائیک اشاره می‌شود:

 

  1. مانیتورینگ و نظارت بر کارکرد پنل‌های خورشیدی:

   – تابلوهای کنترل با استفاده از سنسورها و مترها، عملکرد پنل‌های خورشیدی را نظارت کرده و اطلاعات مربوط به تولید انرژی، وضعیت عملکرد، وجود هر گونه نقص یا خطا را فراهم می‌کنند.

 

  1. کنترل باتری و ذخیره‌سازی انرژی:

   – نیروگاه‌های خورشیدی فتوولتائیک معمولاً از سیستم‌های ذخیره‌سازی باتری برای استفاده در شبانه‌روز یا در شرایط آب و هوایی نامساعد استفاده می‌کنند. تابلوها به کنترل شارژ و تخلیه باتری‌ها و مدیریت بهینه این فرآیند‌ها کمک می‌کنند.

 

  1. مدیریت تجهیزات:

   – تجهیزات مختلف مانند اینورترها، ترانسفورماتورها و دیگر سیستم‌های الکتریکی نیاز به کنترل دقیق دارند. تابلوهای کنترل با ارائه داده‌ها و دسترسی به پارامترهای مربوطه، به بهینه‌سازی و کاهش احتمال خطا در عملکرد این تجهیزات کمک می‌کنند.

 

  1. مدیریت تغذیه شبکه:

   – این تابلوها به مدیران نیروگاه اجازه می‌دهند تا تولید انرژی خود را با نیازهای شبکه هماهنگ کنند. این شامل تنظیم توان تولید، کنترل فرکانس و ولتاژ، و مدیریت اتصال به شبکه ملی می‌شود.

 

  1. اطلاعات‌گیری و گزارش‌گیری:

   – سیستم‌های کنترل در نیروگاه خورشیدی توانمندی گزارش‌گیری و ذخیره اطلاعات مربوط به عملکرد بهره‌وری را فراهم می‌کنند. این اطلاعات به مدیران کمک می‌کند تا اقدامات بهینه‌سازی و تصمیمات استراتژیک را بر اساس داده‌های دقیق انجام دهند.

 

با توجه به موارد فوق، استفاده از تابلوهای کنترل و سیستم‌های کنترل فرآیند در نیروگاه خورشیدی فتوولتائیک از اهمیت بسیار زیادی برخوردار است و به بهبود کارایی و پایداری این نوع نیروگاه‌ها کمک فراوان می‌کند.

نیروگاه خورشیدی تابلو نیروگاه آرانیرو.2 - تابلوهای الکتریکال حفاظت، مدیریت و نظارت در نیروگاه خورشیدی

 

۲. تابلوهای حفاظت الکتریکی نیروگاه خورشیدی:

– وظیفه:

  – ایجاد حفاظت در مقابل خطاهای الکتریکی و جلوگیری از خسارت به تجهیزات و افراد.

– ویژگی‌ها:

  – شامل رله‌های جریان، ولتاژ و توان، محافظت در برابر افت ولتاژ، افزایش جریان، ولتاژ بالا و پایین و …

تابلوهای حفاظت الکتریکی در نیروگاه‌های خورشیدی فتوولتائیک نقش بسیار حیاتی دارند. این تابلوها به منظور محافظت از تجهیزات الکتریکی و افزایش ایمنی سیستم‌های نیروگاه در مواجهه با خطرات مختلف به کار می‌روند. در زیر، به برخی از کاربردهای اصلی تابلوهای حفاظت الکتریکی در نیروگاه‌های خورشیدی فتوولتائیک اشاره می‌شود:

 

  1. حفاظت از تجهیزات الکتریکی:

   – تابلوهای حفاظت الکتریکی شامل دستگاه‌ها و سیستم‌های مختلف حفاظتی هستند که در مقابل افت ولتاژ، جریان بیش از حد، افزایش دما، و دیگر خطرات الکتریکی محافظت ایجاد می‌کنند. این اقدامات جلوی آسیب به تجهیزات اساسی مانند اینورترها، ترانسفورماتورها و سایر دستگاه‌های الکتریکی را می‌گیرند.

 

  1. حفاظت در مقابل شرایط آب و هوایی:

   – نیروگاه‌های خورشیدی ممکن است در شرایط آب و هوایی متنوعی مانند باران، برف، یخبندان و تغییرات دما قرار گیرند. تابلوهای حفاظت الکتریکی برای جلوگیری از وارد شدن رطوبت و گرد و غبار به تجهیزات الکتریکی طراحی شده‌اند و در شرایط سخت آب و هوایی عملکرد ایمنی را تضمین می‌کنند.

 

  1. مدیریت اتصالی:

   – حوادث ناشی از اتصالی در سیستم‌های الکتریکی می‌توانند عواقب جدی برای تجهیزات داشته باشند. تابلوهای حفاظت الکتریکی با اعمال مکانیزم‌های حفاظتی، از وقوع چنین حوادثی جلوگیری کرده و سیستم‌ها را در مقابل خسارات ناشی از آنها محافظت می‌کنند.

 

  1. مدیریت فراگیر انرژی:

   – این تابلوها معمولاً دارای سیستم‌های حفاظتی هستند که در مقابل افزایش تنش‌های الکتریکی ناشی از فراگیر انرژی (سافت استارت) محافظت انجام می‌دهند. این اقدامات باعث جلوگیری از آسیب به تجهیزات الکتریکی به علت سوفت استارت می‌شوند.

 

  1. پیگیری و نظارت دورهمی:

   – تابلوهای حفاظت الکتریکی معمولاً به سیستم‌های نظارتی متصل هستند که اطلاعات لحظه‌ای در مورد وضعیت عملکرد و ایمنی تجهیزات را فراهم می‌کنند. این اطلاعات به مدیران نیروگاه اجازه می‌دهند تا به سرعت واکنش نشان دهند و اقدامات لازم را برای حفاظت ایمنی انجام دهند.

 

استفاده از تابلوهای حفاظت الکتریکی در نیروگاه‌های خورشیدی فتوولتائیک اساسی است تا از عملکرد بهینه تجهیزات الکتریکی در شرایط مختلف محیطی و خطرات الکتریکی مختلف اطمینان حاصل شود و ایمنی سیستم‌ها تضمین گردد.

 

 

۳. تابلوهای اتصال به شبکه نیروگاه خورشیدی:

– وظیفه:

  – مدیریت اتصال نیروگاه به شبکه و تعامل با سیستم شبکه.

– ویژگی‌ها:

  – شامل تجهیزات اتصال به شبکه، تجهیزات حفاظتی شبکه و تجهیزات اطلاعاتی مورد نیاز.

تابلوهای اتصال به شبکه در نیروگاه خورشیدی فتوولتائیک نقش مهمی در اتصال نیروگاه به شبکه برق عمومی دارند و اطمینان از انتقال انرژی به صورت مؤثر و امن فراهم می‌کنند. در زیر به برخی از کاربردهای اصلی تابلوهای اتصال به شبکه در نیروگاه‌های خورشیدی فتوولتائیک اشاره خواهد شد:

 

  1. اتصال به شبکه:

   – تابلوهای اتصال به شبکه مسئول ایجاد اتصال میان سیستم تولید انرژی خورشیدی و شبکه برق عمومی هستند. این تابلوها شامل سیستم‌های مختلف الکترونیکی و مکانیکی هستند که فرآیند اتصال و انتقال انرژی به صورت ایمن و مدیریت شده را انجام می‌دهند.

 

  1. تنظیم توان:

   – تابلوهای اتصال به شبکه به تنظیم توان تولیدی نیروگاه بر اساس نیازهای شبکه کمک می‌کنند. این تنظیمات می‌توانند شامل تنظیم ولتاژ و ترتیب فازها باشند تا اطمینان حاصل شود که انرژی تولیدی با استانداردهای شبکه همخوانی دارد.

 

  1. حفاظت از شبکه:

   – تابلوهای اتصال به شبکه دارای سیستم‌های حفاظتی هستند که در مقابل خطاها و حوادث الکتریکی ناشی از اتصال به شبکه، مانند افزایش جریان یا ولتاژ، محافظت ایمنی را فراهم می‌کنند. این حفاظت‌ها به جلوگیری از آسیب به تجهیزات و ایمنی شبکه کمک می‌کنند.

 

  1. نظارت و کنترل:

   – تابلوهای اتصال به شبکه معمولاً دارای سیستم‌های نظارت و کنترل هستند که اطلاعات در مورد عملکرد نیروگاه، وضعیت اتصال به شبکه، و پارامترهای مختلف ارائه می‌دهند. این اطلاعات به مدیران نیروگاه کمک می‌کنند تا به بهینه‌سازی عملکرد و اطمینان از پایداری سیستم بپردازند.

 

  1. مدیریت انتقال انرژی:

   – تابلوهای اتصال به شبکه به مدیریت انتقال انرژی از نیروگاه به شبکه کمک می‌کنند. این شامل کنترل جریان انتقالی، مدیریت ولتاژ، و کاهش از دست رفت انرژی در فرآیند انتقال می‌شود.

 

  1. پیشگیری از نوسانات:

   – تابلوهای اتصال به شبکه با استفاده از سیستم‌های متقابل، نوسانات ناشی از تغییرات سریع در تولید خورشیدی را کنترل می‌کنند. این کنترل نوسانات به پایداری شبکه کمک کرده و تأمین انرژی پایدارتری فراهم می‌کند.

 

به طور کلی، تابلوهای اتصال به شبکه در نیروگاه‌های خورشیدی فتوولتائیک نقش اساسی در اطمینان از اتصال امن و بهینه به شبکه برق دارند و به بهبود کارایی و ایمنی سیستم کمک می‌کنند.

نیروگاه خورشیدی تابلو نیروگاه آرانیرو.3 - تابلوهای الکتریکال حفاظت، مدیریت و نظارت در نیروگاه خورشیدی

 

 

۴. تابلوهای انرژی هوشمند نیروگاه خورشیدی:

– وظیفه:

  – بهینه‌سازی عملکرد سیستم در شرایط مختلف و افزایش بهره‌وری.

– ویژگی‌ها:

  – استفاده از سیستم‌های کنترل هوشمند، اتصال به سیستم‌های ابری، امکان مانیتورینگ دوره‌ای و …

این تابلوها از تکنولوژی‌های پیشرفته و سیستم‌های هوشمند برای بهینه‌سازی عملکرد نیروگاه و افزایش بهره‌وری استفاده می‌کنند. در زیر به برخی از کاربردهای اصلی تابلوهای انرژی هوشمند در نیروگاه‌های خورشیدی فتوولتائیک اشاره می‌شود:

 

  1. پیش‌بینی تولید انرژی:

   – تابلوهای انرژی هوشمند از الگوریتم‌ها و مدل‌های پیشرفته برای پیش‌بینی تولید انرژی خورشیدی استفاده می‌کنند. این اطلاعات پیش‌بینی به مدیران نیروگاه کمک می‌کنند تا بهترین استراتژی‌ها را برای مدیریت تولید و انتقال انرژی انتخاب کنند.

 

  1. مدیریت بهینه تولید:

   – تابلوهای هوشمند با استفاده از اطلاعات دریافتی از سنسورها و تجهیزات مختلف، به بهینه‌سازی تولید انرژی می‌پردازند. این به معنای تنظیم بهینه زوایای پنل‌های خورشیدی، مدیریت توان تولیدی، و کاهش از دست رفت انرژی می‌باشد.

 

  1. مدیریت باتری و ذخیره‌سازی:

   – در نیروگاه‌های خورشیدی که از سیستم‌های ذخیره‌سازی باتری استفاده می‌کنند، تابلوهای انرژی هوشمند به مدیریت بهینه شارژ و تخلیه باتری‌ها و بهره‌وری از آنها در ساعات پربارشکل کمک می‌کنند.

 

  1. پیشگیری از خطاها و نقصان:

   – این تابلوها با نظارت دقیق بر تجهیزات و سیستم‌های نیروگاه، به مدیران اطلاعات دقیق در مورد وضعیت هر تجهیز و هر پنل فراهم می‌کنند. این امکان می‌دهد تا در صورت وجود خطاها یا نقصان، سریعاً واکنش نشان داده شود و از کاهش بهره‌وری جلوگیری شود.

 

  1. مدیریت انرژی هوشمند:

   – با توجه به شرایط فوریتهای مختلف، تابلوهای انرژی هوشمند قابلیت تصمیم‌گیری هوشمندانه در مورد تخصیص منابع انرژی را دارند. این شامل انتخاب منبع انرژی، تنظیم توان تولید، و مدیریت اتصال به شبکه می‌شود.

 

  1. مانیتورینگ و گزارش‌گیری:

   – تابلوهای هوشمند اطلاعات در مورد تولید انرژی، مصرف، و عملکرد تجهیزات را به صورت لحظه‌ای مانیتور می‌کنند. همچنین امکان گزارش‌گیری جامع از عملکرد نیروگاه را برای مدیران فراهم می‌کنند.

 

استفاده از تابلوهای انرژی هوشمند در نیروگاه‌های خورشیدی فتوولتائیک به مدیران این نیروگاه‌ها امکان می‌دهد که با بهره‌گیری از داده‌ها و اطلاعات دقیق، بهترین تصمیمات را برای بهینه‌سازی عملکرد و بهره‌وری گرفته و به ایجاد نیروگاه‌های هوشمند و پایدار کمک کنند.

 

۵. تابلوهای مدیریت و نظارت در نیروگاه خورشیدی بر پایه PLC  :

 

– وظیفه:

  – مدیریت و نظارت بر کل سیستم به صورت دوره‌ای.

– ویژگی‌ها:

  – دارای سیستم‌های نظارتی و گزارش‌گیری، امکان اتصال به سیستم‌های اطلاعاتی و اختصاص دسترسی به افراد مختلف.

تابلوهای مدیریت و نظارت در نیروگاه‌های خورشیدی فتوولتائیک، به ویژه بر پایه PLC  (کنترل‌کننده منطقی برنامه‌پذیر)، نقش مهمی در بهینه‌سازی و کنترل فرآیندها و تجهیزات دارند. PLCها ابزارهایی هستند که با برنامه‌ریزی قابل تغییر و برنامه‌نویسی، عملکرد تجهیزات الکتریکی و الکترونیکی را کنترل می‌کنند. در زیر به برخی از کاربردهای PLC در تابلوهای مدیریت و نظارت در نیروگاه‌های خورشیدی اشاره خواهد شد:

 

  1. کنترل ولتاژ و جریان:

   – PLCها به عنوان کنترل‌کننده‌های اصلی در تنظیم و کنترل ولتاژ و جریان تجهیزات الکتریکی مانند اینورترها و ترانسفورماتورها در نیروگاه خورشیدی فعالیت می‌کنند. این کنترل‌ها به مدیران این امکان را می‌دهند تا به صورت دقیق و بهینه تنظیمات الکتریکی را اعمال کنند.

 

  1. پیگیری و کنترل پنل‌های خورشیدی:

   – PLCها در مدیریت و کنترل پنل‌های خورشیدی نیز نقش دارند. با به کارگیری سنسورها و اطلاعات دریافتی از پنل‌های خورشیدی، PLCها قابلیت کنترل بهینه را برای حداکثر بهره‌وری از نور خورشید فراهم می‌کنند.

 

  1. مدیریت باتری و ذخیره‌سازی:

   – در صورت استفاده از سیستم‌های ذخیره‌سازی باتری، PLCها در مدیریت شارژ و تخلیه باتری‌ها نقش دارند. این کنترل‌ها بهینه‌سازی مصرف و ذخیره انرژی را در ساعات پربارشکل ممکن می‌سازند.

 

  1. نظارت بر ایمنی:

   – PLCها به‌طور مداوم وضعیت تجهیزات و فرآیندهای نیروگاه را نظارت می‌کنند و در صورت وقوع خطا یا حوادث الکتریکی، اقدامات ایمنی خودکار را آغاز می‌کنند. این امکان به افزایش ایمنی نیروگاه کمک می‌کند.

 

  1. پیگیری و ثبت داده‌ها:

   – PLCها داده‌های جامع در مورد عملکرد تجهیزات و فرآیندهای نیروگاه را جمع‌آوری کرده و آنها را ثبت می‌کنند. این اطلاعات مهم برای تحلیل عملکرد و ارائه گزارش‌های دقیق به مدیران نیروگاه هستند.

 

  1. تعمیر و نگهداری پیشگیرانه:

   – با تجهیز PLCها به سیستم‌های تشخیص خطا و اختلال، می‌توان در مراحل ابتدایی مشکلات را شناسایی کرده و اقدامات پیشگیرانه را اجرا کرد. این به کاهش تعطیلی‌ها و افزایش بهره‌وری کمک می‌کند.

 

با بهره‌گیری از PLCها در تابلوهای مدیریت و نظارت، نیروگاه‌های خورشیدی می‌توانند به شکل هوشمندانه‌تر و کارآمدتر مدیریت شوند و بهره‌وری انرژی افزایش یابد.

نیروگاه خورشیدی تابلو نیروگاه آرانیرو.4 - تابلوهای الکتریکال حفاظت، مدیریت و نظارت در نیروگاه خورشیدی

 

۶. تابلوهای ایمنی و اطفاء حریق در نیروگاه خورشیدی:

– وظیفه:

  – ارائه تجهیزات و سیستم‌های حفاظتی برای مقابله با حوادث ایمنی و اطفاء حریق.

– ویژگی‌ها:

  – سیستم‌های اعلام و اطفاء حریق، تجهیزات ایمنی الکتریکی و …

تابلوهای ایمنی و اطفاء حریق در نیروگاه‌های خورشیدی فتوولتائیک نقش بسیار حیاتی را در ایمنی و حفاظت از تجهیزات و ساختارهای نیروگاه ایفا می‌کنند. این تابلوها طراحی شده‌اند تا در مواقع اضطراری و حوادث، اقدامات ایمنی لازمه را به صورت خودکار فعال کنند و از گسترش آتش و خسارات جلوگیری کنند. در زیر به برخی از کاربردهای اصلی تابلوهای ایمنی و اطفاء حریق در نیروگاه‌های خورشیدی فتوولتائیک اشاره می‌شود:

 

  1. اعلام حریق و اطفاء خودکار:

   – تابلوهای ایمنی در نیروگاه خورشیدی معمولاً به سیستم‌های اعلام حریق و اطفاء حریق متصل هستند. در صورت شناسایی حریق توسط سنسورهای دود یا حرارت، این تابلوها به طور خودکار سیستم‌های اطفاء حریق را فعال کرده و اقدامات لازمه را آغاز می‌کنند.

 

  1. کنترل سیستم‌های اطفاء:

   – تابلوهای ایمنی کنترل بر سیستم‌های اطفاء حریق نیز دارند. این کنترل‌ها شامل کنترل انواع سیستم‌های اطفاء نظیر اسپرینکلرها، سیستم‌های گاز خنک‌کننده، یا سیستم‌های فوم اطفاء می‌شوند.

 

  1. خاموش‌سازی تجهیزات الکتریکی:

   – در صورت حریق، تابلوهای ایمنی به منظور جلوگیری از خطرات الکتریکی می‌توانند بخشی از تجهیزات الکتریکی را خاموش کنند. این اقدام به کاهش احتمال بروز حوادث برقی و افزایش ایمنی کمک می‌کند.

 

  1. نظارت بر اعمال ایمنی:

   – تابلوهای ایمنی نظارت دائمی بر وضعیت سیستم‌های ایمنی و اطفاء حریق دارند. این نظارت به منظور اطمینان از صحت عملکرد اجزای مختلف سیستم، باتری‌ها، سنسورها و سایر تجهیزات انجام می‌شود.

 

  1. پیشگیری از خسارات جداسازی امنیتی:

   – تابلوهای ایمنی با تحلیل و پیش‌بینی ریسک‌ها، اقداماتی را برای پیشگیری از خسارات بیشتر در صورت وقوع حوادث فراهم می‌کنند. این اقدامات شامل جداسازی و جداسازی امنیتی اجزای سیستم می‌شوند.

 

  1. آموزش و تمرین:

   – تابلوهای ایمنی نقش مهمی در آموزش و تمرین افراد مسئول ایمنی دارند. این تمرینات به افراد کمک می‌کنند تا با عملکرد تجهیزات ایمنی و اطفاء آشنا شوند و در مواقع اضطراری به بهترین شکل واکنش نشان دهند.

 

به طور کلی، تابلوهای ایمنی و اطفاء حریق در نیروگاه‌های خورشیدی فتوولتائیک به ارتقاء ایمنی و به حداقل رساندن خطرات حریق و خسارات مرتبط با آنها کمک می‌کنند. این تابلوها با استفاده از تکنولوژی‌های مدرن به ایجاد محیطی ایمن و پایدار در نیروگاه خورشیدی کمک می‌کنند.

 

نویسنده: مهدی پارساوند

یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه با وجود بانک باتری

 

خلاصه

این مقاله روشی را، به ویژه برای مناطق با پتانسیل انرژی خورشیدی، برای طراحی و توسعه موثر نیروگاه های فتوولتائیک خورشیدی یکپارچه با بانک های باتری متصل به شبکه برق به عنوان یک پشتیبان اضافی برای حفظ پایداری و قابلیت اطمینان مورد بحث قرار می دهد. برای اثبات اثربخشی این روش در استفاده از آن برای طراحی و توسعه سیستم پیشنهادی، شهر کینشاسا در جمهوری دموکراتیک کنگو با کسری انرژی عظیم (5425 مگاوات ساعت) به عنوان مطالعه موردی در نظر گرفته شده است. در واقع روش به کار گرفته شده در این مطالعه داده های آب و هوا، انتخاب مکان، تحلیل توان بار ساعتی و تقاضای انرژی، مشخصات فناوری های PV و سایر اجزای سیستم را در نظر گرفته است. تحلیل اقتصادی نیز برای ارزیابی قابلیت حیات سیستم پیشنهادی انجام شده است. با LCOE رقابتی، SPP کمتر از 10 سال، NPV˃0، SIR˃1، و ROI ˃10 درصد، و خروجی انرژی PV سالانه بیشتر از کسری انرژی شهر، سیستم پیشنهادی عملی و قابل اجرا است. در جستجوی عملکرد بهتر، راندمان بالاتر و ارزش اقتصادی بهتر، روش پیشنهادی به شدت توصیه می‌شود و می‌تواند به عنوان یکی از مؤثرترین و ساده‌ترین روش‌ها برای راه اندازی سیستم‌های نیروگاه خورشیدی PV در مقیاس بزرگ در نظر گرفته شود.

 

معرفی

موضوع تغییر اقلیم، کاهش پیش بینی شده منابع انرژی متعارف در سال های آینده، نگرانی در مورد آلودگی هوا ناشی از استفاده از این سوخت های متعارف و ناامنی انرژی از عوامل اصلی افزایش سهم بسیاری از کشورها از انرژی های تجدیدپذیر در خود است. (مینگ و همکاران، 2018). در سال 2015، حدود 86 درصد از مصرف انرژی در سراسر جهان از سوخت‌های معمولی تولید می‌شد  (Musa et al., 2018)این سوخت ها جایگاه قابل توجهی در بخش انرژی برای بهبود رشد اقتصادی کشورها دارند، اما استفاده گسترده از آنها نگرانی های زیست محیطی را افزایش می دهد. به طور خاص، آلودگی هوا ناشی از استفاده گسترده از سوخت‌های فسیلی و تغییرات آب و هوایی مرتبط و گرمایش جهانی، مشارکت گسترده در سراسر جهان و پذیرش گسترده فناوری‌های انرژی‌های تجدیدپذیر را ضروری می‌کند. در نتیجه، ادغام نیروی الکتریکی مهار شده از باد، نور خورشید و انرژی آبی، به منظور پرداختن به این مسائل و پاسخگویی به تقاضای فزاینده انرژی در ساختمان‌ها، حمل‌ونقل و صنعت، یک الزام مطلق است (فاضل پور و همکاران، 2016; غنایی و همکاران، 2020). با این افزایش جهانی در مصرف انرژی، تحقیقات پیشرفته تری در زمینه انرژی های تجدیدپذیر بسیار مورد نیاز است و باید به طور مستمر توسط محققان در سراسر جهان انجام شود. این همچنین به مقابله با مشکلات زیست محیطی فزاینده در نتیجه سوخت های فسیلی کمک می کند. با توجه به این واقعیت که این منابع انرژی متعارف دیگر امیدی برای پوشش تقاضای روزافزون جهانی برای انرژی در دو دهه آینده که عمدتاً به دلیل تخلیه سریع منابع آنهاست، به نظر نمی رسد، افزایش نفوذ راه حل های انرژی پایدار ضروری است. به بخش برق نیروگاه‌های انرژی تجدیدپذیر که انرژی را به شیوه‌ای پاک از نظر زیست‌محیطی تولید می‌کنند، تعادل بین عرضه و تقاضای انرژی را حفظ می‌کنند، شبکه برق را با توجه به قابلیت اطمینان آن تثبیت می‌کنند و نیازهای بار را برای کاربردهای مسکونی، تجاری، حمل‌ونقل و صنعتی برآورده می‌کنند (Ghenai et al. ، 2020؛ ماهش و ساندو، 2015).

grec rawhide - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

منابع انرژی تجدیدپذیر مانند باد، آبی و خورشیدی را می توان در بسیاری از نقاط جهان یافت، اگرچه پتانسیل منابع بسته به مکان متفاوت است. با این وجود، به نظر می رسد در دسترس بودن آنها برای بشریت از نظر مسائل زیست محیطی و همچنین به عنوان جایگزینی برای اهداف هزاره در آینده امیدوارکننده باشد. این اهداف شامل، اما نه محدود به کاهش/حذف انتشار گازهای گلخانه ای ناشی از انرژی الکتریکی تولید شده از منابع انرژی متعارف و همچنین وابستگی انرژی کشورها به این سوخت ها است. با این حال، در میان منابع تجدیدپذیر ذکر شده در بالا، باد و خورشید توسط اکثر محققان برای برآوردن نیازهای روزافزون انرژی در بسیاری از جوامع در سراسر جهان انتخاب می‌شوند. همانطور که مشخص است، تولید برق از یک فناوری خورشیدی به شدت به شدت خورشید بستگی دارد و تولید مورد انتظار ممکن است تنها با توجه به دقت پیش‌بینی آب و هوا برنامه‌ریزی شود (گیلانزا و همکاران، 2018؛ ماهش و ساندو، 2015). یکی از راه‌های غلبه بر ماهیت متناوب انرژی خورشیدی، استفاده از یک واحد ذخیره‌سازی یا ترکیب آن با یک منبع انرژی تجدیدپذیر دیگر با استفاده از قدرت یکی برای تکمیل ضعف دیگری است (گیلانزا و همکاران، 2018). این مطالعه یک سیستم هیبریدی را با استفاده از ترکیبی از سیستم‌های ذخیره‌سازی باتری با نیروگاه خورشیدی فتوولتائیک PV در نظر می‌گیرد. سیستم‌های PV با ذخیره‌سازی، منبع تغذیه را قابل اطمینان‌تر می‌سازند و هر زمان که در طول تولید برق تغییری در تابش خورشیدی وجود داشته باشد، بانک‌های باتری سهم خود را برای متعادل کردن منبع افزایش می‌دهند. پایداری و قابلیت اطمینان «سیستم منبع تغذیه خورشیدی جدا از شبکه» به تأسیسات نیروگاه خورشیدی PV بزرگ و سیستم‌های ذخیره باتری بزرگ نیاز دارد. از سوی دیگر، در نظر گرفتن ذخیره سازی و باتری برای یک “سیستم نیروگاه خورشیدی متصل به شبکه” PV نیازهای ذخیره سازی را کاهش می دهد و امنیت و امکان سنجی تامین را بهبود می بخشد. چند مطالعه بر اساس مجموعه‌ای از ترکیبی از سیستم‌های برق متعارف و سیستم‌های انرژی تجدیدپذیر مانند نیروگاه خورشیدی PV، باد و آبی قبلاً برای جمهوری دموکراتیک کنگو(DRC)  انجام شده است. هدف اصلی این مطالعات برآوردن نیازهای تقاضای توان بارهای خاص متصل و/یا غیر متصل به شبکه برق و در نتیجه بهبود قابلیت اطمینان آن سیستم ها بود.

کوساکانا و ورماک (2011) امکان استفاده از سیستم های هیبریدی PV-Wind را در DRC به عنوان راه حلی برای تامین برق تاسیسات مخابراتی از راه دور، به ویژه برای Mbuji-Mayi که در آن ژنراتور دیزلی در حال استفاده است، بررسی کردند. آنها در بررسی های خود نشان دادند که وجود منابع خورشیدی و بادی در تمام نقاط کشور می تواند پاسخگوی نیاز انرژی اپراتورهای شبکه باشد. بر اساس نتایج شبیه‌سازی به‌دست‌آمده از نرم‌افزار HOMER، با استفاده از نامطلوب‌ترین ماه برای اندازه‌گیری سیستم، سیستم قدرت هیبریدی پیشنهادی نسبت به سیستم دیزل ژنراتور مقرون به صرفه‌تر و از نظر زیست‌محیطی بهتر است. با این حال، با LCOE 0.26 $/kWh همانطور که توسط نویسندگان گزارش شده است، سیستم قدرت هیبریدی پیشنهادی آنها بسیار کمتر از نیروگاه های برق آبی Inga و Zongo امکان پذیر است.

 

Vermaak و Kusakana (2014) امکان استفاده از منابع انرژی تجدیدپذیر، اعم از سیستم نیروگاه خورشیدی فتوولتائیک یا بادی، را برای توسعه و استقرار ایستگاه‌های شارژ برقی Tuk-tuk در مناطق روستایی و دورافتاده جمهوری کنگو بررسی کردند. نویسندگان در مطالعات خود از نامطلوب ترین ماه برای اندازه گیری اجزای سیستم استفاده کردند. در مطالعه آنها از نرم افزار HOMER برای انجام شبیه سازی ها با در نظر گرفتن متغیرهای ورودی اصلی استفاده شد. مانند منابع انرژی تجدیدپذیر، هزینه قطعات، مشخصات فنی و تقاضای بار.

download 1 - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

کوساکانا و ورماک (2013) تحقیقاتی را در مورد امکان استفاده از سیستم‌های قدرت هیبریدی تجدیدپذیر به عنوان منابع اولیه انرژی برای تامین برق تاسیسات تلفن همراه در مناطق روستایی جمهوری کنگو انجام دادند. این مطالعات سه منطقه را شامل می شود، یعنی Kabinda، Mbuji-Mayi و Kamina که هنوز به شبکه برق ملی متصل نیستند. مناطق فوق با توجه به پتانسیل خوب خورشیدی و بادی به عنوان سایت آزمایشی برای انجام این تحقیقات انتخاب شدند. چهار گزینه مختلف شامل «سیستم PV-Wind هیبریدی»، «سیستم دیزل ژنراتور»، «سیستم نیروگاه خورشیدی  PV و سیستم باد» پیشنهاد و مورد بررسی قرار گرفت. نتایج شبیه سازی سیستم هیبریدی PV-Wind پیشنهادی به دست آمده از نرم افزار HOMER با سایر گزینه های منبع تغذیه ذکر شده مقایسه شد. در طول عمر اقتصادی پروژه، سیستم هیبریدی PV-WIND پیشنهادی به‌عنوان اقتصادی و از نظر زیست‌محیطی بهترین در بین گزینه‌های در نظر گرفته شده بود. در این مطالعات، محققان همچنین سیستم‌هایی را پیشنهاد کرده‌اند که سیستم‌های انرژی مختلف را با یک سیستم دیزلی به عنوان یک پشتیبان قابل اعتماد ترکیب می‌کنند. اگرچه سیستم دیزل هزینه رقابتی انرژی را ارائه می دهد، اما دوستدار محیط زیست نیست زیرا انرژی را از سوخت های فسیلی تولید می کند. هنگامی که هزینه های دیگر در نظر گرفته شود، سیستم های تجدیدپذیر با باتری مقرون به صرفه تر می شوند. با این حال، پایداری و قابلیت اطمینان برای تامین برق تمیز و مقرون به صرفه به بار از طریق یک نیروگاه PV خورشیدی روی شبکه (با باتری) که از شبکه اصلی به عنوان پایه استفاده می‌کند، در ادبیات مربوط به مطالعات موردی انرژی در DRC یا جاهای دیگر مورد توجه قرار نگرفته است. آفریقا با این وجود، تعداد زیادی از مطالعات در سراسر جهان در مورد طراحی و توسعه سیستم های PV خورشیدی تاکنون توسط بسیاری از محققین انجام شده است (آدام و فاشینا، 2019؛ Ayodele و همکاران، 2019؛ Domínguez & Geyer، 2019؛ غفور و Munir، 2015؛ کمالی، 2016؛ Khatri، 2016؛ Kolhe و همکاران، 2015؛ Okoye & Oranekwu-Okoye، 2018؛ Owolabi و همکاران، 2019؛ Sharma و همکاران، 2019؛ Werulkar,20kar و Kul15.)

 

برخلاف روش‌های تحقیقاتی پیشنهاد شده در مطالعات قبلی برای نیروگاه‌های فتوولتاییک خورشیدی، روش پیشنهادی مصاحبه‌های نیمه ساختاریافته، داده‌های آب‌وهوای مکان، پارامترهای ضروری برای انتخاب مکان، عوامل تعیین‌کننده برای تخمین واقعی بار روزانه در یک مکان را در نظر می‌گیرد. بدون سوابق تقاضای انرژی، پروفیل های تقاضای برق و انرژی شهر (ساختمان های مسکونی، تجاری و صنعتی) به صورت ساعتی، روزانه و ماهانه. این روش همچنین مشخصات فناوری ها و سایر پارامترهای کلیدی تصمیم گیری را برای طراحی بهتر و تحلیل اقتصادی نیروگاه خورشیدی PV در نظر می گیرد. مقایسه‌های ماژول‌های PV انتخاب شده در رابطه با خروجی انرژی، PRنسبت عملکرد، CF ضریب ظرفیت، و LCOE  هزینه یکسان‌سازی شده برق نیز ارائه شده‌اند.

 

اهداف این مطالعه عبارتند از:

 

  • ارائه یک روش طراحی موثر برای توسعه نیروگاه‌های خورشیدی PV خورشیدی با باتری‌های ذخیره‌سازی که به‌عنوان واحد پشتیبان/پایه به موازات شبکه موجود کار می‌کنند تا پایداری تامین و قابلیت اطمینان شبکه حفظ شود.
  • پتانسیل انرژی خورشیدی را در یک مکان ارزیابی کنید و سپس سهم آن در تامین برق را بررسی کنید.
  • انجام مطالعه امکان سنجی نیروگاه خورشیدی PV پیشنهادی برای تامین برق کینشاسا.
  • نشان دهید که چگونه “کارایی ماژول خورشیدی PV و تعیین زاویه شیب بهینه” در محل انتخاب شده، امکان به دست آوردن انرژی خروجی بهینه، PR و CF بالاتر و LCOE رقابتی را فراهم می کند.
  • تامین برق تمیز و مقرون به صرفه برای کینشاسا و رفع قطعی برق، کاهش بار و خاموشی در حال حاضر اکثر ساکنان و صنعت کینشاسا با آن مواجه هستند.
  • یک سیستم پشتیبان قابل اعتماد برای منبع تغذیه بدون وقفه پیشنهاد کنید.

 

داده‌های جمع‌آوری‌شده از منابع معتبر مختلف و آن‌هایی که بازسازی شده‌اند، بر اساس مصاحبه‌های نیمه ساختاریافته انجام‌شده با سهامداران کلیدی بخش برق DRC، در طراحی و تحلیل اقتصادی برای این مطالعه موردی مورد بررسی و تحلیل قرار گرفته‌اند.

 

وضعیت برق در کینشاسا

کینشاسا، پایتخت جمهوری دموکراتیک کنگو، به شدت بر برق تولید شده در استان همسایه خود، کنگو مرکزی، برای تامین برق ساکنان و صنایع خود متکی است. منبع اصلی تامین برق در شهر انرژی آبی است که 98 درصد از کل مصرف برق را به خود اختصاص می دهد. تقاضای برق در شهر حدود 1000 مگاوات برآورد شد و تنها 45 درصد از این تقاضا توسط شرکت ملی تاسیسات (SNEL) تامین می شود. این باعث کسری برق برای برق می شود

 

روش شناسی

این مقاله یک رویکرد جدید از طریق یک روش طراحی موثر برای توسعه نیروگاه‌های PV خورشیدی با باتری‌های ذخیره‌سازی ارائه می‌دهد که به‌عنوان واحد پشتیبان/پایه به موازات ژنراتورهای برق موجود برای حفظ ثبات و قابلیت اطمینان عرضه می‌شوند. تازگی این مقاله بر روی یک روش مهندسی نهفته است که قادر به تعیین موثر خروجی انرژی PV و باتری “زمان واقعی”، نسبت عملکرد سیستم پیشنهادی، ضریب ظرفیت آن، NPV، LCOE و SPP با توجه به

wHandNews Image - یک روش طراحی موثر برای نیروگاه‌های فتوولتائیک خورشیدی PV متصل به شبکه برای قابلیت اطمینان شبکه توزیع با وجود بانک باتری

نتایج و بحث

در این مطالعه، از ماژول‌های PV SunPower برای تامین برق شهر کینشاسا استفاده می‌شود تا کسری انرژی آن را پوشش دهد و وابستگی آن به منبع تغذیه نیروگاه‌های برق آبی Inga و Zongo را کاهش دهد. نیروگاه خورشیدی PV پیشنهادی برای تداوم تامین به باتری ها متکی است و از شبکه اصلی به عنوان نیروی پشتیبان دوم استفاده می کند. بر اساس محاسبات مهندسی، ظرفیت تولید مورد نیاز این نیروگاه فتوولتاییک 1560 مگاوات پیک برای تامین کسری انرژی 5425 مگاوات ساعت در روز مشخص شد.

 

نتیجه گیری و توصیه ها

این مقاله روشی مبتنی بر یک رویکرد ریاضی را مورد بحث قرار می‌دهد که می‌تواند در همه جای دنیا توسط نصاب‌های PV برای طراحی و توسعه نیروگاه‌های PV خورشیدی در مقیاس بزرگ، با تکیه بر باتری‌ها و شبکه اصلی برای تداوم و قابلیت اطمینان، استفاده شود. مطالعه انجام شده تاکیدی بر وضعیت برق شهر کینشاسا دارد که در آن تنها 45 درصد از مشتریان نهایی به برق دسترسی دارند. با وجود پتانسیل عظیم سیستم های برق آبی در کشور و کنگو

 

بیانیه مشارکت نویسنده CRediT

Arcell Lelo Konde داده‌ها را جمع‌آوری و تجزیه و تحلیل کرد، تجزیه و تحلیل شبیه‌سازی و یافته‌های تحقیقاتی گزارش‌شده در این دست‌نوشته را انجام داد و نتایج را تفسیر کرد، کل محتوای این دست‌نوشته را نوشت و بازبینی‌های عمده‌ای را در این مقاله انجام داد. مصطفی دغباسی و مهمت کوسف کار را بررسی کردند و بر یافته‌های پژوهشی به‌دست‌آمده نظارت کردند تا مطمئن شوند که داده‌های جمع‌آوری‌شده، محتوا و ساختار این نسخه از استانداردهای انتشار پیروی می‌کند.

 

اعلامیه منافع رقابتی

نویسندگان اعلام می‌کنند که هیچ منافع مالی یا روابط شخصی رقیب‌ای ندارند که به نظر می‌رسد بر کار گزارش‌شده در این مقاله تأثیر بگذارد.

Arcell Lelo Konde دارای مدرک کارشناسی ارشد در مهندسی سیستم های انرژی از دانشگاه بین المللی قبرس با تخصص در سیستم های برق هیبریدی تجدید پذیر است. حوزه‌های تخصص او شامل انرژی‌های تجدیدپذیر، طراحی، مدل‌سازی، توسعه، بهره‌برداری، برنامه‌ریزی و راه‌اندازی سیستم‌های PV خورشیدی از کاربردهای برق کوچک تا مقیاس بزرگ، مزارع بادی و نیروگاه‌های برق آبی است.

نویسندگان: Arcell LeloKonde, MehmetKusaf, MustafaDagbasi

مترجم: مهدی پارساوند

 

فرصت محدود احداث نیروگاه خورشیدی در میان نوسانات ارز و افزایش هزینه های ساخت و ساز

 

معرفی

با توجه به احتمال افزایش نرخ ارز و افزایش قیمت جهانی تجهیزات نیروگاه و به تبع آن افزایش هزینه‌های ساخت و ساز نسبت به نرخ‌ جدید خرید تضمینی برق که خیلی دیر توسط وزارت نیرو ابلاغ شد، فرصت محدودی برای ساخت یک نیروگاه خورشیدی خواهیم داشت که این مقاله به اختصار به پیچیدگی‌های استفاده از این فرصت محدود می‌پردازد و پتانسیل‌های موجود در میان عدم قطعیت‌های اقتصادی را بررسی می‌کند.

 

آیا نوسانات ارزی تغییر دهنده بازی خواهد بود؟

رمزگشایی تأثیر نوسانات ارز بر سرمایه گذاری های نیروگاهی کار پیچیده ای نیست. به رابطه بین نوسانات ارز و سرمایه گذاری های نیروگاه خورشیدی توجه کنید. کشف کنید که چگونه کاهش ارزش پولی می تواند امکان سنجی و سودآوری سرمایه گذاری نیروگاه خورشیدی شما را تحت تاثیر قرار دهد.

نگاهی دقیق تر به چشم انداز مالی یک چالش را نشان می دهد و آن چیزی نیست جز افزایش هزینه های ساخت و ساز. درک واقعیت های اقتصادی و استراتژی برای غلبه بر موانع ناشی از افزایش هزینه ها در توسعه نیروگاه خورشیدی امری غیرقابل چشم پوشی است.

نقش دولت در ابلاغ نرخ خرید تضمینی برق و باز کردن فرصت ها با نرخ های حمایتی ایفا شد هرچند خیلی دیر ولی اکنون توپ در زمین سرمایه گذاران است.

araniroo نیروگاه خورشیدی - فرصت محدود احداث نیروگاه خورشیدی در میان نوسانات ارز و افزایش هزینه های ساخت و ساز

استفاده از فرصت و برنامه ریزی استراتژیک ایجاد مسیری برای موفقیت در میان چالش ها است.

با داشتن بینشی در مورد نوسانات ارز، هزینه های ساخت و ساز و حمایت دولت، وقت آن است که یک برنامه استراتژیک را ترسیم کنیم.

از کارشناسان صنعت در مورد غلبه بر موانع، مشاوره عملی دریافت کنید. از برنامه ریزی مالی گرفته تا اجرای پروژه، این نکات برای کارآفرینان نیروگاه خورشیدی ارزشمند است. در پاسخ به این سوال که آیا انرژی خورشیدی می تواند یک سرمایه گذاری قابل اعتماد در شرایط اقتصادی فعلی باشد باید گفت: بله، کاملا. علیرغم نوسانات ارز و افزایش هزینه های ساخت و ساز، ثبات ارائه شده توسط نرخ های خرید تحت حمایت دولت، انرژی خورشیدی را به یک سرمایه گذاری مناسب و مطمئن تبدیل می کند. حمایت دولت در موفقیت سرمایه گذاری نیروگاه خورشیدی تاثیرگذار است و نرخ‌های خرید تضمینی برق با حمایت دولت، پایه‌ای پایدار را فراهم می‌کند، جریان درآمد ثابتی را تضمین می‌کند و عدم اطمینان مالی را به حداقل می‌رساند.

یک برنامه استراتژیک موفق شامل تحقیقات بازار کامل، پیش بینی مالی، ارزیابی ریسک و نقشه راه روشن برای اجرای پروژه است در نتیجه شروع سفر برای ایجاد یک نیروگاه خورشیدی در میان نوسانات ارز و چالش های هزینه ساخت بدون شک چالش برانگیز است. با این حال، مسلح به دانش، برنامه ریزی استراتژیک و حمایت دولت، این فرصت محدود می تواند به یک سرمایه گذاری پر رونق و پایدار منجر شود. از لحظه استفاده کنید و به آینده ای سبزتر و پایدارتر کمک کنید.

نویسنده: مهدی پارساوند

درآمدزایی نیروگاه‌های خورشیدی بستگی به عوامل مختلفی دارد از جمله موقعیت جغرافیایی نیروگاه، ظرفیت نیروگاه، راندمان تولید، هزینه‌های نصب و نگهداری، تعداد ساعات تابش آفتاب در منطقه و قیمت برق در بازار محلی وابسته است. همچنین، تکنولوژی استفاده شده در تجهیزات نیروگاه نیز تأثیر زیادی بر درآمدزایی آن دارد.

به طور کلی، نیروگاه‌های خورشیدی می‌توانند درآمدهای قابل توجهی تولید کنند، به ویژه در مناطقی که تابش آفتاب بالا و هزینه فروش برق نیز مناسب است. با توجه به پیشرفت تکنولوژی و کاهش هزینه‌های نصب، نیروگاه‌های خورشیدی به صورت گسترده‌تری در سراسر جهان راه‌اندازی می‌شوند.

در بسیاری از موارد، نیروگاه‌های خورشیدی به صورت قراردادهای خرید برق بلندمدت (Power Purchase Agreements)   عمل می‌کنند، که در آن یک شرکت یا دولت با نیروگاه قرارداد خرید برق منعقد کرده و برق تولیدی را خریداری می‌کند. قیمت برق در این قراردادها معمولاً بر اساس توافق بین طرفین تعیین می‌شود. بنابراین، درآمد زایی نیروگاه‌های خورشیدی می‌تواند متفاوت باشد و بسته به شرایط محلی و قراردادهای برق مورد استفاده، تغییر کند که در ایران توسط دولت به سه صورت خریداری میشود: حالت اول قرارداد خرید برق تضمینی 20 ساله با نرخ خرید 1750 تومان برای هرکیلووات تا ظرفیت 20 کیلووات و 1650 تومان برای ظرفیت های بالاتر از 20 کیلووات تا 3 مگاوات با وجود احداث نیروگاه خورشیدی در زمین شخصی و در فرمت دیگر عقد قرارداد دلاری با پایه 7 سنت دلار به مدت 6 سال و در فرمت سوم فروش برق در بورس انرژی که به مالکان نیروگاه خورشیدی این امکان را میدهد برق تولیدی خود را در بورس به قیمت درخواستی از طرف مشتریان برق عرضه نمایند که البته در این حالت مالک نیروگاه خورشیدی قرارداد PPA یا قرارداد خرید برق تضمینی نخواهد داشت.

مطالعه دقیق‌تری درباره شرایط محلی، هزینه‌ها و درآمدهای نیروگاه‌های خورشیدی در منطقه مورد نظر شما و مشاوره با اشخاص متخصص و متخصصان صنعت مربوطه، می‌تواند بهترین پاسخ را در خصوص میزان درآمد زایی نیروگاه‌های خورشیدی در آن منطقه ارائه دهد.

x 0 0 0 14103287 800 - میزان درآمد نیروگاه‌های خورشیدی و عوامل وابسته آن

نیروگاه‌های خورشیدی به عنوان یکی از منابع تولید انرژی پاک و قابل تجدید، درآمد قابل توجهی برای مالکان و سرمایه‌گذاران خود ایجاد کرده‌اند. اما میزان درآمد زایی نیروگاه‌های خورشیدی به عوامل مختلفی بستگی دارد، از جمله:

ظرفیت نصب و توان نیروگاه: میزان تولید برق از نیروگاه خورشیدی به توان نصب شده و ظرفیت آن بستگی دارد. نیروگاه‌های خورشیدی می‌توانند از چند کیلووات تا چند مگاوات ظرفیت داشته باشند. هرچه توان نیروگاه بیشتر باشد، تولید برق و درآمد آن نیز افزایش می‌یابد.

راندمان نیروگاه: راندمان نیروگاه خورشیدی نشان دهنده میزان بهره‌وری و تبدیل انرژی خورشید به برق است. هرچه راندمان بالاتر باشد، تولید برق بیشتر و درآمد بالاتری نیز تحقق می‌یابد.

منطقه جغرافیایی: شرایط آب و هوایی و میزان تابش خورشید در منطقه جغرافیایی می‌تواند تاثیر زیادی بر درآمد نیروگاه خورشیدی داشته باشد. مناطقی که در آنها تابش خورشیدی بیشتر است، قادر به تولید برق بیشتری هستند و درآمد نیروگاه بالاتر خواهد بود.

قراردادهای خرید برق: در برخی مناطق، مالکان نیروگاه خورشیدی می‌توانند با برق خود را به شبکه برق متصل کنند و برای این برق تولید شده قرارداد خرید برق بسته شود. در این صورت، قیمت خرید برق و مدت زمان قرارداد بر اساس توافقات مابین مالکان نیروگاه و مراجع مربوطه تعیین خواهد شد و به این ترتیب، درآمد نیروگاه مشخص می‌شود.

سیاست‌های دولتی و حوزه‌های مالیاتی: سیاست‌ها و قوانین دولتی و حوزه‌های مالیاتی نیز می‌تواند تأثیر بزرگی بر درآمد نیروگاه خورشیدی داشته باشد. برخی دولت‌ها تسهیلات و تخفیفات مالیاتی را برای مالکان نیروگاه‌های خورشیدی فراهم می‌کنند تا این صنعت را تشویق به رشد و توسعه کنند.

لازم به ذکر است شرکت آرا نیرو این امکان رو برای مشتریان خود فراهم نموده است تا با تسهیلات بانکی بتوانند با شرایط پرداخت هزینه های خرید تجهیزات را پرداخت نمایند.

به طور کلی، میزان درآمد زایی نیروگاه‌های خورشیدی به عوامل متعددی بستگی دارد و به طور مستقیم و براساس عوامل فوق قابل تعیین نیست. اما با توجه به رشد رو به افزایش این صنعت و پتانسیل بالای تولید برق خورشیدی، می‌توان درآمد قابل توجهی را انتظار داشت.

x 0 0 0 14007395 800 - میزان درآمد نیروگاه‌های خورشیدی و عوامل وابسته آن

درآمدزایی از نیروگاه خورشیدی معمولاً به دو روش انجام می‌شود: تولید و فروش برق و استفاده از سیستم‌های حمایتی مالی.

تولید و فروش برق: در این روش، نیروگاه خورشیدی از طریق تبدیل انرژی خورشید به برق، برق را تولید می‌کند و آن را به شبکه برق ارسال می‌کند. در بسیاری از کشورها، اپراتور نیروگاه خورشیدی برق تولید شده را به شبکه برق محلی متصل می‌کند و با شرکت برق محلی یا شرکت توزیع برق قرارداد برق فروش می‌کند. در این حالت، درآمدزایی اصلی از فروش برق به عنوان یک تولید کننده برق است. اپراتور نیروگاه خورشیدی بر اساس قراردادهای برق فروش، پرداختی معین برای هر واحد برق تولید شده دریافت می‌کند. درآمد زایی بیشتر از نیروگاه خورشیدی وابسته به قیمت برق، سیاست‌های حمایتی دولت، ظرفیت تولید نیروگاه و عملکرد بهینه آن است.

سیستم‌های حمایتی مالی: برخی کشورها و دولت‌ها سیستم‌های حمایتی مالی را برای تشویق سرمایه‌گذاری در نیروگاه‌های خورشیدی ایجاد کرده‌اند. این سیستم‌ها شامل تسهیلات و امتیازهای مالی متنوعی می‌شوند که به صورت مستقیم یا غیرمستقیم به اپراتور نیروگاه خورشیدی ارائه می‌شود. مثال‌هایی از این سیستم‌ها عبارتند از: تعلیق مالیات بر ارزش افزوده برای تجهیزات نیروگاه، سبسیدی مستقیم برای تولید برق از منابع خورشیدی، خرید برق با قیمت تضمین شده توسط دولت، قراردادهای طولانی‌مدت برای فروش برق به دولت یا شرکت‌های دولتی، و برنامه‌های حمایتی مالی دیگر.

به طور کلی، درآمدزایی از نیروگاه خورشیدی بستگی به عوامل متعددی دارد که شامل قوانین و مقررات محلی، سیاست‌های دولت، قیمت برق، هزینه‌های نیروگاه و کارایی عملکرد آن می‌شود. همچنین، شرایط محلی میزان تابش خورشید و تقاضای برق نیز بر درآمدزایی تأثیرگذار است

 

 

 

 

چکیده: رشد سریع صنعت در انرژی خورشیدی نشان دهنده علاقه به انرژی های تجدید پذیر است. اهمیت برق شبکه های هوشمند حاصل از نیروگاه ها، تشخیص زودهنگام خطا یا ناهنجای در سیستم‌های فتوولتائیک (PV) را ضروری می سازد تا با کاهش اتلاف یا هدررفت پتانسل انرژی خورشیدی بتوانیم نیروگاه های خورشیدی بهینه در دوره بهره برداری داشته باشیم.

از این نظر، استفاده دقیق از آخرین و به‌روزترین  فناوری هوش مصنوعی ضروری است تا به موقع ناهنجاری های مختلف سیستم افشا شود. این مقاله با ارزیابی این موضوع به آن می پردازد.

عملکرد طرح‌های مختلف هوش مصنوعی و استفاده از آن‌ها برای تشخیص ناهنجاری‌ها، قطعات فتوولتائیک طرح‌های زیر ارزیابی می‌شوند:

AutoEncoder Long Short-Term Memory (AE-LSTM), Facebook-Prophet, and Isolation Forest

این مدل ها می توانند رفتارهای واقعی سالم و غیرعادی سیستم PV را شناسایی کنند، نتایج ما بینش روشنی برای شکل گیری یک راه حل ارائه می دهد. راه حل آگاهانه، به ویژه با مبادلات تجربی برای چنین فضای پیچیده ای، در این صنعت راه گشا خواهد بود.

کلمات کلیدی: تشخیص ناهنجاری. فراگیری ماشین؛ تجزیه و تحلیل سری زمانی؛ همبستگی

10araniroo.irخورشیدی.png pyranometer field use min - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

مقدمه

در دهه گذشته، توسعه و گسترش سریع انرژی های تجدید پذیر از جمله نیروگاه ها صورت گرفته است. انتظار می‌رود توسعه‌ و توانایی تولید انرژی پاک و مقرون به صرفه و ایجاد رشد اقتصادی باعث پیشرفت ما شود. در نتیجه، چالش های تولید انرژی خورشیدی اخیرا توجه قابل توجهی را به خود جلب کرده است. یک نگرانی پیشرو، شناسایی و بومی سازی الگوهای غیرعادی در نیروگاه های خورشیدی است و تکنیک های داده محور به تشخیص و پیشگیری از چنین ناهنجاری هایی کمک زیادی میکند.

سیستم های هوش منطقی می توانند ثابت کنند تجهیزات فتوولتائیک (PV)  در بسیاری از موارد کارآمد است، که با استفاده از شبکه های عصبی کانولوشن برای پیاده سازی هوش مصنوعی قابل پیاده سازی است.(شبکه عصبی کانولوشنال کلاسی از شبکه عصبی مصنوعی است که بیشتر برای تجزیه و تحلیل تصاویر بصری استفاده میشود).

عملکرد مقیاس پذیر و منسجم سیستم های خورشیدی PV به ابزارهای پیشرفته برای نظارت نیاز دارد، تکامل دینامیکی پارامترهای سیستم و انتشار هشدارهایی در مورد ناهنجاری ها به تصمیم گیرندگان و نظارت آنلاین سیستم های PV از نظر فنی برای کمک به اپراتورها مفید است. شکست در شناسایی خطاهای فاجعه بار در آرایه های فتوولتائیک (PV)  براین اساس کاهش می یابد. توان تولید شده و عدم کنترل حفاظتی، در واقع خطرات آتش سوزی را ایجاد می کند که ابتدا ناهنجاری درنمای بیرونی پنل های خورشیدی ظاهر می شود، اگر دارندگان پنل زودتر از وجود ناهنجاری ها مطلع شوند، آنها می توانند ناهنجاری ها را از بین ببرند تا از کمبود توان بیشتر جلوگیری کنند. بنابراین، سرعت و روش‌های تشخیص ناهنجاری برای بهبود قابلیت اطمینان و ایمنی و عملکرد سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) مهم هستند.

نیروگاه های خورشیدی PV معمولاً در نتیجه اشکال مختلف ناهنجاری ها به اندازه کافی اجرا نمی شوند. این ناهنجاری ها یا داخلی یا خارجی هستند. خطاها در سیستم خورشیدی PV بوجود می آیند و باعث می شوند تولید در روز صفر شود. خطاهای رایج عبارتند از خرابی در یک قطعه، جداسازی سیستم، خاموش شدن اینورتر، سایه اندازی و نقطه حداکثر توان اینورتر. عوامل خارجی مانند سایه، رطوبت، گرد و غبار و دما به عنوان ناهنجاری های خارجی قابل توجهی در نظر گرفته می شوند که سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) را تحت تاثیر قرار می دهند و تولید برق آن را تضعیف می کنند.

چندین ابتکارعمل برای رسیدگی به ناهنجاری قبلی پیشنهاد شده است.

کاربرد شبکه عصبی مصنوعی(ANN)  در مدل‌سازی دستگاه‌های خورشیدی بررسی می‌شود، که در مقایسه با تجربه مطالعات انجام شده، به آزمایش های تجربی کمتری برای تعیین اتصالات ورودی/خروجی نیاز دارد، بنابراین باعث صرفه جویی در زمان و کاهش هزینه های مالی می شود. یک حافظه کوتاه مدت طولانی طرح شبکه عصبی (LSTM) برای پیش‌بینی بازده عکس‌های خورشیدی استفاده می‌شود. هوش مصنوعی می تواند آمارهای دریافتی، در یک بازه زمانی مشخص را برای شکل گیری الگوهای کنترل به کار گیرد. به همین ترتیب، طرح‌های مبتنی بر هوش مصنوعی مانند مدل LSTM و بهینه‌ساز شعله پروانه برای پیش‌بینی بازده دستگاه‌های تقطیر آب خورشیدی. LSTM بهینه شده بهتر از طرح LSTM مستقل عمل کرد.

کاربرد روش‌های یادگیری عمیق (DL) را در زمینه‌های مختلف بازبینی کردند، از جمله تولید برق از توربین های بادی و پنل های خورشیدی، پزشکی، کشاورزی و داده کاوی.

موارد مهم مقاله به شرح زیر است:

  1. بررسی سه مدل شناخته شده تشخیص ناهنجاری: Autoencoder LSTM (AE-LSTM)، پیام رسان فیسبوک ، و محدوه ایزوله سازی. آزمون های مقایسه ای انجام شد: بررسی دقت و عملکرد این مدل ها با بهینه سازی هایپرپارامترها
  2. تعریف و طبقه بندی عوامل داخلی و خارجی که باعث ایجاد ناهنجاری در نیروگاه فتوولتاییک میشوند، بررسی تاثیر آنها بر دقت مدل و مطالعه اثر همبستگی و تاثیر آن در تشخیص ناهنجاری ها.

در ادامه این مقاله، بخش 2 پیشینه مقاله و مرتبط را مورد بحث قرار می دهد و بخش 3 الگوریتم های یادگیری ماشین استفاده شده را مشخص می کند. بخش 4 مجموعه داده های جمع آوری شده را مشخص می کند و بخش 5 خروجی ها و پارامترهای آزمایشی را نشان می دهد.

در پایان، ما نتایج خود را جمع آوری می کنیم و برخی از جهت گیری های آینده را در بخش 6 ارائه می دهیم.

  1. Related Work

چندین روش تکنیک های تشخیص ناهنجاری در نیروگاه های فتوولتائیک (PV) را بررسی کرده اند. به عنوان مثال، روش های متعددی را برای افشا و مقایسه دسته بندی ناهنجاری های حاوی مدل میانگین متحرک یکپارچه رگرسیون خودکار (ARIMA)، شبکه‌های عصبی، ماشین‌های بردار پشتیبان و طبقه‌بندی  k-نزدیک‌ترین همسایه‌ها.

طرحی برای چیدمان سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) این مدل برای پیش بینی تولید برق AC پیاده سازی شده است. ساخته شده بر روی ANN، که تولید برق AC را با استفاده از تابش خورشیدی و دمای داده های پانل سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) یک تکنیک جدید برای تشخیص ناهنجاری پیشنهاد شده است.

در پردازش تصویر حرارتی با ابزار SVM که ویژگی ها را به عنوان عنصر معیوب و انواع غیر معیوب طبقه بندی می کند.

یک تکنیک تشخیص ناهنجاری مبتنی بر مدل بخش DC و سایه لحظه ای از سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) برای بازرسی پیشنهاد شده است. در ابتدا، یک مدل بر اساس یک دیود برای تشریح ماهیت معمولی سیستم PV نظارت شده و تشکیل شده است. باقیمانده برای تشخیص عیب در مرحله بعد، یک فرآیند ماشین بردار پشتیبانی یک کلاس SVM)) به باقیمانده ها که با مدل در حال اجرا برای افشای خطا شروع می شود، اجرا می شود. روشی بدون حسگر برای آشکارسازی خطاهای هر پنل از آرایه های خورشیدی روش مدل محور SunDown بر تعاملات بین توان خروجی پنل ها تأثیر می گذارد. تولید توان توسط پنل های مجاور برای تشخیص نابرابری ها از تولید پیش بینی شده بررسی میشود.

این مدل می‌تواند خطاهای همزمان را در بسیاری از پنل‌ها مدیریت کند و ناهنجاری‌ها را برای تصمیم‌گیری ممکن طبقه‌بندی کند؛ منابعی از جمله برف، برگ ها، زباله ها و خرابی های الکتریکی.

ابزار جدیدی به نام ISDIPV) ) ارائه شده است که قادر به تشخیص ناهنجاری ها است و عیب یابی آنها در نیروگاه خورشیدی PV  شامل سه عملیات اساسی است: مواردی برای جمع آوری داده ها، تشخیص ناهنجاری و تشخیص ارائه شده، تفاوت در عملکرد منظم دو شکل از روش های مدل سازی اجرا شده است.

برای توصیف عملکرد معمولی پیش بینی شده: توابع انتقال خطی (LTF) و مدل های شبکه های عصبی ساخته شده بر روی رسپترون های چند لایه (MLP)  یک پاسخ داده محور برای تشخیص و طبقه بندی ناهنجاری کافی ارائه کرد که جریان های آرایه های سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) را به عنوان نشانه هایی برای افشا و طبقه بندی ناهنجاری های سیستم های فتوولتاییک PV ( نیروگاه خورشیدی ) اعمال کرد. رویکرد تشخیص ناهنجاری پیشنهادی از تکنیک‌های هوش مصنوعی بدون نظارت استفاده می‌کند. این رویکرد شامل دو مرحله، به ویژه تشخیص سیستم هوشمند محلی  (LCAD) و تشخیص ناهنجاری هوشمند در بستر جهانی (GCAD). شناسایی ناهنجاری های مربوط به مصرف سوخت ایستگاه های پایه و

داده های ثبت شده با استفاده از ژنراتور به عنوان مبدأ قدرت. ناهنجاری ها شناسایی شده از طریق یادگیری الگوهای مصرف سوخت با استفاده از چهار روش طبقه بندی: ماشین‌های بردار پشتیبانی (SVM)، k-نزدیک‌ترین همسایگان (KNN)، رگرسیون لجستیک (LR)  و پرسپترون چند لایه (MLP)  نتایج نشان داد که MLP بیشترین کارایی را در این زمینه دارد.

8araniroo.irخورشیدی.png solar panel - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

 

تفسیر اندازه گیری

یک تکنیک جدید برای نظارت بر سیستم های نیروگاه خورشیدی فتوولتاییک PV با تشخیص ناهنجاری ها ارائه شده است. با استفاده از “k-نزدیکترین همسایگان  (kNN) و “ماشین بردار پشتیبانی یک کلاس OCSVM)) الگوریتم های خودآموز به طور قابل توجهی تلاش اندازه گیری را کاهش داده و پشتیبانی می کنند که از پایش قابل اعتماد خطاها از الگوریتم k- نزدیکترین همسایه استفاده کردند و یک پرسپترون چند لایه برای پردازش داده ها از یک حسگر DC و تشخیص اختلاف جریان الکتریکی یک المان و تشخیص بدون حسگر پیشنهاد شده است. که توسط کاهش سریع جریان محصور شده توسط دو نقطه حداکثر توان کنترل می شود. شبیه سازی نمونه برداری ردیابی شده (MPPT) در نیروگاه های خورشیدیPV  برای اعتبار سنجی اجرا شد.

امکان تعیین ناهنجاری ها در برابر موارد نوسانی، صرف نظر از درجه اختلاف و تابش یک چارچوب با تشخیص ناهنجاری سلول های خورشیدی مونو کریستالی پیشنهاد شده است.

این چارچوب دو مرحله دارد: در مرحله اولیه، یک شبکه مولد غیرهماهنگ (GAN) برای ساخت یک مدل تشخیص ناهنجاری استفاده می شود. این مدل امکان تشخیص ترکیبات غیر طبیعی که فقط از نمونه های غیر معیوب برای تمرین استفاده می کنند.

شبکه کانولوشن

یک طرح تحلیلی برای بررسی آنلاین ویدیوی خام تصویربرداری از سطح پنل های نیروگاه خورشیدی ارائه شده است. جریان های ترموگرافی هوایی این طرح ترکیبی از پردازش تصویر و آمار است. روش های هوش مصنوعی طرح ارائه شده به اجزا قدرتمند بستگی دارد. تجزیه و تحلیل (RPCA)، که بر روی تصاویر سطح پنل های نیروگاه خورشیدی PV برای تشخیص و محصور کردن همزمان استفاده می شود از ناهنجاری ها علاوه بر RPCA، روش‌های پس از پردازش نیز برای آن پیشنهاد شده‌اند. کاهش نویز تصویر و تقسیم بندی مدل های متمایز برای نیروگاه انتخاب می شوند. بررسی داده های این مدلهای خطی، مدلهای مبتنی بر مجاورت، مدل‌ها، مجموعه‌های ناهنجاری و شبکه‌های عصبی که بالاترین نرخ تشخیص را دارند، احتمالات هستند.

SolarClique، یک روش مبتنی بر داده، برای تشخیص ناهنجاری ها درتولید برق تاسیسات نیروگاه خورشیدی است که این روش به هیچ دستگاه سنسوری نیاز ندارد. برای تشخیص خطا/ناهنجاری در عوض، منحصراً به نتیجه مونتاژ آرایه نیاز دارد

و آرایه های نزدیک برای تشخیص ناهنجاری عملیاتی به کار گرفته میشوند.

یک تکنیک دیگر تشخیص ناهنجاری استفاده از یک مدل یادگیری نیمه نظارتی برای از پیش تعیین کردن نرخ تولید با اطلاع از میزان تابش خورشید پیشنهاد شده است. شرایط پنل های خورشیدی برای شرایطی که پنل خورشیدی نمی تواند برق تولید کند مورد آنالیز قرار میگیرد. در نتیجه خراب شدن تجهیزات این روش از مدل خوشه بندی برای اعمال منظم فیلتراسیون و مدل شبکه عصبی، Autoencoder، برای ایجاد طبقه بندی ناهنجاری یا خطا ها استفاده می کند.

یک طرح کلی، بدون نظارت و صرفا مقیاس پذیر برای تشخیص ناهنجاری ها و خطاهای نیروگاه خورشیدی ارائه شده است.

در داده ها در قالب یک بازه زمانی که می توانند به صورت آفلاین و آنلاین اجرا شوند. این طرح از یک مدل بازسازی به دنبال رمزگذار خودکار متغیر تشکیل شده است. رمزگذار و رمزگشا هر دو پارامتری هستند که با شبکه های عصبی دامنه دار برای تشخیص در بازه زمانی داده های دریافتی نتایج را بررسی کرده و نشان می‌دهد که مدل می‌تواند شرایط غیرعادی را با استفاده از معیارهای ترمیم احتمالی مانند ناهنجاری تشخیص دهد.

مدل رویکرد تشخیص ناهنجاری یا خطاهای بالقوه (به عنوان مثال، ولتاژ بالا/پایین) مجموعه ای با مدل های رگرسیون غیر خطی و آمار و ارقام ناهنجاری پس از مطالعه همبستگی که برای تشخیص نفوذ فیزیکی اقتباس شده است.

این الگوریتم بر داده های ورودی، شکل ناهنجاری ها، داده های خروجی و دانش متکی است.

6araniroo.irخورشیدی Thermographie Solar - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

 

  1. مواد و روش ها: الگوریتم های ML

تکنیک ها و روش های مختلف مورد استفاده در این مقاله در این بخش مورد بحث قرار می گیرد.

یعنی، ما با الگوریتم‌های ML نور بیشتری را مورد استفاده قرار دادیم AutoEncoder Long Short-

روش تحقیق معماری های این الگوریتم به شدت مورد بحث قرار می گیرند و درک کاملی از آن ایجاد می کنند.

3.1. AutoEncoder حافظه کوتاه مدت /بلند مدت (AE-LSTM)

AutoEncoder (AE) یک ANN بدون نظارت است. دارای سه ساختار متقارن است: لایه ها: ورودی پنهان و یک لایه خروجی (بازسازی) . دارای فرآیندهای رمزگذاری و رمزگشایی داخلی است. رمزگذاری از ورودی شروع می شود لایه پنهان، در حالی که رمزگشایی لایه پنهان را به لایه خروجی هدایت می کند. AE شایستگی یادگیری موثر داده ها بدون برچسب برای پیش بینی از بردار ورودی را دارد. شکل 1ساختار AE را نشان می دهد.

1araniroo.irخورشیدی 258x300 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 1. The AutoEncoder (AE) model.

 

فرآیند رمزگذاری به شرح زیر است:

H = f1(Wi . X + bi)              (1)

 

که Wi و bi پارامترهای وزن و بایاس در بین ورودی و لایه پنهان هستند.

X ورودی اولیه، H نمایش میانی داده های اولیه و f1 است.

تابع فعال سازی به عنوان مثال، ReLU، لجستیک (Sigmoid)  و (TanH)  به همین ترتیب، رمزگشایی فرآیند به صورت زیر بیان میشود:

 

Xˆ = f2(Wh . H + bh)             (2)

 

که در آن Wh و bh وزن ها و پارامترهای بایاس بین مخفی و خروجی هستند.

bX خروجی است که از داده های ورودی بازسازی می شود.

AE آموزش داده شده با هدف به حداقل رساندن اختلاف بین خروجی bX و the بردار ورودی X از طریق مربع خطا همچنین به نام خطای بازسازی.

 

2araniroo.irخورشیدی 300x193 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 2. Long Short-Term Memory (LSTM) unit.

 

  1. داده های جمع آوری شده

داده های مورد استفاده در دو نیروگاه خورشیدی در هند جمع آوری شد (نیروگاه 1 نزدیک گاندیکوتا، آندرا، و نیروگاه 2 در نزدیکی ناسیک، ماهاراشترا) در مدت 34 روز، هر کدام با فواصل 15 دقیقه ای هر نیروگاه شامل 22 حسگر متصل به هر اینورتر بود و سطوح تولید نیروگاه برای اندازه گیری نرخ تولید (یک عامل داخلی که می تواند باعث ناهنجاری ها شود)، مانند توان های AC وDC  در سطح اینورتر نیروگاه، اندازه گیری شد. تابش، دمای محیط و ماژول (آن عوامل خارجی که می توانند ناهنجاری ایجاد کنند) داده های اندازه گیری شده آب و هوا که منتشر شده.

3araniroo.irخورشیدی 244x300 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 3. Correlation matrix computing the linear correlation among the characteristic elements for power plants 1 and 2.

 

 نتایج و بحث

این بخش ارزیابی تجربی انجام شده برای اعتبار سنجی و ارزیابی را توضیح می دهد.

شرح کاملی از تنظیمات آزمایشی ارائه شده است. ما یافته ها و نتایج خود را با جزئیات تجزیه و تحلیل می کنیم.

سیستم های نیروگاه خورشیدی PV  ممکن است انواع مختلفی از ناهنجاری ها را داشته باشند. برای مقایسه مناسب بین الگوریتم‌های تشخیص ناهنجاری، آزمایش‌هایی برای بررسی اثر انجام شد. عوامل داخلی و خارجی و همچنین اثر همبستگی بر روی داده های همه اینورترها با بررسی دیتاهای سنسورهای این دو نیروگاه با مقایسه AC تولید شده انجام شد. توان اینورتر و نرخ تابش نیروگاه شماره 1 ، در شکل 4 نشان داده شده است.

قابل توجه است که در دوره های 7 و 14 خرداد (ژوئن) افت برق متناوب داشته است.

این اخطار می تواند نشان دهنده خرابی در سطح اینورتر باشد.

4araniroo.irخورشیدی 1030x477 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیک

Figure 4. Signal comparison between AC, DC Power, Irradiation, and the Module Temperature signals from inverter number 12.

 

تعداد سیگنال های خطا یا ناهنجاری 13 عدد است که در تاریخ  7 و 14 خرداد (ژوئن) برعکس، برای سایر اینورترها مانند اینورتر شماره 12، افتی وجود نداشت. همانطور که در تولید برق AC، در شکل 5 نشان داده شده است.

 

5araniroo.irخورشیدی 1030x501 - به کارگیری هوش مصنوعی برای مانیتورینگ و تشخیص خطاها در نیروگاه های خورشیدی فتوولتائیکFigure 5. Signal comparison between AC, DC Power, Irradiation, and the Module Temperature signals from inverter number 12.

  1. نتیجه گیری

تشخیص خطا یا ناهنجاری در نیروگاه های خورشیدی مدرن، استفاده از رویکردهای داده محوربرای کاهش زمان های خرابی و افزایش کارایی حیاتی است. در این مقاله، سه عملکرد مدل ها مبتنی بر هوش مصنوعی برای مدلی که می تواند مورد تجزیه و تحلیل قرار گرفت، نشان داده شد که میتواند به طور دقیق خطاها یا ناهنجاری های موجود در سیستم نیروگاه خورشیدی فتوولتائیک (PV)  را تعیین کند. همبستگی ضرایب بین پارامترهای ویژگی داخلی و خارجی نیروگاه تعیین شد و برای تجزیه و تحلیل کارایی مدل های هوش مصنوعی در تشخیص ناهنجاری ها استفاده می شود.

AE-LSTM ناهنجاری ها و سیگنال سالم را با موفقیت شناسایی کرد. در آینده بررسی تکنیک‌های کاهش ناهنجاری، هوشمند می‌شود که روند هوش مصنوعی، یعنی هوش مرکزی، در نیروگاه های انرژی خورشیدی هوشمند در مقیاس بزرگ به کار گرفته خواهد شد.

 

نویسندگان مقاله چاپ شده در مجله MDPI:

Mariam Ibrahim

Ahmad Alsheikh

Feras M. Awaysheh

Mohammad Dahman Alshehri

نیروگاه های تجدیدپذیر متصل شده در تبریز

نیروگاه های تجدیدپذیر متصل شده در تبریز مدیرعامل شرکت توزیع نیروی برق تبریز اعلام کرد:

در حال حاضر تعداد ۳۸ نیروگاه خورشیدی با ظرفیت کل ۵۰۳ کیلووات در حوزه‌ خدماتی این شرکت

متصل به شبکه هستنند. عادل کاظمی روز دوشنبه در جمع خبرنگاران اعلام کرد: از این میزان ۱۰۸ کیلووات

آن دارای قرارداد خرید تضمینی با سازمان ساتبا بوده و مابقی در راستای اجرای مصوبه سال ۹۵ هیات

محترم وزیران (با موضوع تامین ۲۰ درصد برق مصرفی وزارتخانه‌ها، موسسات، شرکت‌های دولتی

و نهادهای عمومی غیردولتی از محل انرژی‌های تجدیدپذیر) توسط ارگان‌های مشمول مصوبه اجرا و با

نظارت شرکت توزیع به شبکه متصل شده‌اند.

 

وی گفت: شرکت توزیع برق تبریز در راستای ترویج فرهنگ بکارگیری نیروگاه‌ های تجدیدپذیر و تسهیل

فرآیندهای احداث آنها از سال ۹۴ تاکنون نسبت به عقد قرارداد با سازمان انرژی نیروگاه ‌های تجدیدپذیر

و بهره‌وری انرژی برق (ساتبا)، متولی اصلی امور مربوط به نیروگاه‌ های تجدیدپذیر ، اقدام کرده است.

 

وی ادامه داد: در این راستا کلیه‌ مراحل عقد قرارداد، نظارت و اتصال به شبکه در حوزه‌ خدماتی شرکت توزیع

نیروی برق تبریز برای احداث‌ کنندگان نیروگاه‌ های تجدیدپذیر خورشیدی زیر ۱۰۰ کیلووات و بادی

پایین تر از یک مگاوات و محدود به ظرفیت انشعاب توسط این شرکت به نمایندگی از سازمان ساتبا انجام

می‌ شود و نیازی به مراجعه‌ متقاضیان به آن سازمان نیست.

 

کاظمی اظهار داشت: با توجه به مجوزهای صادرشده و قراردادهای مبادله شده پیش‌بینی می‌شود

در سال‌های آتی تعداد ۱۷ نیروگاه های تجدیدپذیر خورشیدی دیگر با ظرفیت کل ۲۵۷ کیلووات

احداث و به شبکه توزیع متصل شوند. وی ادامه داد: تعداد ۱۱مورد از ۱۷ نیروگاه خورشیدی مذکور، با ظرفیت

تجمیعی ۲۴۵ کیلووات مربوط به نیروگاه های تجدیدپذیر خورشیدی محدود به ظرفیت انشعاب زیر ۱۰۰ کیلووات

و ۶ مورد با ظرفیت تجمیعی ۱۱۲ کیلووات مربوط به موضوع مصوبه تامین ۲۰ درصد برق

مصرفی ادارات می‌باشد.

 

با پیج اینستاگرامی ما همراه باشید

منبع

نیروگاه های تجدیدپذیر متصل شده در تبریز - نیروگاه های تجدیدپذیر متصل شده در تبریز